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A Search Space and Dilated Architectures
For the dilation architecture, we use a DAG with 4 nodes as the supernetwork. There are 8 operation
candidates for each edges, including 4 convolutional operations: 3× 3 separable convolutions, 5× 5
separable convolutions, 3× 3 dilated separable convolutions and 5× 5 dilated separable convolutions,
2 pooling operations: 3× 3 average pooling and 3× 3 max pooling, and two special operations: an
identity operation representing skip-connection and a zero operation representing two nodes are
not connected. During dilating, we stack 3 cells for each of the 3 blocks in the WRN34-10. During
retraining, the number is increased to 6.
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(a) NADAR-A (with FLOPs constraint);
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(b) NADAR-B (without FLOPS constraint).

Figure 1: Visualization of the dilated cells.

The dilated architectures designed by NADAR are as shown in Figure 1. We find that NADAR prefers
deep architecture, which can increase more non-linearity with limited number of parameters. The
non-linearity is closely related to network capacity. Such deep architectures can bring more capacity
and adversarial robustness to the hybrid network.

B Additional Results
B.1 MNIST
Despite adaptation, we report the adversarial validation accuracy of architectures dilated by NADAR
under various attack methods on MNIST and a colorful variant of MNIST, namely MNIST-M [2].
MNIST-M blends greyscale images in MNIST over random patches of colour photos in BSDS500
[1]. The blending introduces extra colour and texture. In this experiment, we use the ResNet-18 as
our backbone.
Table 1 shows the adversarial validation accuracy. We report the results of NADAR with and
without FLOPs constraint. As shown in the table, the FLOPs constraint can reduce the FLOPs by
20.75 ∼ 35.72%, while the performance is still competitive. On the MNIST, we observe that NADAR
can reach better accuracy under PGD-40 than under FGSM and MI-FGSM. We argue that this is
because the MNIST dataset is relatively simple, and the 40 steps PGD causes overfitting. We therefore
perform experiments on the MNIST-M, and the results shows that FGSM > MI-FGSM > PGD-40.
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Table 1: The adversarial validation accuracy of NADAR under the FGSM, MI-FGSM, and PGD-40
attack on MNIST and MNIST-M.

Dataset FLOPs
Const.

+×
(M)

Valid Acc. Against (%)
FGSM MI-FGSM PGD-40

MNIST T 104.02 98.19 98.11 98.90
F 131.26 98.27 98.25 98.97

MNIST-M T 89.23 92.50 92.31 91.79
F 138.81 93.47 93.04 92.62

We also compare the results to SOTA methods. On the MNIST dataset, PGD-7 only reaches 96.01%
validation accuracy under PGD-40 attack, and TRADES-6 only reaches 96.07%.
B.2 Dilation with Various Backbones
To demonstrate the generalizability of NADAR, we test it with different scale of ResNet backbones
from ResNet-18 to ResNet-101. The standard accuracy and adversarial accuracy under PGD-20
attack of various backbones are reported in Table 2. All the hybrid networks are retrained with PGD-7
as the same setting in our paper.

Table 2: NADAR with various backbones.

Network Valid Acc. Against (%)
Natural PGD-20

WRN34-10 w/o dilation 87.25 45.84

ResNet-18 + NADAR 81.35 50.92
ResNet-34 + NADAR 83.57 52.64
ResNet-50 + NADAR 83.23 52.89
ResNet-101 + NADAR 84.39 53.89
WRN34-10 + NADAR 86.23 53.43

The results demonstrate that NADAR can effectively improve the robustness of different backbones
comparing to the WRN34-10 baseline without any dilation. The largest ResNet-101 backbone can
reach competitive adversarial accuracy to the dilated WRN34-10. Regarding standard accuracy on
natural images, all the ResNet backbones suffer higher performance drop comparing to the WRN34-
10 backbone due to the inherent limitation of the small capacity of the backbone itself. This illustrates
that although NADAR can improve the robustness regardless of the capacity of the backbone, it is
still crucial to select a proper backbone for better standard accuracy.

C Additional Ablation Studies
C.1 Adversarial Training for Dilation
As aforementioned, we use the FressAT as the adversarial training method to optimize the dilation
architecture for efficiency. FreeAT requires a repeat number K on each mini-batch for better
perturbation generation. According to their paper, K = 8 reaches the best robustness. We also
perform experiments regarding the selection of K. Fig. 2 illustrates the accuracy curves of the
hybrid network during dilating. We report the adversarial training accuracy of FreeAT, the standard
validation accuracy, and the adversarial validation accuracy under PGD-20 attacks. There is no
standard training accuracy, because the hybrid network is not directly optimized under the standard
classification task (recall the standard performance constraint). All the values are obtained after
each complete epochs, when the K-repeat of all the mini-batches are finished. The horizontal axis
represents the total number of optimization steps, which equals to the epoch number multiply by K.
When K = 4, the hybrid network reaches outstanding adversarial training accuracy, but the validation
only increases slightly at the very beginning of training, and then keep decreasing until reach 0. In
the contrast, the standard validation accuracy increases continuously and reaches a competitive level.
This implies that the perturbation generated with K = 4 is not powerful enough to dilate the network
for the defense against PGD-20, and the framework might be dominated by the standard training
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Figure 2: The accuracy curves of dilating archi-
tectures with different adversarial training set-
tings of FreeAT.
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Figure 3: Comparison of NADAR to WRN34-10
backbone and randomly dilated hybrid networks.

Table 3: Different number of stacked cells in the dilation network.

# Dilation
Cells

Params +× Valid Acc.
(M) (G) Against (%)

Back. Arch. Back. Arch. Natural PGD-20

3× 3 46.2 2.0 6.7 0.3 86.45±0.22 47.78±0.41
3× 6 46.2 4.4 6.7 0.7 86.28±0.26 49.63±0.18
3× 9 46.2 6.8 6.7 1.1 85.63±0.12 45.25±0.57

of the backbone or the standard constraint on the dilation architecture. When K = 8, although the
standard validation accuracy is much lower than the previous result, the adversarial training and
validation accuracy is competitive and close to each other.
C.2 Different Scales of Dilation
Beside the FLOPs constraint, there is another factor that impacts the model capacity and the computa-
tion cost of a dilation network, that is the number of stacked cells. In Section 5.2, we stack 6 cells for
each of the 3 blocks in the WRN34-10 for retraining. Intuitively, large network capacity corresponds
to better performance. However, we demonstrate that the network cannot be dilate unlimitedly. There
is a sweet spot of neural architecture dilation. In this experiment, we test two more scales of stacked
cells. Table 3 compares the validation results of different scales of dilation.
We can observe that as the scale of dilation network increases, the standard accuracy consistently
declines. In terms of the adversarial accuracy, it first increases with the dilation scale, and then drops
significantly. This might because the network becomes difficult to converge as the network capacity
increases. Therefore, we stack 3× 6 cells in the dilation network, which reaches the best adversarial
accuracy and has a lower standard accuracy drop.
C.3 Comparison to Random Dilation
To demonstrate the effectiveness of neural architecture dilation, we compare five randomly dilated
architectures to our NADAR architectures and the WRN34-10 backbone. We train all the networks
with PGD-7 and test their robustness under PGD-20. The adversarial validation accuracy is as shown
in Figure 3. The median accuracy of random architectures is similar to the WRN34-10 backbone,
but with a great possibility to reach better performance. However, there is still a certain possibility
that the dilation architectures can slightly harm the performance of the hybrid network. This shows
that neural architecture dilation has the potential to improve the robustness of a backbone, but it still
needs to be optimized. The accuracy of NADAR-A and -B is significantly better than the best results
of random dilation, which shows that our approach can indeed improve the robustness of backbones
effectively and stably.

D Proof of Theorems
This section proves the lemmas and theorems in our paper.
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D.1 Standard Error Bound
Theorem 1. Let hbck(x) = hb(x) be a standard hypothesis, hhyb(x) = hb(x) + hd(x) be a hybrid
hypothesis, andRstd(hbck) andRstd(hhyb) be the standard error of hbck and hhyb, respectively. For
any mapping hb, hd : X 7→ R, we have

Rstd(hhyb) ≤ Rstd(hbck) + E
[
e−hb(x)hd(x)

]
, (1)

where x ∈ X is the input.

Proof. In Theorem 1, we compare the standard error Rstd of hbckand hhyb. The error bound can
be defined as the disagreement between the two hypothesis under the condition that hbck is correct.
Formally, it can be written as

Rstd(hadv)−Rstd(hbck) (2)

=E
[
1
(
yhbck(x) > 0, hhyb(x)hbck(x) ≤ 0

)]
(3)

≤E
[
1
(
hhyb(x)hbck(x) ≤ 0

)]
. (4)

By applying a simple inequality
1{yh(x) ≤ 0} ≤ e−yh(x), (5)

we have:
E
[
1
(
hhyb(x)hbck(x) ≤ 0

)]
(6)

≤E
[
e−hhyb(x)hbck(x)

]
(7)

=E
[
e−(hb(x)+hw(x))hb(x)

]
(8)

=E
[
e−hb(x)hb(x)e−hb(x)hw(x)

]
. (9)

As hb(x)hb(x) ∈ [0,+∞), we have e−hb(x)hb(x) ∈ (0, 1]. Therefore, we have

Rstd(hhyb)−Rstd(hbck) ≤ E
[
e−hb(x)hw(x)

]
. (10)

Theorem 1 is proved.

D.2 Adversarial Error Bound
We first prove Lemma 2 which is used to prove Theorem 3.
Lemma 2. For any mapping h : X 7→ R, we have

E
[

max
x′∈Bp(x,ε)

e−yh(x
′)

]
≤ E

[
max

x′∈Bp(x,ε)
e−yh(x)e−h(x)h(x

′)

]
, (11)

where x ∈ X is the input, y ∈ {−1,+1} is the corresponding label, and ε is the bound of allowed
adversarial perturbation.

Proof. Lemma 2 aims to describe the inherent feature of a hypothesis on adversarial tasks. It bounds
the adversarial error of a hypothesis with its standard error and its disagreement between standard
and adversarial examples. Formally, it can be written as

E
[

max
x′∈Bp(x,ε)

1 (yh(x′) > 0)

]
= E [1 (yh(x) > 0)] + E

[
max

x′∈Bp(x,ε)
1 (yh(x) > 0, h(x)h(x′) ≤ 0)

]
. (12)

By applying Eq. 5 again, we have

E
[

max
x′∈Bp(x,ε)

e−yh(x
′)

]
(13)

≤ E
[
e−yh(x)

]
+ E

[
max

x′∈Bp(x,ε)
e−h(x)h(x

′)

]
(14)

= E
[

max
x′∈Bp(x,ε)

e−yh(x)e−h(x)h(x
′)

]
. (15)

Lemma 2 is proved.

Theorem 3. Let hbck(x) = hb(x) be a standard hypothesis, hhyb(x) = hb(x) + hd(x) be a dilated
hypothesis, Rstd(hbck) be the standard error of hbck, and Radv(hhyb) be the adversarial error of
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hhyb. For any mapping hb, hd : X 7→ R, we have

Radv(hhyb) ≤ Rstd(hbck) + E
[

max
x′Bp(x,ε)

e−yhb(x)
(
e−hb(x)hb(x

′)e−yhd(x
′) − 1

)]
. (16)

where x ∈ X is the input, y ∈ {−1,+1} is the corresponding label, and ε is the bound of allowed
adversarial perturbation.

Proof. In Theorem 3, we directly compare the adversarial errorRadv of hhyb and the standard error
Rstd of hbck. Formally, it can be written as

Radv(hhyb)−Rstd(hbck) (17)

=E
[
1(∃x′ ∈ Bp(x, ε), s.t. yhhyb(x

′) ≤ 0)
]
− E [1(yhbck(x) ≤ 0)] (18)

≤E
[

max
x′Bp(x,ε)

e−yhhyb(x
′)

]
− E

[
e−yhbck(x)

]
(19)

=E
[

max
x′Bp(x,ε)

e−yhhyb(x
′) − e−yhbck(x)

]
(20)

By applying Lemma 2, we have

Radv(hhyb)−Rstd(hbck) ≤ E
[

max
x′Bp(x,ε)

e−yhb(x)
(
e−hb(x)hb(x

′)e−yhw(x
′) − 1

)]
. (21)

Theorem 3 is proved.
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