
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Achieving Resolution-Agnostic
DNN-based Image Watermarking: A Novel Perspective of

Implicit Neural Representation
Anonymous Authors

In Section 1, we provide detailed information about Stage 1 and
Stage 2 that was not mentioned in the experiment section. In Sec-
tion 2, we provide some additional experimental results and com-
parisons based on the settings in our experiment section.

1 IMPLEMENTATION DETAILS
Stage 1. We create INR by splitting the RGB channels into three
parts and fitting them separately. We use six hidden layers, each
containing 256 perceptrons. We set the PSNR to stop training at
45dB to ensure that the fine-tuning stage does not affect the invis-
ibility of INR [1, 5, 6].
Stage 2.Weutilize the Conv-BN-ReLU blocks for both encoder and
decoder. The encoder consists of 4 blocks, with 64 output channels,
2D kernel size 3, stride 1, and padding 1. The decoder has seven
blocks with 64 output channels, followed by a block with 𝑛 output
channels, where 𝑛 is the length of the secret message. Then, the
message is recovered after applying an average pool and a linear
layer. The attacks for pre-training watermark decoder are crop(𝑠 =
0.25), JPEG(𝑄 = 50), Resize(𝑝 = 0.5), Resize(𝑝 = 2) and MF(𝑘𝑠 = 7).
The non-differentiable noise JPEG is simulated by following [7].

2 MORE EXPERIMENTAL RESULTS
2.1 Evaluation on Specific Attack
In the paper, we mentioned that other baseline methods have poor
robustness in at least one type of attack. Here, we compare the
robustness of watermarking methods under different resolutions
from the perspectives of two attacks, JPEG compression and crop.

As shown in Table 1 and 2, MBRS[3] can only watermark im-
ages with training resolution, thus MBRS is not tested under other
resolutions. Under JPEG attack, the accuracies of HiDDeN [8], and
TSDL [4] are around 60% and 55%, showing that they are not robust
against JPEG compression. Under cropping attack, the accuracy of
DWSF [2] is lower than 65% because the watermarked block is at-
tacked, resulting in poor robustness.

2.2 Evaluation on Varied Resolutions
In this section, we show the watermarked images which are sam-
pled from the watermarked INR on six different resolutions: 256×
256, 384 × 384, 512 × 512, 480 × 854 (480p), 720 × 1280 (720p) and
1080 × 1920 (1080p). As shown in Figure 1, we resize the six wa-
termarked images to the same height. We choose three different
images to demonstrate the quality of our watermark images. The
watermarks are distributed in the image’s high-frequency areas,
allowing for good invisibility.

Table 1: Accuracy (%) under JPEG attack. “/” denotes that
MBRS is not applicable when the resolution varies.

Resolution HiDDeN TSDL MBRS DWSF RAIMaRK
256 × 256 60.77 54.30 97.43 95.83 99.97
384 × 384 59.23 56.10 / 93.93 99.97
512 × 512 57.97 55.13 / 93.93 99.97
480 × 854 57.80 54.43 / 92.00 99.93
720 × 1280 55.97 53.93 / 95.43 100.00
1080 × 1920 57.13 54.03 / 95.83 99.97

Table 2: Accuracy (%) under cropping attack. “/” denotes that
MBRS is not applicable when the resolution varies.

Resolution HiDDeN TSDL MBRS DWSF RAIMaRK
256 × 256 98.53 86.73 58.80 51.33 99.20
384 × 384 98.80 89.10 / 50.53 99.33
512 × 512 99.23 87.73 / 51.20 99.43
480 × 854 99.17 86.70 / 50.77 99.80
720 × 1280 98.97 87.13 / 62.80 99.73
1080 × 1920 98.97 84.83 / 61.77 99.50

2.3 Evaluation on Different Methods
In this section, we show the original images and the watermarked
images generated by HiDDeN, TSDL, MBRS, DWSF, and our pro-
posedmethod RAIMaRK under 256×256 resolution, which is shown
in Figure 2. In MBRS and DWSF, apparent artifacts and densely dis-
tributed watermark regions can be observed, resulting in poor in-
visibility. AlthoughHiDDeN and TSDL evenly distribute thewater-
mark in the image, the highwatermark intensity causes some color
deviation from the original image in some areas. Our proposed
method RAIMaRK achieves the best invisibility by embedding the
watermark in areas where pixel value changes significantly.
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Figure 1: Watermarked images with different resolutions. The first row: the watermarked images 𝐼𝑤 . The second row: the
residual images 𝐼𝑟 . The third row: the normalized residual images 𝐼𝑚 .

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: Achieving Resolution-Agnostic DNN-based Image Watermarking: A Novel Perspective of Implicit Neural RepresentationACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Original

HiDDeN

TSDL

MBRS

DWSF

RAIMARK
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