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Abstract

The framework of feedback graphs is a generalization of sequential decision-
making with bandit or full information feedback. In this work, we study
an extension where the directed feedback graph is stochastic, following
a distribution similar to the classical Erdős-Rényi model. Specifically, in
each round every edge in the graph is either realized or not with a dis-
tinct probability for each edge. We prove nearly optimal regret bounds of
order min

{
minε

√
(αε/ε)T , minε(δε/ε)1/3T 2/3} (ignoring logarithmic fac-

tors), where αε and δε are graph-theoretic quantities measured on the
support of the stochastic feedback graph G with edge probabilities thresh-
olded at ε. Our result, which holds without any preliminary knowledge
about G, requires the learner to observe only the realized out-neighborhood
of the chosen action. When the learner is allowed to observe the realization
of the entire graph (but only the losses in the out-neighborhood of the
chosen action), we derive a more efficient algorithm featuring a dependence
on weighted versions of the independence and weak domination numbers
that exhibits improved bounds for some special cases.

1 Introduction

In this work we study an online learning framework for decision-making with partial feedback.
In each decision round, the learner chooses an action in a fixed set and is charged a loss.
In our setting, the loss of any action in all decision rounds is preliminarily chosen by an
adversary, but the feedback received by the learner at the end of each round t is stochastic.
More specifically, the loss of each action i (including It, the one selected by the learner at
round t) is independently observed with a certain probability p(It, i), where the probabilities
p(i, j) for all pairs i, j are fixed but unknown.
This feedback model can be viewed as a stochastic version of the feedback graph model for
online learning [Mannor and Shamir, 2011], where the feedback received by the learner at
the end of each round is determined by a directed graph defined over the set of actions.
In this model, the learner deterministically observes the losses of all the actions in the
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out-neighborhood of the action selected in that round. In certain applications, however,
deterministic feedback is not realistic. Consider for instance a sensor network for monitoring
the environment, where the learner can decide which sensor to probe in order to maximize
some performance measure. Each probed sensor may also receive readings of other sensors,
but whether a sensor successfully transmits to another sensor depends on a number of
environmental factors, which include the position of the two sensors, but also their internal
state (e.g., battery levels) and the weather conditions. Due to the variability of some of
these factors, the possibility of reading from another sensor can be naturally modeled as a
stochastic event.
Online learning with adversarial losses and stochastic feedback graphs has been studied
before, but under fairly restrictive assumptions on the probabilities p(i, j). Let G be a
stochastic feedback graph, represented by its probability matrix p(i, j) for i, j ∈ V where
V is the action set. When p(i, j) = ε for all distinct i, j ∈ V and for some ε > 0, then G
follows the Erdős-Rényi random graph model. Under the assumption that ε is known and
p(i, i) = 1 for all i ∈ V (all self-loops occur w.p. 1), Alon et al. [2017] show that the optimal
regret after T rounds is of order

√
T/ε, up to logarithmic factors. This result has been

extended by Kocák et al. [2016a], who prove a regret bound of order
√∑

t(1/εt) when the
parameter εt of the random graph is unknown and allowed to change over time. However,
their result holds only under rather strong assumptions on the sequence εt for t ≥ 1. In
a recent work, Ghari and Shen [2022] show a regret bound of order (α/ε)

√
KT , ignoring

logarithmic factors, when each (unknown) probability p(i, j) in G is either zero or at least
ε for some known ε > 0, and all self-loops (i, i) have probability p(i, i) ≥ ε. Here α is the
independence number (computed ignoring edge orientations) of the support graph supp(G);
i.e., the directed graph with adjacency matrix A(i, j) = I{p(i,j)>0}. Their bound holds under
the assumption that supp(G) is preliminarily known to the learner.
Our analysis does away with a crucial assumption that was key to prove all previous results.
Namely, we do not assume any special property of the matrix G, and we do not require
the learner to have any preliminary knowledge of this matrix. The fact that positive edge
probabilities are not bounded away from zero implies that the learner must choose a threshold
ε ∈ (0, 1] below which the edges are deemed to be too rare to be exploitable for learning. If
ε is too small, then waiting for rare edges slows down learning. On the other hand, if ε is
too large, then the feedback becomes sparse and the regret increases.
To formalize the intuition of rare edges, we introduce the notion of thresholded graph supp(Gε)
for any ε > 0. This is the directed graph with adjacency matrix A(i, j) = I{p(i,j)≥ε}. As the
thresholded graph is a deterministic feedback graph G, we can refer to Alon et al. [2015] for
a characterization of minimax regret RT based on whether G is not observable (RT of order
T ), weakly observable (RT of order δ1/3T 2/3), or strongly observable (RT of order

√
αT ).1

Here α and δ are, respectively, the independence and the weak domination number of G;
see Section 2 for definitions. Let αε and δε respectively denote the independence number
and the weak domination number of supp(Gε). As αε and δε both grow when ε gets larger,
the ratios αε/ε and δε/ε capture the trade-off involved in choosing ε. We define the optimal
values for ε as follows:

ε∗
s = arg min

ε∈(0,1]

{αε

ε
: supp(Gε) is strongly observable

}
, (1)

ε∗
w = arg min

ε∈(0,1]

{
δε

ε
: supp(Gε) is observable

}
. (2)

We adopt the convention that the minimum of an empty set is infinity and the relative
arg min is set to 0. The arg min are well defined: there are at most K2 values of ε for which
the support of Gε varies, and the minimum is attained in one of these values. For simplicity,
we let α∗ = αε∗

s
and δ∗ = δε∗

w
. Our first result can be informally stated as follows.

Theorem 1 (Informal). Consider the problem of online learning with an unknown stochastic
feedback graph G on T time steps. If supp(Gε) is not observable for ε = Θ̃(K3/T ), then any
learning algorithm suffers regret linear in T . Otherwise, there exists an algorithm whose

1All these rates ignore logarithmic factors.
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regret satisfies (ignoring polylog factors in K and T )

RT ≤ min
{√

α∗

ε∗
s

T ,

(
δ∗

ε∗
w

)1/3
T 2/3

}
.

This bound is tight (up to polylog factors).

This result shows that, without any preliminary knowledge of G, we can obtain a bound
that optimally trades off between the strongly observable rate

√
(α∗/ε∗

s)T , for the best
threshold ε for which supp(Gε) is strongly observable, and the (weakly) observable rate
(δ∗/ε∗

w)1/3T 2/3, for the best threshold ε for which supp(Gε) is (weakly) observable. Note that
this result improves on Ghari and Shen [2022] bound (αε/ε)

√
KT , who additionally assume

that supp(Gε) and ε (a lower bound on the self-loop probabilities) are both preliminarily
available to the learner. On the other hand, the algorithm achieving the bound of Theorem 1
need not receive any information (neither prior nor during the learning process) besides the
stochastic feedback.
We obtain positive results in Theorem 1 via an elaborate reduction to online learning with
deterministic feedback graphs. Our algorithm works in two phases: first, it learns the edge
probabilities in a round-robin procedure, then it commits to a carefully chosen estimate
of the feedback graph and feeds it to an algorithm for online learning with deterministic
feedback graphs. There are two main technical challenges the algorithm faces: on the one
hand, it needs to switch from the first to the second phase at the right time in order to
achieve the optimal regret. On the other hand, in order for the reduction to work, it needs
to simulate the behaviour of a deterministic feedback graph using only feedback from a
stochastic feedback graph (with unknown edge probabilities). We complement the positive
results in Theorem 1 with matching lower bounds that are obtained by a suitable modification
of the hard instances in Alon et al. [2015, 2017] so as to consider stochastic feedback graphs.
Our last result is an algorithm that, at the cost of an additional assumption on the feedback
(i.e., the learner additionally observes the realization of the entire feedback graph at the end
of each round), has regret which is never worse and may be considerably better than the
regret of the algorithm in Theorem 1. While the bounds in Theorem 1 are tight up to log
factors, we show that the factors α∗/ε∗

s and δ∗/ε∗
w can be improved for specific feedback

graphs. Specifically, we design weighted versions of the independence and weak domination
numbers, where the weights of a given node depend on the probabilities of seeing the loss of
that node. On the technical side, we design a new importance-weighted estimator which uses
a particular version of upper confidence bound estimates of the edge probabilities p(i, j),
rather than the true edge probabilities, which are unknown. We show that the cost of using
this estimator is of the same order as the regret bound achievable had we known p(i, j).
Additionally, the algorithm that obtains these improved bounds is more efficient than the
algorithm of Theorem 1. The improvement in efficiency comes from the following idea: we
start with an optimistic algorithm that assumes that the support of G is strongly observable
and only switches to the assumption that the support of G is (weakly) observable when it
estimates that the regret under this second assumption is smaller. The algorithm learns
which regime is better by keeping track of a bound on the regret of the optimistic algorithm
while simultaneously estimating the regret in the (weakly) observable case, which it can do
efficiently.

Additional related work. The problem of adversarial online learning with feedback
graphs was introduced by Mannor and Shamir [2011], in the special case where all nodes
in the feedback graph have self-loops. The results of Alon et al. [2015] (also based on prior
work by Alon et al. [2013], Kocák et al. [2014]) have been recently slightly improved by Chen
et al. [2021], with tighter constants in the regret bound. Variants of the adversarial setting
have been studied by Feng and Loh [2018], Arora et al. [2019], Rangi and Franceschetti
[2019] and Van der Hoeven et al. [2021], who study online learning with feedback graphs
and switching costs and online multiclass classification with feedback graphs, respectively.
There is also a considerable amount of work in the stochastic setting [Liu et al., 2018, Cortes
et al., 2019, Li et al., 2020]. Finally, Rouyer et al. [2022] and Ito et al. [2022] independently
designed different best-of-both-worlds learning algorithms achieving nearly optimal (up to
polylogarithmic factors in T ) regret bounds in the adversarial and stochastic settings.
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Following Mannor and Shamir [2011], we can consider a more general scenario where the
feedback graph is not fixed but changes over time, resulting in a sequence G1, . . . , GT of
feedback graphs. Cohen et al. [2016] study a setting where the graphs are adversarially
chosen and only the local structure of the feedback graph is observed. They show that, if the
losses are generated by an adversary and all nodes always have a self-loop, one cannot do
better than

√
KT regret, and we might as well simply employ a standard bandit algorithm.

Furthermore, removing the guarantee on the self-loops induces an Ω(T ) regret. In Section 3,
we are in a similar situation, as we also observe only local information about the feedback
graph and the losses are generated by an adversary. However, we show that if the graphs
are stochastically generated with a strongly observable support for some threshold ε, there
is a

√
αT/ε regret bound. As a consequence, for ε not too small, observing only the local

information about the feedback graphs is in fact sufficient to obtain better results than
in the bandit setting. Similarly, if there are no self-loops in the support but the support
is weakly observable, then our regret bounds are sublinear rather than linear in T . Alon
et al. [2013, 2017] and Kocák et al. [2014] also consider adversarially generated sequences
G1, G2, . . . of deterministic feedback graphs. In the case of directed feedback graphs, Alon
et al. [2013] investigate a model in which Gt is revealed to the learner at the beginning of
each round t. Alon et al. [2017] and Kocák et al. [2014] extend this analysis to the case when
Gt is strongly observable and made available only at the end of each round t. In comparison,
in our setting the graphs (or the local information about the graph) revealed to the learner
(at the end of each round) may not even be observable, let alone strongly observable. Despite
this seemingly challenging setting for previous works, we nevertheless obtain sublinear regret
bounds. Finally, Kocák et al. [2016b] study a feedback model where the losses of other
actions in the out-neighborhood of the action played are observed with an edge-dependent
noise. In their setting, the feedback graphs Gt are weighted and revealed at the beginning
of each round. They introduce edge weights st(i, j) ∈ [0, 1] that determine the feedback
according to the following additive noise model: st(It, j)ℓt(j) + (1 − st(It, j))ξt(j), where
ξt(j) is a zero-mean bounded random variable. Hence, if st(i, j) = 1, then It = i allows to
observe the loss of action j without any noise. If st(i, j) = 0, then only noise is observed.
Note that they assume st(i, i) = 1 for each i, implying strong observability. Although similar
in spirit to our feedback model, our results do not directly compare with theirs.
Further work also takes into account a time-varying probability for the revelation of side-
observations [Kocák et al., 2016a]. While the idea of a general probabilistic feedback graph
has been already considered in the stochastic setting [Li et al., 2020, Cortes et al., 2020], the
recent work by Ghari and Shen [2022] seems to be the first one in the adversarial setting
that generalizes from the Erdős-Rényi model to a more flexible distribution where they allow
“edge-specific” probabilities. We remark, however, that the assumptions of Ghari and Shen
[2022] exclude some important instances of feedback graphs. For example, we cannot hope to
employ their algorithm for efficiently solving the revealing action problem (see for example
[Alon et al., 2015]). In a spirit similar to ours, Resler and Mansour [2019] studied a version
of the problem where the topology of the graph is fixed and known a priori, but the feedback
received by the learner is perturbed when traversing edges.

2 Problem Setting

A feedback graph over a set V = [K] of actions is any directed graph G = (V,E), possibly
with self-loops. For any vertex i ∈ V , we use N in

G (i) = {j ∈ V : (j, i) ∈ E} to denote the
in-neighborhood of i and Nout

G (i) = {j ∈ V : (i, j) ∈ E} to denote its out-neighborhood
(we may omit the subscript when the graph is clear from the context). The independence
number α(G) of a feedback graph G is the cardinality of the largest subset S of V such
that, for all distinct i, j ∈ S, it holds that (i, j) and (j, i) are not in E. We also use the
following terminology for directed graphs G = (V,E) [Alon et al., 2015]. Any i ∈ V is:
observable if N in

G (i) ̸= ∅, strongly observable if i ∈ N in
G (i) or V \ {i} ⊆ N in

G (i), and weakly
observable if it is observable but not strongly. The graph G is: observable if all i ∈ V are
observable, strongly observable if all i ∈ V are strongly observable, and weakly observable if
it is observable but not strongly. The weak domination number δ(G) of G is the cardinality
of the smallest subset S of V such that for all weakly observable i ∈ V \ S there exists j ∈ S
such that (j, i) ∈ E.
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In the online learning problem with a stochastic feedback graph, an oblivious adversary
privately chooses a stochastic feedback graph G and a sequence ℓ1, ℓ2, . . . of loss functions
ℓt : V → [0, 1]. At each round t = 1, 2, . . ., the learner selects an action It ∈ V to play and,
independently, the adversary draws a feedback graph Gt from G (denoted by Gt ∼ G). The
learner then incurs loss ℓt(It) and observes the feedback

{
(i, ℓt(i)) : i ∈ Nout

Gt
(It)
}

. In some
cases we consider a richer feedback, where at the end of each round t the learner also observes
the realized graph Gt. The learner’s performance is measured using the standard notion of
regret,

RT = max
k∈V

E

[
T∑

t=1

(
ℓt(It)− ℓt(k)

)]

where I1, . . . , IT are the actions played by the learner, and the expectation is computed
over both the sequence G1, . . . , GT of feedback graphs drawn i.i.d. from G and the learner’s
internal randomization.
Fix any stochastic feedback graph G = {p(i, j) : i, j ∈ V }. We sometimes use e to denote a
pair (i, j), in which case we write pe to denote the probability p(i, j). When Gt = (V,Et) is
drawn from G, each pair (i, j) ∈ V ×V independently becomes an edge (i.e., (i, j) ∈ Et) with
probability p(i, j). For any ε > 0, we define the thresholded version Gε of G represented by
{p′(i, j) : i, j ∈ V }, where p′(i, j) = p(i, j)I{p(i,j)≥ε}. We also define the support feedback
graph of G as the graph supp(G) = (V,E) having E = {(i, j) ∈ V × V : p(i, j) > 0}. To
keep the notation tidy, we write α(G) instead of α(supp(G)) and similarly for δ.

3 Block Decomposition Approach

In this section, we present an algorithm for online learning with stochastic feedback graphs
via a reduction to online learning with deterministic feedback graphs. Our algorithm
EdgeCatcher (Algorithm 3) has an initial exploration phase followed by a commit phase.
In the exploration phase, the edge probabilities are learned online in a round-robin fashion.
A carefully designed stopping criterion then triggers the commit phase, where we feed the
support of the estimated stochastic feedback graph to an algorithm for online learning with
(deterministic) feedback graphs.

3.1 Estimating the Edge Probabilities

As a first step we design a routine, RoundRobin (Algorithm 1), that sequentially estimates
the stochastic feedback graph until a certain stopping criterion is met. The stopping criterion
depends on a nonnegative function Φ that takes in input a stochastic feedback graph G
together with a time horizon. Let τ̂ ≤ T/K be the index of the last iteration of the outer
for loop in Algorithm 1. We want to make sure that, for all τ ≤ τ̂ , the stochastic feedback
graphs Ĝτ are valid estimates of the underlying G up to a Θ(ετ ) precision. To formalize this
notion of approximation, we introduce the following definition.

Definition 1 (ε-good approximation). A stochastic feedback graph Ĝ = {p̂e : e ∈ V 2} is an
ε-good approximation of G = {pe : e ∈ V 2} for some ε ∈ (0, 1], if the following holds:

1. All the edges e ∈ supp(G) with pe ≥ 2ε belong to supp(Ĝ);
2. For all edges e ∈ supp(Ĝ) with pe ≥ ε/2 it holds that |p̂e − pe| ≤ pe/2;
3. No edge e ∈ V 2 with pe < ε/2 belongs to supp(Ĝ).

We can now state the following theorem; we defer the proof in Appendix B. The proof follows
from an application of the multiplicative Chernoff bound on edge probabilities.
Theorem 2. If RoundRobin (Algorithm 1) is run on the stochastic feedback graph G,
then, with probability at least 1 − 1/T , the estimate Ĝτ is an ετ -good approximation of G
simultaneously for all τ ≤ τ̂ , where τ̂ ≤ T/K is the index of the last iteration of the outer
for loop in Algorithm 1.

5



Algorithm 1: RoundRobin
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T , stopping function Φ, actions V = {1, 2, . . . ,K};
ne ← 0, for all e ∈ V 2;
for each τ = 1, 2, . . . , ⌊T/K⌋ do

for each i = 1, 2, . . .K do
Play action i and observe Nout

Gt
(i) from Gt ∼ G; // t is the time step

ne ← ne + 1 for all e ∈ Nout
Gt

(i);
p̂τ

e ← ne/τ for all edges e ∈ V 2;
ετ ← 60 ln(KT )/τ ;
Ĝτ ←

(
V, {e ∈ V 2 : p̂τ

e ≥ ετ}
)

with weights p̂τ
e ; // estimated feedback graph

if Φ(Ĝτ , T ) ≤ τK then
output Ĝτ , ετ ;

output Ĝτ , ετ ;

3.2 Block Decomposition: Reduction to Deterministic Feedback Graph

As a second step, we present BlockReduction (Algorithm 2) which reduces the problem
of online learning with stochastic feedback graph to the corresponding problem with deter-
ministic feedback graph. Surprisingly enough, in order for this reduction to work, we do not
need the exact edge probabilities: an ε-good approximation is sufficient for this purpose.
The intuition behind BlockReduction is simple: given that each edge e in supp(Gε)
appears in Gt with probability pe ≥ ε at each time step t, if we wait for Θ

(
(1/ε) ln(T )

)
time

steps it will appear at least once with high probability. Applying a union bound over all
edges, we can argue that considering ∆ = Θ

(
(1/ε) ln(KT )

)
realizations of the stochastic

feedback graph, then all the edges in supp(Gε) are realized at least once with high probability.
Imagine now to play a certain action a consistently during a block Bτ of ∆ time steps. We
want to reconstruct the average loss suffered by a′ in Bτ :

cτ (a′) =
∑

t∈Bτ

ℓt(a′)
∆ , (3)

and we want to do it for all a′ in the out-neighborhood of a. Let ∆τ
(a,a′) be the number of

times that the loss of a′ is observed by the learner; i.e., the number of times that (a, a′) is
realized in the ∆ time steps. With this notation, we can define the natural estimator ĉτ (a′):

ĉτ (a′) =
∑

t∈Bτ

ℓt(a′)
I{(a,a′)∈Et}

∆τ
(a,a′)

. (4)

Conditioning on the event Eτ
(a,a′) that the edge (a, a′) in Ĝ is observed at least once in block

Bτ , we show in Lemma 2 in Appendix B that ĉτ (a′) is an unbiased estimator of cτ (a′).
Therefore, we can construct unbiased estimators of the average of the losses on the blocks as
if the stochastic feedback graph were deterministic. This allows us to reduce the original
problem to that of online learning with deterministic feedback graph on the meta-instance
given by the blocks. The details of BlockReduction are reported in Algorithm 2, while
the theoretical properties are summarized in the next result, whose proof can be found in
Appendix B.
Theorem 3. Consider the problem of online learning with stochastic feedback graph G,
and let Ĝ be an ε-good approximation of G. Let A be an algorithm for online learning with
arbitrary deterministic feedback graph G with regret bound RA

N (G) over any sequence of
N losses in [0, 1]. Then, the regret of BlockReduction (Algorithm 2) run with input
(T, ε/2, Ĝ,A) is at most ∆RA

N

(
supp(Ĝ)

)
+ ∆, where N = ⌊T/∆⌋ and ∆ = ⌈ 4

ε ln(KT )⌉.
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Algorithm 2: BlockReduction
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T , threshold ε, estimate Ĝ of G, learning algorithm A;
∆← ⌈ 2

ε ln(KT )⌉, N ← ⌊T/∆⌋, Ĝ← supp(Ĝ);
Initialize A with time horizon N and graph Ĝ;
Bτ ← {(τ − 1)∆ + 1, . . . , τ∆}, for all τ = 1, . . . , N ;
for each round τ = 1, 2, . . . , N do

Draw action aτ from the probability distribution over actions output by A;
for each round t ∈ Bτ do

Play action aτ and observe the revealed feedback; // Gt ∼ G
For all a′ ∈ Nout

Ĝ
(aτ ), compute ĉτ (a′) as in (4), and feed them to A;

Play arbitrarily the remaining T −∆N rounds;

For online learning with deterministic feedback graphs we use the variants of Exp3.G
contained in Alon et al. [2015]. Together with Theorem 3, this gives the following corollary;
the details of the proof are in Appendix B.
Corollary 1. Consider the problem of online learning with stochastic feedback graph G, and
let Ĝ be an ε-good approximation of G for ε ≥ 1/T and with support Ĝ.

• If Ĝ is strongly observable with independence number α, then the regret of BlockRe-
duction run with parameter ε/2 using Exp3.G for strongly observable graphs as base
algorithm A satisfies: RT ≤ 4Cs

√
(α/ε)T

(
ln(KT )

)3/2
, where Cs > 0 is a constant in the

regret bound of A.
• If Ĝ is (weakly) observable with weak domination number δ, then the regret of BlockRe-

duction run with parameter ε/2 using Exp3.G for weakly observable graphs as base
algorithm A satisfies: RT ≤ 4Cw(δ/ε)1/3(ln(KT )

)2/3
T 2/3, where Cw > 0 is a constant

in the regret bound of A.

Note that we can explicitly compute valid constants Cs = 12 + 2
√

2 and Cw = 8 directly
from the bounds in Alon et al. [2015].

3.3 Explore then Commit to a Graph

We are now ready to combine the two routines we presented, RoundRobin and BlockRe-
duction, in our final learning algorithm, EdgeCatcher. EdgeCatcher has two phases:
in the first phase, RoundRobin is used to quickly obtain an ε-good approximation Ĝ of the
underlying feedback graph G, for a suitable ε. In the second phase, the algorithm commits
to Ĝ and feeds it to BlockReduction. The crucial point is when to commit to a certain
(estimated) stochastic feedback graph. If we commit too early, we might not observe a denser
support graph, which implies missing out on a richer feedback. If we wait for too long, then
the exploration phase ends up dominating the regret. To balance this trade-off, we use the
stopping function Φ. This function takes as input a probabilistic feedback graph together
with a time horizon and outputs the regret bound that BlockReduction would guarantee
on this pair. It is defined as

Φ(G, T ) = min
{

4Cs

√
α∗

ε∗
s

T
(

ln(KT )
)3/2

, 4Cw

(
δ∗

ε∗
w

(
ln(KT )

)2
)1/3

T 2/3

}
(5)

for the specific choice of Exp3.G as the learning algorithm A adopted by BlockReduction.
Note that the dependence of Φ on the feedback graph G is contained in the topological
parameters α∗ and δ∗ and the corresponding thresholds ε∗

s and ε∗
w, defined in Equations (1)

and (2); see Appendix A for more details on their computation. If we apply Φ to a
stochastic feedback graph that is observable w.p. zero, its value is conventionally set to
infinity. Observe that, otherwise, the min is achieved for a specific ε∗ and a specific G∗ = Gε∗ .
In Appendix B, we provide a sequence of lemmas (Lemmas 3 and 4 in particular) showing
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Algorithm 3: EdgeCatcher
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T and actions V = {1, 2, . . . ,K};
Let Φ defined as in Equation (5);
Run RoundRobin(T,Φ, V ) and obtain Ĝ and ε̂;
Compute ε̂∗

s and ε̂∗
w for graph Ĝ as in Equations (1) and (2);

Let ε̂∗ be the best threshold as in Equation (5);
if ε̂∗ = ε̂∗

s then Let A be Exp3.G for strongly observable feedback graph;
else Let A be Exp3.G for weakly observable feedback graph;

Let T ′ = T − τ̂K be the remaining time steps; // τ̂ as in RoundRobin
Run BlockReduction(T ′, ε̂∗/2, Ĝε̂∗ ,A);

that, if RoundRobin outputs an ε-good approximation of the graph, then the regret is
bounded by a multiple of the stopping criterion evaluated at G. Combined with Theorem 2,
which tells us that RoundRobin does in fact output an ε-good approximation of the graph
with high probability, this proves our main result for this section.
Theorem 4. Consider the problem of online learning with stochastic feedback graph G on
T time steps. If supp(Gε(K,T )) is observable for ε(K,T ) = CK3(ln(KT ))2/T for a given
constant C > 0, then there exists an algorithm whose regret RT satisfies (ignoring polylog
factors in K and T ) RT ≤ min

{√
(α∗/ε∗

s)T ,
(
δ∗/ε∗

w

)1/3
T 2/3

}
.

4 Lower Bounds

In this section, we provide lower bounds that match the regret bound guaranteed by
EdgeCatcher, shown in Theorem 4, up to polylogarithmic factors in K and T . These
lower bounds are valid even if the learner is allowed to observe the realization of the entire
feedback graph at every time step, and knows a priori the “correct” threshold ε to work with.
Theorem 5 summarizes the lower bounds whose proofs can be found in Appendix C.
Theorem 5 (Informal). Let A be a possibly randomized algorithm for the online learning
problem with stochastic feedback graphs. Consider any directed graph G = (V,E) with |V | ≥ 2
and any ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp(G) = G and, for a
sufficiently large time horizon T , there is a sequence ℓ1, . . . , ℓT of loss functions on which
the expected regret of A with respect to the stochastic generation of G1, . . . , GT ∼ G is

• Ω(
√

(α(Gε)/ε)T ) if G is strongly observable;
• Ω̃((δ(Gε)/ε)1/3T 2/3) if G is weakly observable;
• Ω(T ) if G is not observable.

The lower bound in the non-observable case is the same as Alon et al. [2015, Theorem 6]
with a deterministic feedback graph. The remaining lower bounds are nontrivial adaptations
of the corresponding bounds for the deterministic case by Alon et al. [2015, 2017]. The
main technical hurdle is due to the stochastic nature of the feedback graph, which needs
to be taken into account in the proofs. The rationale behind the constructions used for
proving the lower bounds is as follows: since each edge is realized only with probability ε, any
algorithm requires 1/ε rounds in expectation in order to observe the loss of an action in the
out-neighborhood of the played action, whereas one round would suffice with a deterministic
feedback graph. Note that Theorem 5 implies that, if supp(Gε(K,T )) is not observable for
ε(K,T ) as in Theorem 4, then there is no hope to achieve sublinear regret, as the lower
bounds for both strongly and weakly observable supports are linear in T for all ε ≤ ε(K,T ).

5 Refined Graph-Theoretic Parameters

Although the results from Section 3 are worst-case optimal up to log factors, we may find that
the factors

√
α(Gε)/ε and (δ(Gε)/ε)1/3 for strongly and weakly observable supp(Gε) = Gε,
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respectively, may be improved upon in certain cases. In particular, we show that, under
additional assumptions on the feedback that we receive, we can obtain better regret bounds.
To understand our results, we need some initial definitions. The weighted independence
number for a graph H = (V,E) and positive vertex weights w(i) for i ∈ V is defined as

αw(H,w) = max
S∈I(H)

∑
i∈S

w(i) ,

where I(H) denotes the family of independent sets in H. We consider two different weight
assignments computed in terms of any stochastic feedback graph G with edge probabilities
p(i, j) and supp(G) = G. They are defined as w−

G (i) =
(
minj∈N in

G
(i) p(j, i)

)−1 and w+
G (i) =(

minj∈Nout
G

(i) p(i, j)
)−1. Then, the two corresponding weighted independence numbers are

α−
w (G) = αw(G,w−

G ) and α+
w (G) = αw(G,w+

G ). The parameter of interest for the results in
this section is αw(G) = α−

w (G) + α+
w (G). For more details on the weighted independence

number see Appendix E. We also use the following definitions of weighted weak domination
number δw for a graph H and positive vertex weights w, and self-observability parameter σ:

δw(H,w) = min
D∈D(H)

∑
i∈D

w(i) , σ(G) =
∑

i:i∈N in
G

(i)
(p(i, i))−1 ,

where D(H) denotes the family of weakly dominating sets in H. In this section, we focus
on the weighted weak domination number δw(G) = δw(G,w+

G ). To gain some intuition on
the graph-theoretic parameters introduced above, consider the graph with only self-loops,
also used in Example 1 below. If all p(i, i) = ε, the learner needs to pull a single arm 1/ε
times for one observation in expectation, and K/ε times to see the losses of all arms once.
However, when the edge probabilities are different we need to pull arms for

∑K
i=1 1/p(i, i)

times. The weighted independence number, weighted weak domination and self-observability
generalize this intuition and tell us how many observations the learner needs to see all losses
at least once in expectation. We now state the main result of this section.
Theorem 6 (Informal). There exists an algorithm with per-round running time of O(K4)
and whose regret is bounded (ignoring logarithmic factors) by

min
{
T, min

ε

{√
αw(Gε)T : supp(Gε) is strongly observable

}
,

min
ε

{
(δw(Gε))1/3

T 2/3 +
√
σ(Gε)T : supp(Gε) is observable

}}
,

The regret bound in Theorem 6 follows from Theorem 11 in Appendix D. The running time
bound is determined by approximating δw for all K2 possible thresholds. In each of the
thresholded graphs, we can compute a (ln(K) + 1)-approximation for the weighted weak
domination number in O(K2) time by reduction to set cover [Vazirani, 2001]. Doing so only
introduces an extra factor of order (ln(K))1/3 in the regret bound.
An important property of the bound in Theorem 6 is that it is never worse than the bounds
obtained before. The following example shows that the regret bound in Theorem 6 can also
be better than previously obtained regret bounds.
Example 1 (Faulty bandits). Consider a stochastic feedback graph G for the K-armed
bandit setting: p(i, i) = εi ∈ (0, 1] for all i ∈ V and p(i, j) = 0 for all i ̸= j. In this case, the
regret of EdgeCatcher is Õ

(√
KT/(mini εi)). On the other hand, Theorem 6 provides

the bound Õ
(√

T
∑

i(1/εi)
)
, as αw(G) = 2

∑
i 1/εi. In the special case when εi = ε ∈ (0, 1]

for some i ∈ V while εj = 1 for all j ̸= i, the regret of EdgeCatcher is Õ(
√
KT/ε), while

Theorem 6 guarantees a Õ(
√

(K + 1/ε)T ) regret bound. □

To derive these tighter bounds, we exploit the additional assumption that the realized
feedback graph Gt is observed at the end of each round. This allows us to simultaneously
estimate the feedback graph and control the regret, rather than performing these two tasks
sequentially as in Section 3. In particular, we use this extra information to construct a novel
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importance-weighted estimator for the loss, which for t > 1 is defined to be

ℓ̃t(i) = ℓt(i)
P̂t(i)

I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)} , (6)

where P̂t(i) =
∑

j∈N in
Ĝt

(i) πt(j)p̂t(j, i) is the estimated probability of observing the loss of

arm i at round t, πt(i) is the distribution we sample It from, and Ĝt is the support of
the estimated graph Ĝt. Note that we ignore losses that we receive due to missing edges
in Ĝt. We show that we pay an additive term in the regret for wrongly estimating an
edge, which is why it is important to control which edges are in Ĝt. Ideally, we would use
Pt(i) =

∑
j∈N in

Ĝt
(i) πt(j)p(j, i) rather than P̂t(i), as this is the true probability of observing

the loss of arm i in round t. However, since we do not have access to p(j, i), we use instead
an upper confidence estimate of p(j, i) for rounds t ≥ 2 given by

p̂t(j, i) = p̃t(j, i) +
√

2p̃t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2) ,

where p̃t(j, i) = 1
t−1

∑t−1
s=1 I{(j,i)∈Es}. We denote by ĜUCB

t the stochastic graph with edge
probabilities p̂t(j, i). Note that the support of ĜUCB

t is a complete graph because p̂t(j, i) > 0
for all (j, i) ∈ V × V . These estimators for the edge probabilities are sufficiently good for
our purposes whenever event K occurs, which we define as the event that, for all t ≥ 2,

|p̃t(j, i)− p(j, i)| ≤
√

2p̃t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2), ∀(j, i) ∈ V × V .

An important property of ℓ̃t can be found in Lemma 1 below. It tells us that we may treat
ℓ̃t as if event K is always realized, i.e., p̂t(j, i) is always an upper bound estimator on p(j, i).
The proof of Lemma 1 is implied by Lemma 6 in Appendix D.
Lemma 1 (Informal). Let ek denote the basis vector with ek(i) = I{i=k} as i-th entry for
each i ∈ [K]. The loss estimate ℓ̃t defined in (6) satisfies

RT = Õ

(
E

 T∑
t=2

√√√√ K∑
i=1

πt(i)
(t− 1)P̂t(i)

∣∣∣∣∣∣ K
+ max

k∈V
E

[
T∑

t=2

K∑
i=1

(
πt(i)− ek(i)

)
ℓ̃t(i)

∣∣∣∣∣ K
])

. (7)

Lemma 1 shows that we only suffer Õ
(√∑T

t=2
∑K

i=1
πt(i)
Pt(i)

)
additional regret compared

to when we know p(j, i). Lemma 1 also shows that ℓ̃t behaves nicely in the sense that,
conditioned on K, we have ℓ̃t(i) ≤ ℓt(i)

Pt(i) I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)}. This is a crucial property to
bound the regret of our algorithm. We show that, with a modified version of Exp3.G [Alon
et al., 2015], the second sum on the right-hand side of (7) is bounded by a term of order√∑T

t=2
∑K

i=1
πt(i)
Pt(i) , meaning that the regret is also bounded similarly. Our final step is to

prove that the above term is bounded in terms of the minimum of the weighted independence
number and the weighted weak domination number plus self-observability.
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A On the Computation of the Optimal Probability Thresholds

The tasks of finding the independence number and (weak) domination number in a graph
are notoriously NP-hard problems. In particular, while for the domination number, by a
reduction to set cover, a simple greedy approach yields a logarithmic (in the number K of
nodes) approximation [Vazirani, 2001], for the independence number it is known that even
computing a K1−ϵ-approximation is hard, for any ϵ > 0 [Håstad, 1999, Zuckerman, 2007].
Our algorithm OptimisticThenCommitGraph solves these computational aspects directly,
whereas the hardness of finding α∗ and δ∗ may limit the applicability of EdgeCatcher in
instances with a large and complex action space. In fact, the computation of the stopping
function Φ involves finding the best thresholds ε∗

s and ε∗
w, defined in Equations (1) and (2),

and therefore repeatedly solving NP-hard problems. In what follows, we present some
observations that clarify to which extent (and at which cost) EdgeCatcher can still be
implemented efficiently.
First, it is important to note that our algorithm is robust with respect to approximate
knowledge of the topological parameters: the definition of Φ can be tweaked as to consider
the approximation factor at the cost of having the same factor showing up in the regret
bound (with the same order as the approximated graph parameter). This partly solves the
problem for weakly observable graphs (as the (ln(K) + 1)-approximation only gives and
extra polylog(K) in the regret) and for the classes of graphs where it is possible to efficiently
compute good approximations of the independence number, e.g., planar graphs [Baker, 1994]
or bounded-degree graphs [Halldórsson and Radhakrishnan, 1997].
Another approach consists in considering the fractional solutions of the independence and
domination number linear programs. While for the former we obtain an approximation given
by the integrality gap, for the latter we can show a tight dependence on the fractional weak
domination number (thus improving the regret bound), as in Chen et al. [2021].
Furthermore, note that it is always possible to ignore the α and δ terms in the definition
of Φ; it is not hard to see that such an approach yields a regret bound (ignoring polylog
terms) of the type min{

√
(K/ε1)T , (K/ε2)1/3T 2/3}, where ε1, respectively ε2, is the largest

ε such that supp(Gε) is strongly, respectively weakly, observable. Although suboptimal, this
drastic approach gives a regret bound with an optimal dependence on the T and ε terms (as
ε∗

s ≤ ε1 and ε∗
w ≤ ε2).

Finally, we conclude by discussing how it is possible to drastically reduce the number of
times that EdgeCatcher calls the routine to compute α and δ, at the cost of losing a
small multiplicative factor in the regret. Crucially, we do not need to check the stopping
condition involving Φ in every single round: it suffices to do so for a logarithmic number of
times. Assume, in fact, to check the stopping condition in RoundRobin only when τ is a
power of 2, i.e., τ = 2b for some integer b. This single check covers all rounds τ ′ such that
τ/2 = 2b−1 ≤ τ ′ ≤ 2b = τ . On the stochastic graph estimate Ĝτ we can compute αετ

/ετ and
δετ

/ετ , which are also 2-approximations for the best respective ratios on any thresholded
graph corresponding to rounds of RoundRobin between τ/2 and τ (note that such an
approach would also improve the dependency of ετ and ∆ on T in Theorems 2 and 3, and
thus in the regret bound, from ln(T ) down to ln(ln(T )) due to an improved union bound).

B Missing Results from Section 3

B.1 Proof of Theorem 2

Theorem 2. If RoundRobin (Algorithm 1) is run on the stochastic feedback graph G,
then, with probability at least 1 − 1/T , the estimate Ĝτ is an ετ -good approximation of G
simultaneously for all τ ≤ τ̂ , where τ̂ ≤ T/K is the index of the last iteration of the outer
for loop in Algorithm 1.

Proof of Theorem 2. For all edges e and time steps τ ≤ τ̂ , we define the following two
events: the event Eτ

e = {p̂τ
e ≥ ετ} that e belongs to the support of Ĝτ , and the event
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Fτ
e = {|p̂τ

e − pe| ≤ pe/2} that p̂τ
e is well estimated. For all τ ≤ τ̂ , we also define large

and small edges in E according to their probabilities: E+
τ = {e ∈ V 2 : pe ≥ 2ετ} and

E−
τ = {e ∈ V 2 : pe < ετ/2}.

First, we look at the complementary event of Eτ
e for any τ ≤ τ̂ and e ∈ E+

τ . We have:

P
(
Eτ

e

)
= P (p̂τ

e < ετ ) ≤ P (p̂τ
e ≤ pe/2) = P (p̂τ

e − pe ≤ −pe/2) ≤ e− τ
8 pe ≤ e− τ

4 ετ ≤ 1
4KT 2 .

Note that in the first and second to last inequalities we used the fact that pe ≥ 2ετ , in the
last inequality the definition of ετ and the fact that K ≥ 2, while in the second inequality
we applied the Chernoff lower bound (multiplicative version, see Mitzenmacher and Upfal
[2005, part 2 of Theorem 4.5]) on the estimator p̂τ

e .
If we call E the event corresponding to part 1 of Definition 1, we have the following:

P (E) = P

⋂
τ≤τ̂

⋂
e∈E+

τ

Eτ
e

 ≥ 1−
∑
τ≤τ̂

∑
e∈E+

τ

P (p̂τ
e < ετ ) ≥ 1−

∑
τ≤τ̂

|E+
τ |

4KT 2 ≥ 1− 1
4T , (8)

where we used that |E+
τ | ≤ K2 for all τ ≤ τ̂ ≤ T/K with probability 1.

Next, we study the complementary event of Fτ
e for e ̸∈ E−

τ . For such e and any τ ≤ τ̂ , we
can directly use the two-sided Chernoff bound (multiplicative version, as in Mitzenmacher
and Upfal [2005, Corollary 4.6]) on the estimator p̂τ

e :

P
(
Fτ

e

)
= P

(
|p̂τ

e − pe| >
1
2pe

)
≤ 2e− τ

12 pe ≤ 2e− τ
24 ετ ≤ 1

2KT 2 .

Note that we used the definition of ετ and the facts that 2pe ≥ ετ and K,T ≥ 2. Now, if we
call F the event corresponding to part 2 of Definition 1, we can proceed via union bounding
as in Equation (8) and get

P (F) = P

⋂
τ≤τ̂

⋂
e/∈E−

τ

Fτ
e

 ≥ 1− 1
2T . (9)

As a third step, we get back to the Eτ
e events, but we consider e ∈ E−

τ . For τ ≤ τ̂ and
e ∈ E−

τ we have:

P (Eτ
e ) = P (p̂τ

e ≥ ετ ) ≤ P
(
p̂τ

e − pe ≥
1
2ετ

)
= P (p̂τ

e − pe ≥ xpe) ,

where we used pe < ετ/2 and named x = ετ/(2pe) > 1. At this point we can use the
Chernoff upper bound (multiplicative version, see Mitzenmacher and Upfal [2005, part 1 of
Theorem 4.4] with δ = x) and obtain:

P (Eτ
e ) ≤ P (p̂τ

e − pe ≥ xpe) ≤
(

ex

(1 + x)1+x

)τpe

≤ e− τ
3 xpe = e− τ

6 ετ ≤ 1
4KT 2 .

The third inequality follows from 2x/(2 + x) ≤ ln(1 + x) which holds for all positive x:

ex

(1 + x)1+x
= ex−(1+x) ln(1+x) ≤ e−x2/(2+x) ≤ e−x/3, ∀x ≥ 1 .

If we now call C the event described in part 3 of Definition 1, we get, using the bound on
P (Eτ

e ) and a union bound as in Equations (8) and (9):

P (C) = P

⋂
τ≤τ̂

⋂
e∈E−

τ

Eτ

e

 ≥ 1− 1
4T . (10)

The theorem then follows by a union bound on the complementary events of E ,F and C.
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B.2 Proof of Theorem 3

In order to prove the regret bound achieved by BlockReduction, we need to show that it
is able to compute unbiased estimators for the average loss of observed actions within each
time block. This property is guaranteed as long as the learner plays consistently a same
action within each time block, and conditioned on the event that each action in the support
out-neighborhood of the chosen action is observed at least once in the respective time block
(depending on the realizations of the feedback graph).
Lemma 2. Let G = supp(G) and cτ and ĉτ defined as in Equations (3) and (4). For each
block Bτ , if the learner plays consistently action a, then for each a′ ∈ Nout

G (a) the estimators
ĉτ (a′) are unbiased under Eτ

(a,a′):

E
[
ĉτ (a′)

∣∣∣ Eτ
(a,a′)

]
= cτ (a′) , ∀a′ ∈ Nout

G (a) .

Proof. Recall that Eτ
(a,a′) is the event that the edge (a, a′) in G is observed at least once in

block Bτ . Substituting the definition (4) of the estimator, we can write

E
[
ĉτ (a′)

∣∣∣ Eτ
(a,a′)

]
=
∑

t∈Bτ

ℓt(a′)E
[
I{(a,a′)∈Et}

∆τ
(a,a′)

∣∣∣∣∣ Eτ
(a,a′)

]
.

Now we just need to prove that the expectation in the right-hand side is equal to 1/∆:

E

[
I{(a,a′)∈Et}

∆τ
(a,a′)

∣∣∣∣∣ Eτ
(a,a′)

]
=

∆∑
r=1

E
[ I{(a,a′)∈Et}

r

∣∣∣∣∆τ
(a,a′) = r

]
P
(

∆τ
(a,a′) = r

∣∣∣ Eτ
(a,a′)

)
=

∆∑
r=1

1
r
P
(

(a, a′) ∈ Et

∣∣∣∆τ
(a,a′) = r

)
P
(

∆τ
(a,a′) = r

∣∣∣ Eτ
(a,a′)

)
= 1

∆

∆∑
r=1

P
(

∆τ
(a,a′) = r

∣∣∣ Eτ
(a,a′)

)
= 1

∆ .

Note that in the third equality we used the fact that, conditioned on ∆τ
(a,a′) = r > 0, the r

time steps when (a, a′) ∈ Et are distributed uniformly at random in the ∆ time steps.

We can now prove the regret bound of BlockReduction in Theorem 3, which we restate
below. Its regret depends on the performance of the algorithm A used on the meta-instance
derived from the blocks reduction.
Theorem 3. Consider the problem of online learning with stochastic feedback graph G,
and let Ĝ be an ε-good approximation of G. Let A be an algorithm for online learning with
arbitrary deterministic feedback graph G with regret bound RA

N (G) over any sequence of
N losses in [0, 1]. Then, the regret of BlockReduction (Algorithm 2) run with input
(T, ε/2, Ĝ,A) is at most ∆RA

N

(
supp(Ĝ)

)
+ ∆, where N = ⌊T/∆⌋ and ∆ = ⌈ 4

ε ln(KT )⌉.

Proof of Theorem 3. Consider the partition of the T time steps into N blocks B1, . . . , BN of
equal size ∆ and let E be the clean event, corresponding to all edges e in the graph supp(Ĝ) =
Ĝ = (V,E) being realized at least once in each block. Formally, E =

⋂N
τ=1

⋂
e∈E Eτ

e , where
Eτ

e are defined as in the proof of Lemma 2. By Definition 1 (part 3), all the edges e ∈ E
have a probability pe in G that is at least ε/2. Thus, it is immediate to verify that

P (Eτ
e ) = 1− (1− pe)∆ ≥ 1−

(
1− ε

2

)∆
≥ 1− e−ε∆/2 ≥ 1− 1

K2T 2

holds for any edge e ∈ E using our choice of ∆. We show by union bound that the probability
any of these edges never realizes in some block is

P

 ⋃
τ≤N

⋃
e∈E

Eτ

e

 ≤ ∑
τ≤N

∑
e∈E

P
(
Eτ

e

)
≤ 1
T

,
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where we used that there are at most K2 directed edges (including self-loops) in Ĝ and we
substituted the chosen values of N and ∆.
We can then bound the overall regret RT as follows:

RT ≤ E

[
T∑

t=1
ℓt(It)

∣∣∣∣∣ E
]
−min

k

T∑
t=1

ℓt(k) + T · P
(
E
)

+ (T −∆N) . (11)

Note that the final term is an upper bound to the regret in the final time steps of the
algorithm. We just showed that P

(
E
)

is smaller than 1/T . This, together with the fact that
T −∆N is at most ∆− 1, gives the additive ∆ we have in the final statement.
We now focus on the remaining term, which corresponds to the regret conditioned on E . It
is equal to

E

[
T∑

t=1
ℓt(It)

∣∣∣∣∣ E
]
−min

k

T∑
t=1

ℓt(k) = ∆ ·
(
E

[
N∑

τ=1

∑
t∈Bτ

ℓt(Iτ )
∆

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

∑
t∈Bτ

ℓt(k)
∆

)

= ∆ ·
(
E

[
N∑

τ=1
cτ (Iτ )

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

cτ (k)
)

, (12)

where, we recall it, cτ (i) is the average loss of action i in block Bτ . Indeed, our algorithm
chooses the same action It = Iτ for all time steps t ∈ Bτ , and the decision is based on
algorithm A.
Consider now the loss estimates ĉ1, . . . , ĉN that we provide to algorithm A. These estimates
are such that E [ĉτ (i) | E ] = cτ (i) by Lemma 2. Note that conditioning on E instead that on
the single Eτ

e does not affect the fact that the estimators are unbiased: this is due to the fact
that the edge realizations are independent from the losses and the strategy of the learner.
Therefore, letting k∗ be the action minimizing c1(k) + · · ·+ cT (k) over k = 1, . . . ,K,

E

[
N∑

τ=1
cτ (Iτ )

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

cτ (k) = E

[
N∑

τ=1
ĉτ (Iτ )−

N∑
τ=1

ĉτ (k∗)
∣∣∣∣∣ E
]
≤ RA

N (Ĝ) , (13)

where RA
N (Ĝ) is the regret bound of algorithm A given losses ĉ1, . . . , ĉN and feedback graph

Ĝ = supp(Ĝ). Finally, substituting Equations (12) and (13) into Equation (11) yields the
desired bound.

B.3 Proof of Corollary 1

Corollary 1. Consider the problem of online learning with stochastic feedback graph G, and
let Ĝ be an ε-good approximation of G for ε ≥ 1/T and with support Ĝ.

• If Ĝ is strongly observable with independence number α, then the regret of BlockRe-
duction run with parameter ε/2 using Exp3.G for strongly observable graphs as base
algorithm A satisfies: RT ≤ 4Cs

√
(α/ε)T

(
ln(KT )

)3/2
, where Cs > 0 is a constant in the

regret bound of A.
• If Ĝ is (weakly) observable with weak domination number δ, then the regret of BlockRe-

duction run with parameter ε/2 using Exp3.G for weakly observable graphs as base
algorithm A satisfies: RT ≤ 4Cw(δ/ε)1/3(ln(KT )

)2/3
T 2/3, where Cw > 0 is a constant

in the regret bound of A.

Proof of Corollary 1. The statement follows from Theorem 3, the assumption on ε (which
lets us safely handle the additive ∆ term), and the fact that Exp3.G achieves regret
RA

N ≤ Cs

√
αN ln(KN) on strongly observable graphs, and regret RA

N ≤ Cw(δ lnK)1/3N2/3

on (weakly) observable graphs.
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B.4 Proof of Theorem 4

To prove Theorem 4 we first need two preliminary lemmata. In Lemma 3 we present
some generic properties of the stopping function Φ(G, T ), while in Lemma 4 we prove that
Φ(G, T− τ̂K) is indeed the regret obtained in BlockReduction after the stopping condition
in RoundRobin is triggered.
Lemma 3. Let G be a stochastic feedback graph such that Φ(G, T ) ̸= ∞, and let ε∗ be
the threshold where the arg min in the definition of Φ(G, T ) is attained. Consider a run of
the algorithm EdgeCatcher where RoundRobin does not fail while using the stopping
function Φ defined in Equation (5). We have the following:

(i) Φ(Ĝτ ′ , T ) ≤ 2Φ(Ĝτ , T ), for all τ, τ ′ such that τ ≤ τ ′ ≤ τ̂ ,
(ii) Φ(Ĝτ , T ) ≤

√
2Φ(G, T ) for all τ such that 120 ln(KT )/ε∗ ≤ τ ≤ τ̂ (if such τ exists),

where τ̂ ≤ ⌊T/K⌋ is the index of the last iteration of the outer for loop in Algorithm 1.

Proof. We consider a run of EdgeCatcher where RoundRobin does not fail. This means
that all the Ĝτ are ετ -good approximation of G, for all τ ≤ τ̂ . Focus on the first part of
the statement. All edges in supp(Ĝτ ) are contained in supp(Ĝτ ′) since RoundRobin does
not fail. This implies that the observability regime only improves as τ increases. We have
two cases: if the best threshold for Ĝτ (say it corresponds to some edge probability in Ĝτ

without loss of generality) induces a thresholded stochastic feedback graph with strongly
observable support G = (V,E) and independence number α, we have that Ĝτ ′ is strongly
observable too; moreover, all the edges e ∈ E are such that |pe − p̂τ

e | ≤ pe/2 by Definition 1
(part 2); the same holds for τ ′: |pe − p̂τ ′

e | ≤ pe/2. Consider graph G with edge probabilities
p̂τ ′

e , respectively pe and p̂τ
e and let ε1, respectively ε2 and ε3, be their smallest probability

(restricting on the edges of G). We have that:

min
ε∈(0,1]

{
α((Ĝτ ′)ε)

ε
: supp((Ĝτ ′)ε) strongly observable

}
≤ α

ε1
≤ 2 α

ε2
≤ 4 α

ε3

= 4 min
ε∈(0,1]

{
α((Ĝτ )ε)

ε
: supp((Ĝτ )ε) strongly observable

}
,

where the first inequality follows from suboptimality of graph G with threshold ε1 for Ĝτ ′ ,
the second and the third inequality by the conditions on pe, p̂τ ′

e and pτ
e , and the last equality

by definition of G and α. If we now substitute this inequality in the definition of Φ, we obtain
that 2Φ(Ĝτ , T ) ≥ Φ(Ĝτ ′ , T ). We can reason in the same exact way considering the (weakly)
observable case and obtain 3

√
4Φ(Ĝτ , T ) ≥ Φ(Ĝτ ′ , T ). Putting the two results together we

conclude the proof of point (i).
We move our attention to the second part of the lemma. Because of Theorem 2 together with
the lower bound on τ , it holds that Ĝτ is an ε∗/2-good approximation of G. This implies
that all the edges in supp(Gε∗) are contained in the support of Ĝτ and that they are well
approximated, as in parts 1 and 2 of Definition 1. We have two cases, according to the
topology of the support corresponding to the threshold ε∗ which guarantees the optimal
regret for G. First, consider the case that ε∗ corresponds to a strongly observable structure
in supp(Gε∗) with independence number α∗; we have that

min
ε∈(0,1]

{
α((Ĝτ )ε)

ε
: supp((Ĝτ )ε) strongly observable

}
≤ 2α

∗

ε∗

= 2 min
ε∈(0,1]

{
α(Gε)
ε

: supp(Gε) strongly observable
}
,

where in the first inequality we used the suboptimality of threshold ε∗/2 for Ĝτ and the fact
that the independence number of α((Ĝτ )ε∗) is at most α∗ (and the strong observability is
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maintained). Then, we have that

Φ(Ĝτ , T ) ≤ 4Cs

√
2α

∗

ε∗ T
(

ln(KT )
)3/2 =

√
2Φ(G, T ) ,

where the inequality follows naturally from the (possible) suboptimality of the choice of the
strongly observable regime and the threshold ε∗/2 for Ĝτ . We can argue similarly for the
case in which the optimal ε∗ corresponds to the weakly observable regime in G. In this case,
for the same arguments as per the strongly observable regime, we have that

min
ε∈(0,1]

{
δ((Ĝτ )ε)

ε
: supp((Ĝτ )ε) observable

}
≤ 2δ

∗

ε∗

= 2 min
ε∈(0,1]

{
δ(Gε)
ε

: supp(Gε) observable
}
.

Finally, similarly to the strongly observable case, it holds that

Φ(Ĝτ , T ) ≤ 4Cw

(
2δ

∗

ε∗

(
ln(KT )

)2
)1/3

T 2/3 = 3
√

2Φ(G, T ) ≤
√

2Φ(G, T ) .

This concludes the proof.

Lemma 4. Consider a run of EdgeCatcher (Algorithm 3). Assume that the invocation
of RoundRobin returns a stochastic feedback graph Ĝ that is an ε̂-good approximation of G
satisfying Φ(Ĝ, T − τ̂K) ≤ τ̂K, where τ̂ is the index of the last iteration of the outer for loop
in Algorithm 1. Then, the regret experienced by the invocation of BlockReduction is at
most Φ(Ĝ, T − τ̂K).

Proof. Denote with RBR
T ′ the worst-case regret experienced by BlockReduction in the

final T ′ = T − τ̂K time steps, under the assumption on Ĝ in the statement, and let ε̂∗ be the
best threshold as in Algorithm 3. We have two cases, according to ε̂∗ referring to strongly or
(weakly) observable graphs. If ε̂∗ = ε̂∗

s, then, by the part of Corollary 1 relative to strongly
observable graphs, we have that

RBR
T ′ ≤ 4Cs

√
α̂∗

ε̂∗
s

T ′
(

ln(KT ′)
)3/2 = Φ(Ĝε̂∗ , T ′) .

If ε̂∗ = ε̂∗
w, then we can apply the part of Corollary 1 relative to (weakly) observable graphs

and obtain that

RBR
T ′ ≤ 4Cw

(
δ̂∗

ε̂∗
w

(
ln(KT ′)

)2
)1/3

(T ′)2/3 = Φ(Ĝε̂∗ , T ′) .

At this point, we have all the essential ingredients to prove the regret bound of EdgeCatcher
as stated in Theorem 4. We rewrite the statement of Theorem 4 for convenience.
Theorem 4. Consider the problem of online learning with stochastic feedback graph G on
T time steps. If supp(Gε(K,T )) is observable for ε(K,T ) = CK3(ln(KT ))2/T for a given
constant C > 0, then there exists an algorithm whose regret RT satisfies (ignoring polylog
factors in K and T ) RT ≤ min

{√
(α∗/ε∗

s)T ,
(
δ∗/ε∗

w

)1/3
T 2/3

}
.

Proof of Theorem 4. We condition the analysis on the clean event E that RoundRobin
does not fail. Let ε̃ be the largest ε such that supp(Gε) is observable, and τ̃ be the smallest
(random) integer such that supp(Ĝτ̃ ) is observable for Ĝτ̃ in RoundRobin. We have some
immediate bound on these quantities. First, ε̃ ≥ ε(K,T ), by the assumption on supp(Gε(K,T ))
being observable. Second, τ̃ ≤ 120

ε̃ ln(KT ); this is due to the fact that, after τ = ⌈ 120
ε̃ ln(KT )⌉

time steps, the estimated graph Ĝτ is an ε̃/2-good approximation of G and thus contains all

18



the edges in supp(Gε̃) by Definition 1 (part 1) with ε = ε̃/2, and because of the conditioning
on E . All in all, we can summarize these observations by noticing that

T

2K ≥ 120 ln(KT )
ε(K,T ) ≥ 120 ln(KT )

ε̃
≥ τ̃ ,

where the first inequality is true as long as ε(K,T ) ≥ 240K ln(KT )/T . Using point (i) of
Lemma 3 and the inequality we just showed, we observe that

Φ(Ĝ⌊ T
2K ⌋, T ) ≤ 2Φ(Ĝτ̃ , T ) ≤ 8Cw

(
2KT

2

ε̃
ln(KT )2

)1/3
≤ 8Cw

(
2 KT 2

ε(K,T ) ln(KT )2
)1/3
≤ T

2 ,

as long as ε(K,T ) ≥ 2 · 163C3
wK(ln(KT ))2/T . Note that in the previous chain of inequalities

we considered the (possibly suboptimal) choice of the (weakly) observable structure of the
graph with threshold ε̃ and upper bound on δ given by K. The inequality we just showed
implies that the stopping criterion in RoundRobin is triggered and thus we can apply
Lemma 4.
Now, let τ∗ be the smallest τ such that Φ(G, T ) = Φ(Gε∗ , T ) ≤ τK, being ε∗ the optimal
threshold for G. In this second step, we want to show that τ̂ is not too far away from τ∗ for
the interesting values of τ∗; namely, that τ̂ ≤ 4τ∗ as long as Φ(G, T ) is not Ω̃(T ).
First, consider the case that Φ(G, T ) refers to the strongly observable regime in Φ(Gε∗ , T ).
By minimality of τ∗, we have the following:

τ∗K ≥ Φ(G, T ) = 4Cs

√
α∗

ε∗ T
(

ln(KT )
)3/2 ≥ 1

2τ
∗K . (14)

We now set the constant appearing in the definition of ε(K,T ) from the statement to be
C = 2 · 163C3

w. With this choice, the previously stated requirements for ε(K,T ) are satisfied,
while at the same time it holds that Φ(G, T ) ≤ C2

sT (ln(KT ))2/(15K); this is immediate
to verify by arguing that Φ(G, T ) is at most the regret incurred by using the (possibly
suboptimal, weakly) observable structure of G truncated at ε(K,T ). Then, from the second
inequality of (14), it follows that τ∗ ≤ 2C2

sT (ln(KT ))2/(15K2). We can rewrite the first
inequality of (14) as follows:

ε∗ ≥ 16C2
s

α∗

(Kτ∗)2T
(

ln(KT )
)3 ≥ 120 ln(KT )

τ∗ .

Consider now to what happens at the τ = ⌈120 ln(KT )/ε∗⌉ ≤ 4τ∗ iteration of RoundRobin.
The estimated graph Ĝτ in that iteration is an ε∗/2-good approximation of G, thus it contains
all the edges of G, with the probabilities correctly estimated up to a constant multiplicative
factor, as detailed in Definition 1 (part 2). Thus,

Φ(Ĝ4τ∗ , T ) ≤ 2Φ(Ĝτ , T ) ≤ 2
√

2Φ(G, T ) ≤ 4τ∗K,

which implies that the stopping time τ̂ is attained before 4τ∗. Note that the first inequality
is due to point (i) of Lemma 3, whereas the second inequality follows from point (ii) of
Lemma 3.
Similarly, we consider the case that Φ(G, T ) refers to the weakly observable regime in
Φ(Gε∗ , T ). By minimality of τ∗, we have the following:

τ∗K ≥ Φ(G, T ) = 4Cw

(
δ∗

ε∗

(
ln(KT )

)2
)1/3

T 2/3 ≥ 1
2τ

∗K . (15)

By the choice of ε(K,T ), we have that Φ(G, T ) ≤ T
√

2C3
w ln(KT )/(15K). Then, from the

second inequality of (15), it follows that τ∗ ≤ T
√

8C3
w ln(KT )/(15K3). Consider now the

first inequality, we can rewrite it to obtain:

ε∗ ≥ 64C3
w

δ∗

(Kτ∗)3

(
T ln(KT )

)2 ≥ 120 ln(KT )
τ∗ .

We can now use the same argument as in the strongly observable case and conclude that
τ̂ ≤ 4τ∗.
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At this point, we are ready to show that our algorithm EdgeCatcher exhibits the desired
regret bounds. We are conditioning on the good event E ; this happens with probability at
least 1− 1

T , so we just analyze this case, as the complementary of E yields at most an extra
additive 1, in expectation, to the regret bound.
Recall that RT is the worst-case regret; thus,

RT ≤ τ̂K + Φ(Ĝ, T − τ̂K) ≤ 2τ̂K ≤ 8τ∗K ≤ 16Φ(G, T ) ,

where in the first inequality we used the decomposition in regret before and after the
commitment and the bound on Lemma 4 (which is applicable given the conditioning on E
and thus all the Gτ are ετ -good approximations of G), in the second one the definition of τ̂ ,
in the third one the fact that τ̂ ≤ 4τ∗, and in the last the definition of τ∗ as minimal τ such
that Φ(G, T ) ≤ τK.

C Proofs of Lower Bounds

The main idea in the lower bounds is that the adversary sets all edge probabilities equal
to ε ∈ (0, 1] in order to define a stochastic feedback graph G with a specific support G
that satisfies adequate properties. This requires the attribution of additional power to the
adversary because we allow it to choose the edge probabilities; nevertheless, this is fine from
a worst-case perspective because it corresponds to choosing a particularly difficult instance
among those that have certain characteristics. Doing so makes the edge between each
(ordered) pair of nodes either realize independently at each round t with probability equal to
ε, or never realize. Moreover, there exists a vertex that is at least marginally better than
the other ones with respect to the expected loss. The learner only obtains information about
the loss of the optimal node whenever it plays a node that is adjacent to it in G = supp(G)
and the edge between the played node and the optimal node is realized. Since that edge is
realized only with probability ε, it is significantly harder for the the learner to detect the
optimal node, which allows the adversary to increase the size of the gaps between the optimal
node and the suboptimal ones. More specifically, while in the deterministic setting playing
once action a is enough to observe the loss incurred by a neighbouring action a′, the learner
will now need 1/ε time steps, in expectation, to observe the loss of a′ if the edge (a, a′) only
realizes with probability ε. Further notice that, in the setting considered within the proofs
of our lower bounds, the learner may even know the true distribution G and observe the
realization of the entire feedback graph Gt at the end of each round t.
We start with a lower bound for the strongly observable case considering stochastic feedback
graphs G with α(G) > 1. The following result can be recovered by adapting the proof of
Alon et al. [2017, Theorem 5] that holds for any graph of interest (directed or undirected).
Theorem 7. Pick any directed or undirected graph G = (V,E) with α(G) > 1 and any
ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp(G) = G and such that, for all
T ≥ 0.0064α(Gε)3/ε and for any possibly randomized algorithm A, there exists a sequence
ℓ1, . . . , ℓT of loss functions on which the expected regret of A with respect to the stochastic
generation of G1, . . . , GT ∼ G is at least 0.017

√
α(Gε)T/ε.

Proof. The structure of this proof follows the same rationale of the lower bound by Alon et al.
[2017, Theorem 5] with additional considerations due to the stochasticity of the feedback
graph. To prove the lower bound we will use Yao’s minimax principle [Yao, 1977], which
shows that it is sufficient to provide a probabilistic strategy for the adversary on which the
expected regret of any deterministic algorithm is lower bounded.
We can assume that G has all self-loops. If G is missing some self-loops, we may add them
for the sake of the lower bound: this only makes the problem easier for the learner. Also
note that the addition of self-loops does not change the independence number of G. Now let
G be such that p(i, j) ∈ {0, ε} and p(i, j) = ε if and only if (i, j) ∈ E, for all i, j ∈ V . Note
that α(G) = α(G) and G = Gε. We also remark that the following lower bound for such a G
will be a lower bound for the instance having a stochastic feedback graph obtained from the
starting graph, without the addition of self-loops, by setting the realization probability of all
its edges to ε. Without loss of generality, we order the nodes depending on an (arbitrary)
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independent set of G of size α(G) so that 1, 2, . . . , α(G) are the nodes belonging to said
independent set, and α(G) + 1, . . . , |V | correspond to all the other nodes in G.
We will use the following distribution of losses. We sample Z from some (later defined)
distribution Q over the independent set chosen above. Conditioned on Z = i, the loss ℓt(j)
is sampled from an independent Bernoulli distribution with mean 1

2 if j ̸= i and j ≤ α(G), it
is sampled from an independent Bernoulli with mean 1

2 − β if j = i for some β ∈ [0, 1
4 ], and

it is set to 1 otherwise.
We denote by Ti the number of times node i was chosen by the algorithm after T rounds
and denote by Tbad =

∑
i>α(G) Ti the number of times the algorithm chooses an action not

in the independent set. We use Ei[·] = E[· |Z = i] and Pi(·) = P (· |Z = i) to denote the
expectation and probability over (G1, ℓ1), . . . , (GT , ℓT ) conditioned on Z = i, respectively.
We denote by ℓt(It) the loss of algorithm A playing It in round t. We emphasize that the
complete loss sequence and the (partial) loss sequence observed by the learner may differ
depending not only on the actions of the learner but also on the realization of the edges
in the feedback graph. This last observation will be used to lower bound the regret of the
learner also in terms of ε, the probability of an edge realization.
We set Q(i) = 1

α(G) if i is in the independent set and Q(i) = 0 otherwise. Following Alon
et al. [2017, Equation (8)] we have, for any deterministic algorithm A, that

max
k∈V

E

[
T∑

t=1

(
ℓt(It)− ℓt(k)

)]
≥ β

(
T − 1

α(G)
∑

i≤α(G)

Ei[Ti]
)
. (16)

We now consider an auxiliary distribution P0, also over (G1, ℓ1), . . . , (GT , ℓT ), which is
equivalent to the distribution Pi that we specified above, but with β = 0 for all nodes. We
denote by E0 the corresponding expectation. We also denote by λt the feedback set at time
t, composed by the realization Gt of the feedback graph together with the set of losses
observed by the learner in round t, and by λt = (λ1, . . . , λt) the tuple of all feedback sets
up to and including round t. Since the algorithm is deterministic, its action It in round t
is fully determined by λt−1. Therefore, Ei[Ti |λT ] = E0[Ti |λT ]. When λt−1 is understood
from the context, let Pj,t = Pj(· |λt−1) be the conditional probability measure of feedback
sets λt at time t. We have that

Ei[Ti]− E0[Ti] =
∑
λT

Pi(λT )Ei[Ti |λT ]−
∑
λT

P0(λT )E0[Ti |λT ]

=
∑
λT

Pi(λT )Ei[Ti |λT ]−
∑
λT

P0(λT )Ei[Ti |λT ]

≤ T
∑

λT : Pi(λT )>P0(λT )

(
Pi(λT )− P0(λT )

)
.

By using Pinsker’s inequality and the chain rule for the relative entropy, we can further
observe that ∑

λT : Pi(λT )>P0(λT )

(
Pi(λT )− P0(λT )

)
≤
√

1
2DKL(P0 ∥Pi)

=

√√√√1
2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) ,

which, combined with the previous inequality, allows us to affirm that

Ei[Ti]− E0[Ti] ≤

√√√√1
2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) . (17)

At this point, observe that supp(G) = G = (V,E). Fix any λt−1 and consider DKL(P0,t ∥Pi,t)
where, we recall, P0,t(λt) = P0(λt |λt−1) and Pi,t(λt) = Pi(λt |λt−1). Recall that λt−1 fully
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determines the node It picked by the algorithm in round t. If (It, i) ̸∈ E, then P0,t and
Pi,t have the same distribution and the relative entropy term is 0. If (It, i) ∈ E, then the
loss of node i in λt follows a Bernoulli distribution with mean 1

2 under P0 and follows a
Bernoulli distribution with mean 1

2 − β under Pi. Denote by Et the event that edge (It, i) is
realized in Gt. Note that P0(Et) = Pi(Et) = ε. Using the log-sum inequality and the fact
that the relative entropy between the two aforementioned Bernoulli distributions is given by
1
2 ln
( 1

1−4β2

)
, we can see that

DKL(P0,t ∥Pi,t) = DKL

(
εP0,t(· | Et) + (1− ε)P0,t(· | Et)

∥∥ εPi,t(· | Et) + (1− ε)Pi,t(· | Et)
)

= DKL

(
εP0,t(· | Et) + (1− ε)P0,t(· | Et)

∥∥ εPi,t(· | Et) + (1− ε)P0,t(· | Et)
)

≤ εDKL
(
P0,t(· | Et) ∥Pi,t(· | Et)

)
+ (1− ε)DKL

(
P0,t(· | Et) ∥P0,t(· | Et)

)
= εDKL

(
P0,t(· | Et) ∥Pi,t(· | Et)

)
= −ε2 ln

(
1− 4β2) ≤ 8 ln(4/3)β2ε .

(18)

With this inequality, we may upper bound the sum in the right-hand side of (17) by
considering, for each t, only the tuples λt−1 for which i ∈ Nout

G (It) holds. Indeed, the KL
divergence for any other possible λt−1 is equal to 0 because the edge (It, i) never realizes (it
is not in the support of G, hence p(It, i) = 0). As a consequence,

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) ≤
T∑

t=1
P0(i ∈ Nout

G (It))8 ln(4/3)β2ε

= 8 ln(4/3)β2εE0[|{t : i ∈ Nout
G (It)}|]

≤ 8 ln(4/3)β2εE0[Ti + Tbad] .

(19)

We may claim that E0[Tbad] ≤ 0.04
√

α(G)
ε T , because otherwise the expected regret under

P0 would have been at least

max
k∈V

E0

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
= E0

Tbad + 1
2
∑

j≤α(G)

Tj

− 1
2T

= E0

1
2Tbad + 1

2

(
Tbad +

∑
j≤α(G)

Tj

)− 1
2T

= E0

[
1
2Tbad

]
> 0.02

√
α(G)
ε

T .

Combining Equations (17) and (19), and using that E0[Tbad] ≤ 0.04
√

α(G)
ε T , we find that

Ei[Ti]− E0[Ti] ≤ 2Tβ

√√√√ε ln(4/3)E0

[
Ti + 0.04

√
α(G)
ε

T

]
.
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This implies that the regret can be further lower bounded, continuing from (16), by

β

T − 1
α(G)

α(G)∑
i=1

E0[Ti]−
1

α(G)

α(G)∑
i=1

2Tβ

√√√√ε ln(4/3)E0

[
Ti + 0.04

√
α(G)
ε

T

]
≥ β

T − 1
α(G)

α(G)∑
i=1

E0[Ti]− 2Tβ

√√√√√ε ln(4/3)E0

 1
α(G)

α(G)∑
i=1

Ti + 0.04
√
α(G)
ε

T




≥ βT

1− 1
α(G) − 2β

√√√√ε ln(4/3)
(

T

α(G) + 0.04
√
α(G)
ε

T

) ,

where the first inequality is Jensen’s inequality for concave functions and the second inequality
is due to the fact that

∑α(G)
i=1 E0[Ti] ≤ T by definition of Ti. Since we assumed that

T ≥ 0.0064α(G)3/ε, we have that 0.04
√

α(G)
ε T ≤ T

2α(G) and thus

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ βT

(
1− 1

α(G) − 2β
√

3
2 ln(4/3) εT

α(G)

)

≥ βT

(
1
2 − 2β

√
3
2 ln(4/3) εT

α(G)

)
,

where in the second inequality we used the assumption that α(G) ≥ 2. By setting β =
1

33

√
α(G)

2 ln(4/3)εT ∈ (0, 1
4 ], we may complete the proof as

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ 1

33

(
1
2 −
√

3
33

)√
α(G)T

2 ln(4/3)ε ≥ 0.017
√
α(G)
ε

T .

Given that this lower bound leaves the case α(G) = 1 uncovered, we provide an additional
lower bound that considers any feedback graph. This new bound is tight up to logarithmic
factors, for instance, in all cases where α(G) is constant.
Theorem 8. Pick any directed or undirected graph G = (V,E) with |V | = K ≥ 2 and any
ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp(G) = G and such that, for all
T ≥ 1/(2ε) and for any possibly randomized algorithm A, there exists a sequence ℓ1, . . . , ℓT

of loss functions on which the expected regret of A with respect to the stochastic generation
of G1, . . . , GT ∼ G is at least 1

32
√

2T/ε.

Proof. Following a similar rationale as in the proof of Theorem 7, we can consider G to be
the complete graph (with all self-loops) because the problem for it is easier than that with
any other graph. In fact, adding edges never makes the problem harder to solve. Moreover,
we can define G by setting all edge probabilities to ε so that Gε = G and supp(G) = G. We
remark that the lower bound with such a G is also a lower bound for the instance obtained
by considering the initial (possibly non-complete) graph and assigning realization probability
ε to all its edges. Applying Yao’s minimax principle allows us to reduce our current aim
to proving a lower bound for the expected regret of any deterministic algorithm against a
randomized adversary.
We can then construct the sequence of loss functions by defining their distribution. Let
v ∈ V be an arbitrary vertex, say, v = 1. Pick Z ∈ {−1,+1} uniformly at random and define
β = 1

4 (2εT )−1/2 ∈ [0, 1
4 ]. Then, let the loss at any time t be independently ℓt(i) ∼ Bern

( 1
2
)

for
i ≠ 1 while ℓt(1) ∼ Bern

( 1
2 − βZ

)
. Define P1(·) = P (· |Z = +1) and P2(·) = P (· |Z = −1),

as well as E1[·] = E [· |Z = +1] and E2[·] = E [· |Z = −1]. We also define P0(·) and E0[·],
obtained in an analogous manner as the previous ones by setting β = 0.
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At this point, let T1 be the number of times t that the algorithm selects vertex It = 1 after
T rounds. Following a similar computation as in Equations (17) and (19), we first denote by
Pj,t = Pj(· |λt−1) the conditional probability over feedback sets λt, and notice that

E1[T1]− E2[T1] ≤ T

√√√√1
2

T∑
t=1

∑
λt−1

P2(λt−1)DKL(P2,t ∥P1,t)

≤ T

√
εβT ln

(
1 + 4β

1− 2β

)
≤ 2βT

√
2εT . (20)

Conditioning on Z = +1, the algorithm incurs an expected instantaneous regret equal to
β whenever it picks any vertex i ̸= 1. Otherwise, conditioning on Z = −1, the algorithm
incurs the same expected instantaneous regret each time it selects vertex 1. The expected
regret thus becomes

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ 1

2E1[β(T − T1)] + 1
2E2[βT1]

≥ β

2 T −
β

2 (E1[T1]− E2[T1])

≥ βT
(

1
2 − β

√
2εT

)
= 1

4βT = 1
32

√
2T
ε

,

where the third inequality follows by Equation (20), and we also use our choice of β.

We can additionally prove further lower bounds for the weakly observable case. Here we
also adapt the proof for the lower bound in the case of a deterministic feedback graph by
having each edge realize only with probability ε ∈ (0, 1] at each time step. We make the
same considerations as in the previous lower bound for strongly observable graphs. In this
case, however, we refer to Alon et al. [2015, Theorem 7]. As in the case of deterministic
feedback graph, we need the following combinatorial lemma.
Lemma 5 (Alon et al. [2015, Lemma 8]). Let G = (V,E) be a directed graph over |V | = n
vertices, and let W ⊆ V be a set of vertices whose minimal dominating set is of size k. Then,
there exists an independent set U ⊆ W of size |U | ≥ 1

50k/ lnn, such that any vertex of G
dominates at most lnn vertices of U .

We can then prove the desired lower bound which states what follows.
Theorem 9. Pick any directed or undirected, weakly observable graph G = (V,E) with
|V | = K and δ(G) ≥ 100 lnK, and any ε ∈ (0, 1]. There exists a stochastic feedback graph G
with supp(G) = G and such that, for all T ≥ 2K/(ε lnK) and for any possibly randomized
algorithm A, there exists a sequence ℓ1, . . . , ℓT of loss functions on which the expected regret of
A with respect to the stochastic generation of G1, . . . , GT ∼ G is at least 1

150
( δ(Gε)

ε ln2 K

)1/3
T 2/3.

Proof. The proof follows the steps of the lower bound from Alon et al. [2015, Theorem 7].
As in the previous lower bounds, we use Yao’s minimax principle to infer that it suffices to
design a probabilistic adversarial strategy that leads to a sufficiently large lower bound for
the expected regret of any deterministic algorithm.
We consider any weakly observable G = (V,E) having |V | = K vertices and δ(G) ≥ 100 lnK.
Since the adversary may choose edge probabilities, it can pick them all equal to ε so that
G = Gε and supp(G) = G. By Lemma 5 we know that G contains an independent set U of
size |U | = m ≥ δ(G)/(50 lnK) such that any v ∈ V dominates no more than lnK vertices of
U . We will denote actions in U as “good” actions, whereas all the others will be denoted as
“bad” actions. Given our assumption on δ(G), we observe that m ≥ 2. A further observation
we can make is that N in

G (i) ⊆ V \ U for all i ∈ U because U is independent, meaning that
we need to pick a bad action in order to be able to observe the loss of any good action.
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As similarly done in the proof of Theorem 7, we sample Z from our “target” set U uniformly at
random. This choice induces a distribution of the losses ℓt(i) for all t and all i independently.
To be precise, given β = m1/3(32εT lnK)−1/3 ∈ [0, 1

4 ], the loss is ℓt(i) ∼ Bern( 1
2 − β) if

i = Z, while it is ℓt(i) ∼ Bern( 1
2 ) if i ∈ U , i ̸= Z. The loss is deterministically set to ℓt(i) = 1

for any other vertex i ∈ V \ U .
Taking up the same notation introduced in the proof of Theorem 7, we denote by Ti the
number of times action i is played by the deterministic algorithm after T rounds, while
Tbad =

∑
i∈V \U Ti. In particular, It is the action chosen by the algorithm at time t. We

also use Pi(·) = P (· |Z = i) and Ei[·] = E [· |Z = i] with a similar definition, including the
auxiliary distribution P0 and the corresponding expectation E0 obtained by setting β = 0.
Moreover, for each good action i we introduce Xi =

∑T
t=1 I{It∈N in

G
(i)} to denote the number

of times the algorithm picks a bad action from N in
G (i).

Notice that we can restrict our reasoning to algorithms that have Tbad ≤ βT (otherwise
reducing to this case by only introducing a factor 3 in the regret bound), as similarly argued
in the proof of Alon et al. [2015, Theorem 7]. This implies that∑

i∈U

Xi ≤ Tbad lnK ≤ βT lnK (21)

since each j ∈ V \ U dominates at most lnK vertices of U .
Recalling Equation (17), we are interested in bounding

Ei[Ti]− E0[Ti] ≤ T

√√√√1
2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) , (22)

where Pj,t = Pj(· |λt−1) is the conditional probability over feedback sets λt. The KL
divergence in the above sum is DKL(P0,t ∥Pi,t) ≤ 8 ln(4/3)β2ε, where we use a similar
reasoning as in Equation (18). As a consequence,

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) ≤
T∑

t=1
P0(It ∈ N in

G (i))8 ln(4/3)β2ε

≤ 4β2εE0[|{t : It ∈ N in
G (i)}|]

= 4β2εE0[Xi] ,

which together with Equation (22) allows us to show that

Ei[Ti]− E0[Ti] ≤ βT
√

2εE0[Xi] . (23)

Let us now consider the expected regret for the deterministic algorithm at hand. We know
that it must be at least

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ 1
m

∑
i∈U

Ei[β(T − Ti)] = βT − β

m

∑
i∈U

Ei[Ti]

because the algorithm incurs at least β regret each time it picks an action different from Z.
By Equations (21) and (23), and using the concavity of the square root, the summation on
the right-hand side is such that

1
m

∑
i∈U

Ei[Ti] ≤ βT
√

2ε
m

∑
i∈U

E0[Xi] + 1
m
E0

[∑
i∈U

Ti

]

≤ T
√

2β3ε

m
T lnK + T

m

= 1
4T + 1

m
T ≤ 3

4T , (24)
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where the equality follows by our choice of β, whereas the last inequality holds because
m ≥ 2. Hence, the expected regret is

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ β

4 T = 1
4

( m

32ε lnK

)1/3
T 2/3 ≥ 1

50

(
δ(G)
ε ln2 K

)1/3
T 2/3 .

An additional theorem is required in order to cover the case δ(G) < 100 lnK. In the same
way as in Alon et al. [2015], we follow a simple reasoning with generic weakly observable
graphs. The following lower bound holds for weakly observable graphs of any size and is
tight up to logarithmic factors for instances having δ(G) < 100 lnK.
Theorem 10. Pick any directed or undirected, weakly observable graph G = (V,E) with
|V | ≥ 2 and any ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp(G) = G and
such that, for all T ≥ 2

√
2/ε and for any possibly randomized algorithm A, there exists a

sequence ℓ1, . . . , ℓT of loss functions on which the expected regret of A with respect to the
stochastic generation of G1, . . . , GT ∼ G is at least

√
2

16 ε
−1/3T 2/3.

Proof. The proof follows a similar structure as that of Alon et al. [2015, Theorem 11]. We
consider the same instance constituted by a graph G = (V,E) having |V | ≥ 3 vertices, since
it is the minimum number of vertices in order for G to be weakly observable. In fact, any
graph with exactly 2 vertices is either unobservable or strongly observable. By definition,
there exists a vertex in this graph with no self-loop and with at least one incoming edge
missing from any of the remaining vertices. Without loss of generality, let v = 1 be such a
vertex and let 2 /∈ N in

G (v) be one of the vertices without an edge towards v. We may consider
the case where all edge probabilities are set to ε (implying that G = Gε and supp(G) = G),
given that we essentially assume the adversary can select them.
We can apply Yao’s minimax principle, as usual, to reduce this problem to that of lower
bounding the expected regret for any deterministic algorithm against a randomized adversary.
Hence, we need to design a distribution for the loss functions ℓ1, . . . , ℓT provided to the
algorithm. Let β = 1

2
√

2 (εT )−1/3 ∈ [0, 1
4 ] and pick Z ∈ {−1,+1} uniformly at random.

For all t, we choose the losses such that ℓt(1) ∼ Bern (1/2− βZ), ℓt(2) ∼ Bern (1/2), and
ℓt(j) = 1 for all j ̸= 1 independently. Similarly to the construction in the proof of Theorem 9,
we have “good” actions {1, 2} incurring at most β expected instantaneous regret, while all
remaining actions are “bad” since they incur at least 1/2 instantaneous regret in expectation.
We reuse the same definitions for Ti and Xi as in the proof of Theorem 9 for any fixed
deterministic algorithm. On the other hand, we let P1(·) = P (· |Z = +1) and P2(·) =
P (· |Z = −1). We analogously define E1[·] = E [· |Z = +1] and E2[·] = E [· |Z = −1]. Finally,
we introduce P0(·) and E0[·] obtained as the previous ones by setting Z = 0.
Following the same rationale that led to Equation (23), we can show that

Ei[Ti]− E0[Ti] ≤ βT
√

2εEi[X1]
for i ∈ {1, 2}. This implies, via similar steps as in Equation (24), that

1
2E1[T1] + 1

2E2[T2] ≤ βT
√

2εE [X1] + T

2 . (25)

Finally, if E [X1] > 1
32β

−2ε−1, the algorithm’s expected regret becomes

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ 1

2E [X1] > 1
64β

−2ε−1 = 1
8ε

−1/3T 2/3 ,

where the last equality holds by our choice of β. Otherwise, when E [X1] ≤ 1
32β

−2ε−1, the
right-hand side of Equation (25) is bounded by 3

4T and thus the regret must be

max
k∈V

E

[
T∑

t=1
(ℓt(It)− ℓt(k))

]
≥ 1

2E1[β(T − T1)] + 1
2E2[β(T − T2)] ≥ β

4 T =
√

2
16 ε

−1/3T 2/3 .
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D Be Optimistic If You Can, Commit If You Must

In this section, we describe Algorithm 4 and the analysis we use to obtain the results of
Section 5. First of all, we briefly state the rationale for the design of this new algorithm. The
main idea is similar in spirit to that of EdgeCatcher: Algorithm 4 constantly updates the
estimates for the edge probabilities of the underlying G and computes the best regret regime
it can achieve. However, EdgeCatcher has to wait until it can determine the best regret

Algorithm 4: OptimisticThenCommitGraph (otcG)
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT ;
Input: time horizon T and actions V = {1, 2, . . . ,K};
Initialize: sample I1 uniformly at random, receive G1;
for t = 2, . . . , T do

if Equation (26) has never been true then // optimistic phase
Set p̃t(j, i) = 1

t−1
∑t−1

s=1 I{(j,i)∈Es} ;

Set p̂t(j, i) = p̃t(j, i) +
√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K2T 2) ;
Set ĜUCB

t = {p̂t(j, i) : i, j ∈ V };
Compute θt and εθ

t as in Equation (33) ;
Set Ĝt = {p̂t(j, i)I{p̂t(j,i)≥εθ

t } : i, j ∈ V } and Ĝt = supp(Ĝt), ;
Compute pmin

t = mini minj∈N in
Ĝt

(i) p̂t(j, i);

Set γt = min
{(

mins∈[2,t] tp
min
s

)−1/2
, 1

2

}
;

Set ηt−1 =
(

16/(mins∈[2,t](pmin
s )2) + 4t/(mins∈[2,t] p

min
s ) +

∑t−1
s=2 θs(Ĝs)

)−1/2
;

Set ψt to be the uniform distribution over V ;
Set qt(i) ∝ exp

(
ηt−1

∑t−1
s=2 ℓ̃t(i)

)
;

Set πt(i) = (1− γt)qt(i) + γtψt(i);
if Equation (26) is true for any t′ − 1 < t then // commit phase

Set t⋆ to the first round t′ − 1 in which Equation (26) is true;
Set G̃ = {p̃(j, i) : i, j ∈ V } as the stochastic graph with
p̃(j, i) = 1

t⋆

∑t⋆

s=1 I{(j,i)∈Es};
Set Ĝ = {p̃(j, i)I{p̃(j,i)≥εt⋆ } : i, j ∈ V } with εt⋆ as in Equation (36);
Set Ĝε⋆

δ,σ
= {p̃(j, i)I{p̃(j,i)≥ε⋆

δ,σ
} : i, j ∈ V } with ε⋆

δ,σ as in Equation (37);
Set p̃t(j, i) = 1

t−1
∑t−1

s=1 I{(j,i)∈Es} ;

Set p̂t(j, i) = p̃t(j, i) +
√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K2T 2) ;
Set ĜUCB

t = {p̂t(j, i) : i, j ∈ V };
Set Ĝt = ĜUCB

t and Ĝt = supp(Ĝt);
Set γ = min

{(
δw(Ĝε⋆

δ,σ
) ln(KT )

)1/3
T−1/3, 1

2

}
;

Set η =
√

ln(K)
(

2T
(
δw(Ĝε⋆

δ,σ
)/γ + σ(Ĝε⋆

δ,σ
)
))−1

;
Set ψt according to (38);
Set qt(i) ∝ exp

(
η
∑t−1

s=t⋆+1 ℓ̃t(i)
)

;
Set πt(i) = (1− γ)qt(i) + γψt(i);

Sample It ∼ πt;
Receive Gt and {(i, ℓt(i)) : i ∈ Nout

Gt
(It)};

Compute ℓ̃t(i) as in (6);

regime before actually tackling the learning task. On the contrary, Algorithm 4 begins by
optimistically assuming that the best thresholded graph has a strongly observable support
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while simultaneously updating the edge probability estimates; this is made possible given
the additional assumption on receiving the realized graph Gt = (V,Et) ∼ G together with
the observed losses at the end of each round t. At any point in time, as soon as Algorithm 4
finds that it can achieve a better regret regime by switching to the weakly observable one
(by computing the optimal threshold on the current estimate for G), it commits to weak
observability. We can prove that this strategy is able to achieve the best possible regret over
all thresholded feedback graphs, analogously to EdgeCatcher, but with a dependency on
the improved graph-theoretic parameters introduced in Section 5.
Consequently, there are two regimes of Algorithm 4. In the first regime, the algorithm
works under the assumption that supp(G) is strongly observable; in the second regime, the
algorithm works under the assumption that supp(G) is observable. The switch happens in
round t⋆ + 1, where t⋆ is the first round t− 1 in which

Ψt−1 ≥ Λt−1, (26)
is true. The term Ψt is an upper bound on the regret after the first t rounds, and is given by

Ψt = min
{
t, 2 + 11(ln(3K2T 2))2 max

s∈[2,t]
θs(Ĝs)

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
t max

s∈[2,t]
θs(Ĝs)

}
, (27)

where Ĝt minimizes θt, which is defined in Equation (33). The term θt(Ĝt) is an upper bound
the second-order term in the regret bound of Exponential Weights. Crucially, the same
term θt(Ĝt) does not require us to compute a weighted independence number at each round:
we can explicitly compute it in O(K4) time. Furthermore, in Lemma 11 we show that,
conditioning on the event K, the term θt(Ĝt) is upper bounded by the minimum thresholded
weighted independence number of G, which in turn is useful when bounding the regret. We
recall that the event K, introduced in Section 5, corresponds to the event that

|p̃t(j, i)− p(j, i)| ≤
√

2p̃t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2), ∀(j, i) ∈ V × V

for all t ≥ 2 simultaneously.
Similarly, Λt is an upper bound on the regret of Algorithm 4 if it were to switch regime in
round t and is given by

Λt = min
ε

{
41T 2/3

(
ln(3K2T 2)δw((Ĝt)ε)

)1/3
+ 41

√
ln(3K2T 2)σ((Ĝt)ε)T

}
, (28)

where Ĝt = {p̃t(j, i)I{p̃t(j,i)≥60 ln(KT )/t} : i, j ∈ V }. In other words, Algorithm 4 changes
regime whenever it thinks that the regret of a (weakly) observable graph is smaller than the
regret of a strongly observable graph. In the following, we prove that Ψt and Λt are indeed
upper bounds on the regret, but first we state Lemma 6, which is a central result in this
section. More precisely, it provides an upper bound for the cost of not using the exact edge
probabilities p(j, i) but instead using upper confidence bound estimates p̂t(j, i). Note that
the bound scales with π̄t(i) =

∑
j∈N in

Ĝt
(i) πt(j). For Gε having a strongly observable support,

this is an important property of the bound since we require that π̄t(i) ≤ 1−πt(i) for vertices
i without a self-loop in supp(Gε) to ensure that we can bound the regret in terms of the
weighted independence number.
Lemma 6. Define π̄t(i) =

∑
j∈N in

Ĝt
(i) πt(j). For any distribution u over [K] and t⋆ ≤ T ,

with estimator (6) we have that

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2
√

2 ln(3K2T 2)
t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
.
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Proof. For t > 1, by the empirical Bernstein bound [Audibert et al., 2007, Theorem 1], with
probability at least 1− 1

K2T 2 we have that

∣∣∣∣∣ 1
t− 1

t−1∑
s=1

I{(j,i)∈Es} − p(j, i)
∣∣∣∣∣ ≤

√
2σ

2
t ln(3K2T 2)
t− 1 + 3

t− 1 ln(3K2T 2)

≤
√

2p̂t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2) , (29)

where we used the fact that

σ2
t = 1

t− 1

t−1∑
s′=1

(
I{(j,i)∈Es′ } −

1
t− 1

t−1∑
s=1

I{(j,i)∈Es}

)2
≤ 1
t− 1

t−1∑
s=1

I{(j,i)∈Es} ≤ p̂t(j, i) .

Thus, by the union bound over K2 edges and t⋆ rounds, we have that equation (29) holds for
all edges and time steps t ≥ 2 with probability at least 1− 1

T . This means that P (K) ≥ 1− 1
T

by definition of K.
By using the tower rule and the fact that ℓt(i) ∈ [0, 1], we can see that

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

= P
(
K
)
E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣K
]

+ (1− P (K))E
[

t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣K
]

≤ P
(
K
)
T + E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ K
]

≤ 2 + E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ K
]
. (30)

Let Xt = I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)} be the indicator of the event that i belongs to both
Nout

Gt
(It) and Nout

Ĝt
(It), and let ξt(i) = P̂t(i)− Pt(i) =

∑
j∈N in

Ĝt
(i) πt(j)(p̂t(j, i)− p(j, i)). We

continue by applying Lemma 13 on the expectation in the right-hand side of (30), obtaining
that

E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ K
]

= E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ξt(i)
Xtℓt(i)
Pt(i)P̂t(i)

∣∣∣∣∣ K
]

≤ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

+ E

[
t⋆∑

t=2

K∑
i=1

πt(i)ξt(i)
Xtℓt(i)
Pt(i)P̂t(i)

∣∣∣∣∣ K
]
,

where the inequality is due to the fact that the loss is nonnegative and the fact that
ξt(i) > 0 because p̂t(j, i) − p(j, i) > 0 is true, given K. We already know that p̂t(j, i) ≥
p̃t(j, i) by definition of p̂t(j, i). As long as K holds, we also know that p̃t(j, i) − p(j, i) ≤√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K2T 2) is true. Then, we can use all the above observations
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to demonstrate that the term ξt(i) satisfies

ξt(i) =
∑

j∈N in
Ĝt

(i)

πt(j)(p̂t(j, i)− p(j, i))

≤
∑

j∈N in
Ĝt

(i)

πt(j)
(√

2p̂t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2)
)

+
∑

j∈N in
Ĝt

(i)

πt(j) (p̃t(j, i)− p(j, i))

≤ 2
∑

j∈N in
Ĝt

(i)

πt(j)
(√

2p̂t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2)
)

(31)

By the Cauchy-Schwarz inequality, it holds that∑
j∈N in

Ĝt
(i)

πt(j)
√
aj =

∑
j∈N in

Ĝt
(i)

√
πt(j)

√
πt(j)aj ≤

√√√√π̄t(i)
∑

j∈N in
Ĝt

(i)

πt(j)aj

with aj ≥ 0 for all j ∈ N in
Ĝt

(i), where we recall that π̄t(i) =
∑

j∈N in
Ĝt

(i) πt(j). We can use this
property to further bound ξt(i) in (31) as

ξt(i) ≤ 2
∑

j∈N in
Ĝt

(i)

πt(j)
(√

2p̂t(j, i)
t− 1 ln(3K2T 2) + 3

t− 1 ln(3K2T 2)
)

≤ 2

√
2π̄t(i)

P̂t(i) ln(3K2T 2)
t− 1 + π̄t(i)

6 ln(3K2T 2)
t− 1 .

At this point, we can use the inequality for ξt(i) to show that

E

[
t⋆∑

t=2

K∑
i=1

πt(i)ξt(i)
Xtℓt(i)
Pt(i)P̂t(i)

∣∣∣∣∣ K
]

≤ E

 t⋆∑
t=2

2
√

2 ln(3K2T 2)
t− 1

K∑
i=1

πt(i)
Xtℓt(i)

√
π̄t(i)

Pt(i)
√
P̂t(i)

∣∣∣∣∣∣ K


+
t⋆∑

t=2
E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
Xtℓt(i)
Pt(i)P̂t(i)

∣∣∣∣∣ K
]

≤ E

[
t⋆∑

t=2
2
√

2 ln(3K2T 2)
t− 1

K∑
i=1

πt(i)
√
π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]

(32)

+
t⋆∑

t=2
E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

π̄t(i)πt(i)
P̂t(i)

∣∣∣∣∣ K
]

≤ E

 t⋆∑
t=2

2
√

2 ln(3K2T 2)
t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣∣ K


+
t⋆∑

t=2
E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]
,

where in the second inequality we used the fact that ℓt(i) ≤ 1 and that Et−1[Xt] = Pt(i),
while the final inequality is Jensen’s inequality for concave functions.
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By combining the above, we may complete the proof:

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2
√

2 ln(3K2T 2)
t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
.

D.1 Initial Regime of otcG

To understand the initial regime of otcG (Algorithm 4), consider the following. Since
the support of ĜUCB

t is the complete graph, there always exists a threshold ε for which
supp((ĜUCB

t )ε) is strongly observable. For ease of notation, given any stochastic feedback
graph G with edge probabilities p(j, i), we introduce

Pt(i,G) =
∑

j∈N in
supp(G)(i)

πt(j)p(j, i) .

Denote by S the family of strongly observable graphs over vertices V = [K]; we can then
define εθ

t as

εθ
t = arg min

ε : supp((ĜUCB
t )ε)∈S

θt((ĜUCB
t )ε)

= arg min
ε : supp((ĜUCB

t )ε)∈S

(
2

mini minj∈N in
supp((ĜUCB

t
)ε)

(i) p̂t(j, i)
+

∑
i∈N in

supp((ĜUCB
t

)ε)
(i)

2πt(i)
Pt(i, (ĜUCB

t )ε)

)
.

(33)

A crucial property of Ĝt (that is, ĜUCB
t thresholded at εθ

t ) is that, if p̂t(j, i) ≥ p(j, i) for all
edges (j, i), by Lemma 11 we have that

min
ε : supp((ĜUCB

t )ε)∈S
θt((ĜUCB

t )ε) = Õ

(
min

ε : supp(Gε)∈S
αw(Gε)

)
,

which is a property we will use when computing the final regret bound of Algorithm 4.
It also ensures that we can bound the cost of not knowing p(j, i) in Lemma 6 by
minε : supp((ĜUCB

t )ε)∈S θt((ĜUCB
t )ε), which is also important in computing the final regret

bound of Algorithm 4. We thus upper bound the regret of the initial regime of otcG in
terms of θt in what follows.
Lemma 7. For any distribution u over [K], after t⋆ ≤ T rounds Algorithm 4 guarantees

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
≤ 2 + 11(ln(3K2T 2))2 E

[
max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣ K]

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)
E

[√
t⋆ max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣∣ K
]
.

Proof. We start with an application of Lemma 6:

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2
√

2 ln(3K2T 2)
t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
,
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where, we recall it, π̄t(i) =
∑

j∈N in
Ĝt

(i) πt(j). Now, for i without a self-loop in Ĝt we have
that π̄t(i) ≤ 1− πt(i). Now, conditioning on K, we may follow the reasoning surrounding
Equation (35) to find that

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

≤ θt(Ĝt) .

We now use
∑T

t=1
1
t ≤ ln(T ) + 1,

∑T
t=1

1√
t
≤ 2
√
T , and the above inequality to obtain that

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

t⋆∑
t=2

E
[

6 ln(3K2T 2)
t− 1 θt(Ĝt)

∣∣∣∣ K]

+ E

[
t⋆∑

t=2
2
√

2 ln(3K2T 2)
t− 1

√
θt(Ĝt)

∣∣∣∣∣ K
]

+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ 2 + 6(ln(3K2T 2))2 E
[

max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]+ E

[
4
√

2 ln(3K2T 2)t⋆ max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣∣ K
]

+ E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
.

By applying Lemma 8, we can complete the proof:

E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 + 6(ln(3K2T 2))2 E

[
max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣ K]

+ E

[
4
√

2 ln(3K2T 2)t⋆ max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣∣ K
]

+ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K


+ E

[
max

t∈[2,t⋆]

4 ln(K)
pmin

t

+ 5 ln(K)
√

max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]

≤ 2 + 11(ln(3K2T 2))2 E
[

max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)
E

[√
t⋆ max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣∣ K
]
,

where we used that 1
pmin

t
≤ θt(Ĝt) for all t ∈ [2, t⋆].

In the proof of Lemma 7 we make use of the following auxiliary result, which bounds the
regret of πt given K.
Lemma 8. For any distribution u over [K], after t⋆ ≤ T rounds Algorithm 4 guarantees

E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
≤ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K


+ E

[
max

t∈[2,t⋆]

4 ln(K)
pmin

t

+ 5 ln(K)
√

max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]
.

Proof. We want to apply Lemma 12, which bounds the regret of Exponential Weights. Recall
that Algorithm 4 defines

pmin
t = min

i∈V
min

j∈N in
supp(Ĝt)

(i)
p̂t(j, i)
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as the minimum (positive) edge probability in Ĝt. Observe that for any node i without a
self-loop in supp(Ĝt) we have that

P̂t(i) =
∑
j ̸=i

p̂t(j, i)
(

(1− γt)qt(i) + γt

K

)
≥ pmin

t

∑
j ̸=i

(
(1− γt)qt(i) + γt

K

)
= (1− πt(i))pmin

t (34)

=
(

1− (1− γt)qt(i)−
γt

K

)
pmin

t

≥ γt

2 p
min
t .

Using (34) and the definitions of ηt−1 and γt, together with the fact that ℓt(i) ∈ [0, 1], we
can see that

ηt−1ℓ̃t(i) ≤ ηt−1
1

P̂t(i)
≤ ηt−1

2
γtpmin

t

≤ 1 ,

where the last inequality is due to the fact that ηt−1 ≤ 1
2γtp

min
t . Given event K, since for

any node i without a self-loop in supp(Ĝt) we have that ηt−1ℓ̃t(i) ≤ 1, we may apply Lemma
12 with St = S = {i : i ̸∈ N in

supp(Ĝt)(i)} to obtain that

E

[
t⋆∑

t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ E

 lnK
ηt⋆

+
t⋆∑

t=2
ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓ̃t(i)2 +
∑
i̸∈St

qt(i)ℓ̃t(i)2

 ∣∣∣∣∣∣ K
 .

We now bound

E

[∑
i∈St

qt(i)(1− qt(i))ℓ̃t(i)2

∣∣∣∣∣ K
]

= E

[∑
i∈St

qt(i)(1− qt(i))
Pt(i)ℓt(i)2

P̂t(i)(Pt(i) + ξt(i))

∣∣∣∣∣ K
]

≤ E

[∑
i∈St

qt(i)
(1− qt(i))
P̂t(i)

∣∣∣∣∣ K
]

= E

[∑
i∈St

qt(i)(1− qt(i))
Pt(i, Ĝt)

∣∣∣∣∣ K
]

≤ E

[∑
i∈St

2qt(i)
pmin

t

∣∣∣∣∣ K
]
≤ E

[
2

pmin
t

∣∣∣∣ K] .
For i ̸∈ St, since πt(i) ≥ 1

2qt(i) and P̂t(i)− Pt(i) ≥ 0 given K, we have that

E

∑
i ̸∈St

qt(i)ℓ̃t(i)2

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈St

qt(i)
P̂t(i)

∣∣∣∣∣∣ K
 ≤ E

∑
i̸∈St

2πt(i)
Pt(i, Ĝt)

∣∣∣∣∣∣ K
 ,

which combined with the preceding inequality means that, given K, we have that∑
i∈St

qt(i)(1− qt(i))
P̂t(i)

+
∑
i ̸∈St

qt(i)
P̂t(i)

≤ 2
pmin

t

+
∑
i̸∈St

2πt(i)
Pt(i, Ĝt)

= θt(Ĝt) . (35)
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Therefore, we have that

E

[
t⋆∑

t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ E

 lnK
ηt⋆

+
t⋆∑

t=2
ηt−1

∑
i∈St

qt(i)(1− qt(i))
Pt(i, Ĝt)

+
∑
i ̸∈St

qt(i)
Pt(i, Ĝt)

 ∣∣∣∣∣∣ K


≤ E

[
lnK
ηt⋆

+
t⋆∑

t=2
ηt−1θt(Ĝt)

∣∣∣∣∣ K
]
.

Now, using a slightly modified version of [Gaillard et al., 2014, Lemma 14] (replacing |ai| ≤ 1
by |ai| ≤ maxi |ai|) we can see that

t⋆∑
t=2

ηt−1θt(Ĝt) ≤
t⋆∑

t=2
θt(Ĝt)

√√√√1 +
t−1∑
s=2

θs(Ĝs)

≤ 3

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt) .

As a final step in this proof, we want to consider the distribution πt the algorithm actually
samples actions from instead of qt. We can bound

∑t⋆

t=2 γt ≤ 2
√

maxt∈[2,t⋆]
t⋆

pmin
t

and

1
ηt⋆

≤ 4
mint∈[2,t⋆] p

min
t

+
√

t⋆

mint∈[2,t⋆] p
min
t

+

√√√√ t⋆∑
t=2

θt(Ĝt) .

Thus, combining the above we find that

E

[
t⋆∑

t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
≤ E

[
t⋆∑

t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i) +
t⋆∑

t=2
γt

∣∣∣∣∣ K
]

≤ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K


+ E

[
max

t∈[2,t⋆]

4 ln(K)
pmin

t

+ 5 ln(K)
√

max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]
.

D.2 Regret After Round t⋆

With Lemma 7 at hand, we can control the regret in the first t⋆ rounds. However, we
also need to control the regret in the remaining rounds, which we show how to do here.
Recall that G̃ is the graph with edge probabilities p̃(j, i) = 1

t⋆

∑t⋆

s=1 I{(j,i)∈Es}. At the end
of round t⋆ we have that Ĝ = G̃εt⋆ is an εt⋆ -good approximation of G with high probability,
where

εt⋆ = 60 ln(KT )
t⋆

. (36)

We set

ε⋆
δ,σ = arg min

ε : supp(Ĝε) observable
(δw(Ĝε) ln(3K2T 2))1/3T 2/3 +

√
σ(Ĝε)T ln(3K2T 2) (37)
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and define the corresponding stochastic graph by Ĝε⋆
δ,σ

= {p̃(j, i)I{p̃(j,i)≥ε⋆
δ,σ

} : i, j ∈ V }. We
denote its support by Ĝ⋆ = supp(Ĝε⋆

δ,σ
). We also require any estimated minimum weight

weakly dominating set in round t, given by

D⋆
t = arg min

D∈D(Ĝ⋆)

∑
i∈D

1
minj∈Nout

Ĝ⋆ (i) p̂t(i, j)
,

where D(Ĝ⋆) corresponds to the family of weakly dominating sets in Ĝ⋆. We define

ψt(i) ∝
{(

minj∈Nout
Ĝ⋆ (i) p̂t(i, j)

)−1 for i ∈ D⋆
t

0 for i ̸∈ D⋆
t

(38)

to be the exploration distribution in round t. Note that this distribution is non-uniform
over the weakly dominating set D⋆

t . This is because we want to ensure that the loss of each
node is observed roughly equally often. If we were to sample uniformly at random, then
this would not be possible because the probability that an edge realizes is not necessarily
identical for all edges; however, note that the distribution is in fact uniform if the estimated
edge probabilities are uniform.
Lemma 9. Suppose that Ĝ is an εt⋆-good approximation of G. For any distribution u
over [K], Algorithm 4 guarantees

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ 16δw(Ĝε⋆
δ,σ

) ln(3K2T 2) + 5(δw(Ĝε⋆
δ,σ

) ln(3K2T 2))1/3T 2/3 + 4
√
σ(Ĝε⋆

δ,σ
)T ln(K) .

Proof. Consider the set S = {i : i ̸∈ N in
Ĝ⋆

(i)} of nodes without a self-loop in Ĝ⋆. Observe
that for any node i ∈ S, given K, we have that for some node k ∈ D⋆

t with t > t⋆,

P̂t(i) =
∑
j ̸=i

p̂t(j, i) ((1− γ)qt(i) + γψt(i))

≥ γp̂t(k, i)ψt(k)

≥ γ∑
k∈D⋆

t

(
minj∈Nout

Ĝ⋆ (k) p̂t(k, j)
)−1 .

Observe that E [p̂t(j, i) | K] ≥ p(j, i) ≥ 1
2 p̃(j, i) for all edges (j, i) in Ĝ⋆ by definition of

εt⋆ -good approximation. This implies that

P̂t(i) ≥
γ

2δw(Ĝε⋆
δ,σ

)
(39)

holds for any node i ∈ S, conditioning on K. We apply Lemma 12 with St = ∅ to obtain

E

[
T∑

t=t⋆+1

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
≤ E

[
lnK
η

+
T∑

t=t⋆+1
η

K∑
i=1

qt(i)ℓ̃t(i)2

∣∣∣∣∣ K
]

≤ E

[
lnK
η

+
T∑

t=t⋆+1
η

K∑
i=1

qt(i)
P̂t(i)

∣∣∣∣∣ K
]
,

where we used the fact that P̂t(i)− Pt(i) ≥ 0, given K. Recalling Equation (39) and using
the fact that πt(i) ≥ 1

2qt(i), we can see that

E

[∑
i∈S

qt(i)
P̂t(i)

∣∣∣∣∣ K
]
≤ E

[∑
i∈S

2πt(i)
P̂t(i)

∣∣∣∣∣ K
]
≤ E

[
4δw(Ĝε⋆

δ,σ
)

γ

∣∣∣∣∣ K
]
.
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Considering the sum over i ̸∈ S, we have

E

∑
i ̸∈S

qt(i)
P̂t(i)

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈S

2πt(i)
P̂t(i)

∣∣∣∣∣∣ K


≤ E

∑
i ̸∈S

2
p̂t(i, i)

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈S

4
p̃(i, i)

∣∣∣∣∣∣ K
 ≤ 4σ(Ĝε⋆

δ,σ
) .

Thus, we have that

E

[
K∑

i=1

qt(i)
P̂t(i)

∣∣∣∣∣K
]
≤ 4E

[
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
∣∣∣∣∣ K
]
, (40)

which means that we can use η =
√

ln(K)
4T

(
δw(Ĝε⋆

δ,σ
)/γ + σ(Ĝε⋆

δ,σ
)
)−1 to obtain

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
≤ E

[
T∑

t=t⋆+1

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

+ γT

≤ lnK
η

+ 4ηT
(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
)

+ γT

= 4

√√√√T ln(K)
(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
)

+ γT .

Now, observe that T ≤ 8δw(Ĝε⋆
δ,σ

) ln(3K2T 2) whenever the algorithm’s parameter γ =
min

{(
δw(Ĝε⋆

δ,σ
) ln(3K2T 2)

)1/3
T−1/3, 1

2
}

= 1
2 . As a consequence,

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ 4

√√√√T ln(K)
(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
)

+ γT

≤ 16δw(Ĝε⋆
δ,σ

) ln(3K2T 2) + 5(δw(Ĝε⋆
δ,σ

) ln(3K2T 2))1/3T 2/3 + 4
√
σ(Ĝε⋆

δ,σ
)T ln(K) ,

which completes the proof.

For the following lemma, we will use a simplifying assumption on T : we will assume that T
is such that

2 +
(
37δw(Ĝε⋆

δ,σ
) + 12σ(Ĝε⋆

δ,σ
)
)

ln(3K2T 2)2 + 12δw(Ĝε⋆
δ,σ

)2/3 (ln(3K2T 2)
)5/3

T 1/3

≤ 28
(
δw(Ĝε⋆

δ,σ
) ln(3K2T 2)

)1/3
T 2/3 + 29

√
ln(3K2T 2)σ(Ĝε⋆

δ,σ
)T . (41)

Lemma 10. Suppose that (41) holds and that Ĝ is an εt⋆-good approximation of G. For
any distribution u over [K], Algorithm 4 guarantees

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

≤ 41
(

ln(3K2T 2)δw(Ĝε⋆
δ,σ

)
)1/3

T 2/3 + 41
√

ln(3K2T 2)σ(Ĝε⋆
δ,σ

)T .

We also have that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤

min
ε≥2εt⋆

{
82
(
ln(3K2T 2)δw(Gε)

)1/3
T 2/3 + 82

√
ln(3K2T 2)σ(Gε)T : supp(Gε) observable

}
.
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Proof. Following the proof of Lemma 6, we can see that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

T∑
t=t⋆+1

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣ K
]

+ E

 T∑
t=t⋆+1

2
√

2 ln(3K2T 2)
t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)
P̂t(i)

∣∣∣∣∣∣K
+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣K
]
.

Now, using the same reasoning that led to Equation (40), we have that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 2 +

T∑
t=t⋆+1

E

[
12 ln(3K2T 2)

t− 1

(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
) ∣∣∣∣∣K

]

+ E

 T∑
t=t⋆+1

4
√

ln(3K2T 2)
t− 1

√
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)

∣∣∣∣∣∣ K


+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ 2 + E

[
12 ln(3K2T 2)2

(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
) ∣∣∣∣∣ K

]

+ E

8

√√√√T ln(3K2T 2)
(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
) ∣∣∣∣∣∣ K


+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]
,

where we used that
∑T

t=1
1√
t
≤ 2
√
T and

∑T
t=2

1
t−1 ≤ 1 + ln(T ) ≤ ln(3K2T 2) for K,T ≥ 2.

Following the final steps in the proof of Lemma 9, we can show that

E

8

√√√√T ln(3K2T 2)
(
δw(Ĝε⋆

δ,σ
)

γ
+ σ(Ĝε⋆

δ,σ
)
) ∣∣∣∣∣∣ K


≤ 32δw(Ĝε⋆

δ,σ
) ln(3K2T 2) + 8T 2/3

(
δw(Ĝε⋆

δ,σ
) ln(3K2T 2)

)1/3
+ 8
√
Tσ(Ĝε⋆

δ,σ
) ln(3K2T 2) .

Hence, by applying Lemma 9, we obtain that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)
∣∣∣∣∣ K
]

≤ 16δw(Ĝε⋆
δ,σ

) ln(3K2T 2) + 5T 2/3(δw(Ĝε⋆
δ,σ

) ln(3K2T 2))1/3 + 4
√
Tσ(Ĝε⋆

δ,σ
) ln(K) .

Finally, by definition of γ we notice that

12 ln(3K2T 2)2
δw(Ĝε⋆

δ,σ
)

γ
≤ 24δw(Ĝε⋆

δ,σ
) ln(3K2T 2)2 + 12T 1/3δw(Ĝε⋆

δ,σ
)2/3 (ln(3K2T 2)

)5/3
.

Thus, combining the above we obtain

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

≤ 2 + 37δw(Ĝε⋆
δ,σ

) ln(3K2T 2)2 + 12T 1/3δw(Ĝε⋆
δ,σ

)2/3 (ln(3K2T 2)
)5/3

+ 13T 2/3
(
δw(Ĝε⋆

δ,σ
) ln(3K2T 2)

)1/3
+ 12

√
Tσ(Ĝε⋆

δ,σ
) ln(3K2T 2)

+ 12σ(Ĝε⋆
δ,σ

) ln(3K2T 2)2 .
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Since we assumed that (41) holds, we can show that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

≤ 41T 2/3
(
δw(Ĝε⋆

δ,σ
) ln(3K2T 2)

)1/3
+ 41

√
Tσ(Ĝε⋆

δ,σ
) ln(3K2T 2) ,

which is the first result in the statement. For the second result, recall that ε⋆
δ,σ is the

minimizer of the above bound by its definition in (37). Since Ĝ is an εt⋆ -good approximation
of G, we conclude that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤

min
ε≥2εt⋆

{
82T 2/3 (ln(3K2T 2)δw(Gε)

)1/3 + 82
√

ln(3K2T 2)σ(Gε)T : supp(Gε) observable
}
.

D.3 Regret After T Rounds

We now have all the intermediate results we need to prove the overall regret bound of
Algorithm 4.
Theorem 11. Suppose that (41) holds. Then, for any distribution u over [K], Algorithm 4
satisfies

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ min

{
T ,

6 + 2 min
ε : supp(Gε) strongly observable

{
198αw(Gε)(ln(2K3T 2))3

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)√

18t⋆αw(Gε) ln(2K3T 2)
}

,

4 + 164 ln(3K2T 2) min
ε : supp(Gε) observable

(
(δw(Gε))1/3T 2/3 +

√
σ(Gε)T

)}
.

Proof. Let us recall that in Equations (27) and (28) we define

Ψt⋆ = min
{
t⋆, 2 + 11(ln(3K2T 2))2 max

t∈[2,t⋆]
θt(Ĝt)

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)√

t⋆ max
t∈[2,t⋆]

θt(Ĝt)
}

and

Λt⋆ = 41
(

ln(3K2T 2)δw(Ĝε⋆
δ,σ

)
)1/3

T 2/3 + 41
√

ln(3K2T 2)σ(Ĝε⋆
δ,σ

)T .

Denote by E the event that G̃εt
= {p̃t(j, i)I{p̃t(j,i)≥60 ln(KT )/t} : i, j ∈ V } is a εt-good

approximation of G with εt = 60 ln(KT )/t for all t ≤ T . By Lemma 14, we have that E
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occurs with probability at least 1− 1
T and thus, for any t⋆ ∈ [1, T ], we have that

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

≤ 1 + E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ E
]

= 1 + E

[
t⋆∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ E
]

+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ E
]

≤ 1 + E [Ψt⋆ + Λt⋆ | K, E ] ,

where the last inequality is due to Lemmas 7 and 10. We now consider two cases depending
on whether Algorithm 4 commits to the weakly observable regret regime at any time step
or it never does so. In the first case, say Equation (26) never holds for any t ∈ [2, T ]. We
consequently have that

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 1 + E [min {Ψt⋆ ,Λt⋆} | K, E ] .

We first try to upper bound the conditional expectation of Λt⋆ . By definition of ε-good
approximation of G, we have

E [Λt⋆ | K, E ] = E

[
min

ε∈[0,1]

{
41
(

ln(3K2T 2)δw((Ĝt⋆)ε)
)1/3

T 2/3

+ 41
√

ln(3K2T 2)σ((Ĝt⋆)ε)T : supp((Ĝt⋆)ε) observable
} ∣∣∣∣∣ K, E

]

≤ 2E
[

min
ε∈[2εt⋆ ,1]

{
41
(

ln(3K2T 2)δw((Ĝt⋆)ε)
)1/3

T 2/3

+ 41
√

ln(3K2T 2)σ((Ĝt⋆)ε)T : supp(Gε) observable
} ∣∣∣∣∣K, E

]
.

To cover the remaining thresholds in [0, 2εt⋆), we define ε⋆
Λ = maxQ as the largest threshold ε

that minimizes

Q = arg min
ε∈[0,1]

{
41
(

ln(3K2T 2)δw((Ĝt⋆)ε)
)1/3

T 2/3

+ 41
√

ln(3K2T 2)σ((Ĝt⋆)ε)T : supp(Gε) observable
}
.

If ε⋆
Λ < 2εt⋆ , meaning that ε⋆

Λ as well as the other thresholds in Q do not belong to the
already covered interval [2εt⋆ , 1], then t⋆ < 120 ln(KT )

ε⋆
Λ

= 120 ln(KT )tε⋆
Λ

with tε⋆
Λ

= 1/ε⋆
Λ.

Thus, we must have that

t⋆ ≤ 120 ln(KT )
((
δw(Gε⋆

Λ
)
)1/3

t
2/3
ε⋆

Λ
+
√
σ(Gε⋆

Λ
)tε⋆

Λ

)
≤ min

ε∈[0,1]

{
120 ln(KT )

(
(δw(Gε))1/3T 2/3 +

√
σ(Gε)T

)
: supp(Gε) observable

}
,

where the first inequality is due to the fact that δw(Gε⋆
Λ
) ≥ tε⋆

Λ
or σ(Gε⋆

Λ
) ≥ tε⋆

Λ
or both are

true because either p(i, i) = ε⋆
Λ for some i such that i ∈ N in

supp(Gε⋆
Λ

)(i) or one of the minimum
outgoing edge probabilities for a vertex in some minimum weight weakly dominating set is
equal to ε⋆

Λ.
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On the other hand, we also need to upper bound the conditional expectation of Ψt⋆ . By
Lemma 11 and recalling the definition of αw from Section 5, we have that

E
[

max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K] ≤ E

[
min

ε : supp(Gε) strongly observable
18αw(Gε) ln(2K3T 2)

∣∣∣∣ K] .
and thus

2 + E
[
11(ln(3K2T 2))2 max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣ K, E]
+ E

[(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
t⋆ max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣∣ K, E
]

≤ 2 + min
ε : supp(Gε) strongly observable

{
198αw(Gε)(ln(2K3T 2))3

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)√

18t⋆αw(Gε) ln(2K3T 2)
}
.

Since 120 ln(KT ) ≤ 82 ln(3K2T 2), we can combine the above to obtain

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ min

{
T ,

3 + min
ε

{
198αw(Gε)(ln(2K3T 2))3+

(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
18t⋆αw(Gε) ln(2K3T 2) : supp(Gε) strongly observable

}
,

1 + min
ε

{
82 ln(3K2T 2)

(
(δw(Gε))1/3

T 2/3 +
√
σ(Gε)T

)
: supp(Gε) observable

}}
.

In the second case, t⋆ is the first round in which (26) holds. Therefore, we must have

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 1 + 2E [Ψt⋆ | K, E ]

and

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]

≤ 1 + E

[
t⋆−1∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣ E
]

+ 1 + E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)
∣∣∣∣∣E
]

≤ E [Ψt⋆−1 + Λt⋆ | K, E ] + 2
≤ E [Λt⋆−1 + Λt⋆ | K, E ] + 2 ,

which combined give us

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ 1 + E [min {Λt⋆−1 + Λt⋆ + 1, 2Ψt⋆} | K, E ] .
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Following the proof of the bound in the case where (26) never holds for any t ∈ [2, T ], we
can see that

E

[
T∑

t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)
]
≤ min

{
T ,

6 + 2 min
ε : supp(Gε) strongly observable

{
198αw(Gε)(ln(2K3T 2))3

+
(

12 ln(K) + 4
√

2 ln(3K2T 2)
)√

18t⋆αw(Gε) ln(2K3T 2)
}

,

4 + 164 ln(3K2T 2) min
ε : supp(Gε) observable

(
(δw(Gε))1/3

T 2/3 +
√
σ(Gε)T

)}
,

which completes the proof.

D.4 Auxiliary Lemmas for otcG

In this section, we prove some results that are useful in the above regret analysis of otcG
(Algorithm 4). Recall that S is the family of strongly observable graphs over vertices V = [K].
Lemma 11. Suppose that there exists a threshold ε such that supp(Gε) ∈ S. Then, we have
that

E

[
max

t∈[2,t⋆]
min

ε : supp((ĜUCB
t )ε)∈S

θt((ĜUCB
t )ε)

∣∣∣∣∣ K
]
≤ E

[
min

ε : supp(Gε)∈S
18αw(Gε) ln(2K3T 2)

∣∣∣∣ K]

Proof. Let us recall the definition of θt:

θt((ĜUCB
t )ε) = 2

mini minj∈N in
supp((ĜUCB

t
)ε)

(i) p(j, i)
+

∑
i∈N in

supp((ĜUCB
t

)ε)
(i)

2πt(i)
Pt(i, (ĜUCB

t )ε)
.

By definition of the weighted independence number (see Appendix E for further details), we
have that

2
mini minj∈N in

supp((ĜUCB
t

)ε)
(i) p(j, i)

≤ 2αw((ĜUCB
t )ε) .

By Lemma 17, we have that

2
∑

i∈N in
supp((ĜUCB

t
)ε)

(i)

πt(i)
Pt(i, (ĜUCB

t )ε)
≤ 16αw((ĜUCB

t )ε) ln(2K3T 2) ,

where we used that γtψt(i) ≥ 1
KT and p̂t(j, i) ≥ 1

T .
Given K, we have that p̂t(j, i) ≥ p(j, i) and thus it holds that

E
[

max
t∈[2,t⋆]

min
ε : supp((ĜUCB

t )ε)∈S
θt((ĜUCB

t )ε)
∣∣∣∣K]

≤ E
[

max
t∈[2,t⋆]

min
ε : supp((ĜUCB

t )ε)∈S
18αw((ĜUCB

t )ε) ln(2K3T 2)
∣∣∣∣K]

≤ E
[

min
ε : supp(Gε)∈S

18αw(Gε) ln(2K3T 2)
∣∣∣∣ K] .

The following result is a variant of the bound in Alon et al. [2015, Lemma 4] with a decreasing
learning rate.
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Lemma 12. Let q1, . . . , qT be the probability vectors defined by qt(i) ∝ exp(−ηt−1
∑t−1

s=1 ℓs(i))
for a sequence of loss functions ℓ1, . . . , ℓT such that ℓt(i) ≥ 0 for all t and i. Let η0 = η1 ≥
. . . ≥ ηT . For each t, let St be a subset of [K] such that ηt−1ℓt(i) ≤ 1 for all i ∈ St. Then,
for any distribution u it holds that

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)
ηT

+
T∑

t=1
ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓt(i)2 +
∑
i̸∈St

qt(i)ℓt(i)2

 .

Proof. The proof follows from a minor adaptation of the proof of Alon et al. [2015, Lemma
4]. We start from Van der Hoeven et al. [2018, Lemma 1]:

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i)

≤ ln(K)
ηT

+
T∑

t=1

(
K∑

i=1
qt(i)ℓt(i) + 1

ηt−1
ln
(

K∑
i=1

qt(i) exp(−ηt−1ℓt(i))
))

.

(42)

Now, since ℓt(i) ≥ 0 we may use exp(x) ≤ 1 + x+ x2 for x ≤ 1 and ln(1− x) ≤ −x for all
x < 1 to show that

1
ηt−1

ln
(

K∑
i=1

qt(i) exp(−ηt−1ℓt(i))
)
≤ 1
ηt−1

ln
(

1−
K∑

i=1
qt(i)(ηt−1ℓt(i)− η2

t−1ℓt(i)2)
)

≤ −
K∑

i=1
qt(i)(ℓt(i)− ηt−1ℓt(i)2) .

Combined with equation (42), this gives us
T∑

t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)
ηT

+
T∑

t=1

K∑
i=1

ηt−1qt(i)ℓt(i)2 .

We define ℓ̄t =
∑

i∈St
qt(i)ℓt(i). Since ℓt(i) ≥ 0 we have that ηt−1(ℓt(i) − ℓ̄t) ≥ −1 by

construction. Since adding the same ℓ̄t to each ℓt(i) on the r.h.s. of equation (42) does not
influence the regret we have

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)
ηT

+
T∑

t=1

K∑
i=1

ηt−1qt(i)(ℓt(i)− ℓ̄t)2 .

To complete the proof we follow the proof of Alon et al. [2015, Lemma 4], which gives us
T∑

t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)
ηT

+
T∑

t=1
ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓt(i)2 +
∑
i̸∈St

qt(i)ℓt(i)2

 .

Lemma 13. Let ξt(i) =
∑

j∈N in
Ĝt

(i) πt(i)(p̂t(j, i)− p(j, i)). In any round t, we have that

K∑
i=1

(πt(i)− u(i))ℓ̂t(i)

=
K∑

i=1
(πt(i)− u(i))ℓ̃t(i) +

K∑
i=1

(πt(i)− u(i))ξt(i)
I{i∈Nout

Gt
(It)}∩{i∈Nout

Ĝt
(It)}ℓt(i)

Pt(i)P̂t(i)
.

Proof. Let Xt = I{i∈Nout
Gt

(It)}∩{i∈Nout
Ĝt

(It)} and denote by

ξt(i) = P̂t(i)− Pt(i) =
∑

j∈N in
Ĝt

(i)

πt(i)(p̂t(j, i)− p(j, i)) .
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We have that

ℓ̃t(i) = Xtℓt(i)
P̂t(i)

= Xtℓt(i)
Pt(i) + ξt(i)

= Xtℓt(i)(Pt(i) + ξt(i))
Pt(i)(Pt(i) + ξt(i))

− ξt(i)
Xtℓt(i)

Pt(i)(Pt(i) + ξt(i))

= Xtℓt(i)
Pt(i)

− ξt(i)
Xtℓt(i)

Pt(i)(Pt(i) + ξt(i))

= ℓ̂t(i)− ξt(i)
Xtℓt(i)
Pt(i)P̂t(i)

.

Therefore, for any distribution u we have that
K∑

i=1
(πt(i)− u(i))ℓ̂t(i) =

K∑
i=1

(πt(i)− u(i))ℓ̃t(i) +
K∑

i=1
(πt(i)− u(i))ξt(i)

Xtℓt(i)
Pt(i)P̂t(i)

,

which completes the proof.

Lemma 14. Let G̃εt
= {p̃t(j, i)I{p̃t(j,i)≥εt} : i, j ∈ V } and εt = 60 ln(KT )/t for all t ∈ [2, T ].

Then, with probability at least 1− 1/T , G̃εt is an εt-good approximation of G for all t ∈ [2, T ].

Proof. Let E+
t = {(i, j) ∈ V 2 : p(i, j) ≥ 2εt} and E−

t = {(i, j) ∈ V 2 : p(i, j) < εt/2} be the
two sets of edges as defined in the proof of Theorem 2. We let Et

(i,j) = {p̃t(i, j) ≥ εt} and
F t

(i,j) = {|p̃t(i, j)− p(i, j)| ≤ p(i, j)/2}, for all (i, j) ∈ V 2 and all t ∈ [2, T ], be the events as
similarly denoted in that same proof. We consequently define the events E , F , and C as

E =
T⋂

t=1

⋂
(i,j)∈E+

t

Et
(i,j) , F =

T⋂
t=1

⋂
(i,j)/∈E−

t

F t
(i,j) , C =

T⋂
t=1

⋂
(i,j)∈E−

t

Et

(i,j) .

The following steps hold for all K ≥ 2 and all T ≥ 2.
We begin by observing that P (p̃t(i, j) < εt) ≤ exp(−tεt/4) ≤ 1/(4K2T 2) for all t ∈ [2, T ]
and all (i, j) ∈ E+

t , by a simple adaptation of the same argument in the proof of Theorem 2.
Then,

P (E) ≥ 1−
T∑

t=1

|E+
t |

4K2T 2 ≥ 1− 1
4T ,

which follows from the fact that |E+
t | ≤ K2 for all t ∈ [2, T ]. We can similarly argue that

P (|p̃t(i, j)− p(i, j)| > p(i, j)/2) ≤ 2 exp(−tεt/24) ≤ 1/(2K2T 2) for all t ∈ [2, T ] and all
(i, j) /∈ E−

t ; this implies that P (F) ≥ 1− 1/(2T ). Finally, we observe that P (p̃t(i, j) ≥ εt) ≤
exp(−tεt/6) ≤ 1/(4K2T 2) for all t ∈ [2, T ] and all (i, j) ∈ E−

t , hence P (C) ≥ 1 − 1/(4T ).
The statement follows by union bound over the complements of E , F , and C.

E Weighted Independence Number

To improve the regret bounds in the case of strongly observable support, we need to
introduce another graph-theoretic quantity: the weighted independence number αw(G,w),
where w ∈ RK

+ is a vector of positive weights assigned to the vertices of our strongly observable
graph G = (V,E) with V = [K]. Let w(U) =

∑
i∈U wi denote the weight of a subset of

vertices U ⊆ V . The weighted independence number is defined as

αw(G,w) = max
S∈I(G)

w(S) ,

that is, the weight of a maximum weight independent set. This set is chosen among all sets
in the family I(G) of independent sets of G. It can be equivalently defined by the following
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integer linear program:

αw(G,w) = max
x

K∑
i=1

wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E, i ̸= j
xi ∈ {0, 1} ∀i ∈ V

We plan to define w according to our needs in what follows.

E.1 Undirected Graph

Let G be a stochastic feedback graph with edge probabilities p(i, j) and such that its support
supp(G) = G = (V,E) is undirected and strongly observable. Moreover, let N(i) be the
neighborhood in G of any vertex i ∈ V (excluding i) and let C(i) = N(i) ∪ {i} be the
extended neighborhood of i including vertex i itself.
We can use the edge probabilities from G to define a weight for each vertex i as

wG(i) = wi =
(

1
|C(i)|

∑
j∈C(i)

p(j, i)
)−1

.

This vertex weight is equal to the inverse of the arithmetic mean of the incident edge
probabilities (including its self-loop). Note that the two probabilities p(i, j) and p(j, i) in
the two directions of any undirected edge (i, j) ∈ E need not be equal.
This definition allows us to upper bound the second-order term in the regret for vertices
with self-loop (as similarly done in the analysis of Exp3.G [Alon et al., 2015]) in terms of
the weighted independence number since we can reduce it to bounding∑

i∈V

1∑
j∈C(i) p(j, i)

=
∑
i∈V

wi

|C(i)| .

We thus require a weighted version of Turán’s theorem, which is formulated in the lemma
below. This result has already been proved [Sakai et al., 2003], but we nevertheless provide
a proof for completeness.
Lemma 15. Let G = (V,E) be an undirected graph with positive vertex weights wi. Then,∑

i∈V

wi

|C(i)| ≤ αw(G,w) .

Proof. Consider the following algorithm: as long as the graph is not empty, repeatedly choose
a vertex j that minimizes |C(j)|/wj among all remaining vertices and remove it from the
graph along with its neighborhood. Let i1, . . . , is be the sequence of s vertices picked by this
algorithm, which form an independent set by construction. Additionally, let G1, . . . , Gs+1 be
the sequence of graphs generated by this iterative procedure, where G1 = G is the starting
graph and Gs+1 is the empty graph. We also let Cr(i) denote the extended neighborhood
over Gr of any i ∈ V (Gr). Define

Q(H) =
∑

i∈V (H)

wi

|C(i)| ∀H ⊆ G ,

as the quantity we are trying to bound for G and consider it over the graphs in the sequence
generated by the procedure. It is strictly decreasing until reaching Q(Gs+1) = 0. In
particular, at any step of the procedure it decreases by

Q(Gr)−Q(Gr+1) =
∑

j∈Cr(ir)

wj

|C(j)| ≤
∑

j∈Cr(ir)

wir

|C(ir)| = |Cr(ir)|
|C(ir)| wir

≤ wir
,

where the first inequality is due to the optimality of |C(ir)|/wir
at step r. We can use this

inequality to bound Q(G) by

Q(G) =
s∑

r=1
(Q(Gr)−Q(Gr+1)) ≤

s∑
r=1

wir ≤ max
S∈I(G)

w(S) = αw(G,w) .
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E.2 Directed Graph

Compared to the result in the previous section, we are more generally interested in directed
graphs. We consider the case of directed, strongly observable support supp(G) = G = (V,E)
with V = [K] and (i, i) ∈ E for all i ∈ V . In the directed case, we distinguish the in-
neighborhood N in(i) over G of a vertex i ∈ V from its out-neighborhood Nout(i). We use
the convention that vertices with self-loops are not included in their neighborhoods, while
all vertices are always included in their extended in-neighborhood C in(i) = N in(i) ∪ {i}
and out-neighborhood Cout(i) = Nout(i) ∪ {i}, respectively. We make this distinction to
comply as much as possible with previous works providing analogous results [Alon et al.,
2017], where the neighborhoods N in(i) and Nout(i) did not include i even in the presence of
the self-loop (i, i) ∈ E.
The weighted independence number is defined in the same way as per undirected graphs,
ignoring the direction of edges for the independence condition. Here we define in two slightly
different manners the vertex weights: let

win
G (i) = win

i =
(

1
|C in(i)|

∑
j∈Cin(i)

p(j, i)
)−1

(43)

be the inverse of the arithmetic mean of the incoming edge probabilities for i, and

wout
G (i) = wout

i =
(

1
|Cout(i)|

∑
j∈Cout(i)

p(i, j)
)−1

(44)

the analogous over outgoing edges. These two different assignments of vertex weights induce
two weighted independence numbers αw(G,win) and αw(G,wout), respectively.
Then, we prove a lemma similar to [Alon et al., 2017, Lemma 13] in the weighted case. Note,
however, that in this case the lemma is tightly related to the specific definitions of vertex
weights we are adopting.
Lemma 16. Let G = (V,E) be a directed graph with edge probabilities p(i, j) ∈ [0, 1], and
positive vertex weight vectors win and wout as in Equations (43) and (44), respectively. Then,∑

i∈V

win
i

|C in(i)| ≤ 3(αw(G,win) + αw(G,wout)) ln(K + 1) .

Proof. We prove the statement by induction as in the proof of Alon et al. [2017, Lemma 13].
Consider the following algorithm: as long as the graph is not empty, repeatedly choose the
vertex j that maximizes |C in(j)|/win

j among all remaining vertices and remove it from the
graph along with its incident edges. Let i1, . . . , iK be the vertices in the order the algorithm
picks them. Additionally, let G1, . . . , GK+1 be the sequence of graphs generated by this
iterative procedure, where G1 = G is the original graph and GK+1 is the empty graph. We
also let C in

r (i) denote the extended in-neighborhood over Gr of any i ∈ V (Gr). Similarly to
the proof of Lemma 15, define

Q(H) =
∑

i∈V (H)

win
i

|C in(i)| ∀H ⊆ G

as the quantity we want to bound for G, where the size of the in-neighborhood is always
computed with respect to the starting graph G.
Define a new instance of the problem with graph G′ = (V,E′) as the undirected version of
G, where the edge probabilities are defined as p′(i, j) = 1

2p(i, j) + 1
2p(j, i) for all i, j ∈ V

such that either (i, j) ∈ E or (j, i) ∈ E. This new graph has C(i) = C in(i) ∪ Cout(i). As a
consequence, we can derive new vertex weights w′

i =
( 1

|C(i)|
∑

j∈C(i) p
′(j, i)

)−1. This instance
is such that ∑

i∈V

|C(i)|
w′

i

=
∑
i∈V

∑
j∈C(i)

p′(j, i) =
∑
i∈V

∑
j∈Cin(i)

p(j, i) =
∑
i∈V

|C in(i)|
win

i

. (45)
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Furthermore, notice that the newly defined vertex weights satisfy

w′
i = |C(i)|∑

j∈C(i) p
′(j, i) ≤

|C in(i)|∑
j∈C(i) p

′(j, i) + |Cout(i)|∑
j∈C(i) p

′(j, i)

≤ 2|C in(i)|∑
j∈Cin(i) p(j, i)

+ 2|Cout(i)|∑
j∈Cout(i) p(i, j)

= 2(win
i + wout

i ) . (46)

Consider now the first vertex i1 chosen by the procedure we introduced before. The value it
maximizes is lower bounded by

max
i∈V

|C in(i)|
win

i

≥ 1
K

∑
i∈V

|C in(i)|
win

i

= 1
K

∑
i∈V

|C(i)|
w′

i

by Equation (45)

≥ K∑
i∈V

w′
i

|C(i)|

by Jensen’s inequality

≥ K/2∑
i∈V

win
i

|C(i)| +
∑

i∈V
wout

i

|C(i)|

by Equation (46)

≥ K/2
αw(G,win) + αw(G,wout) . by Lemma 15 over G′ (47)

We can use this fact to show an upper bound for the sum Q(G) as

Q(G) =
∑
i∈V

win
i

|C in(i)| =
win

i1

|C in(i1)| +
K∑

r=2

win
ir

|C in(ir)|

≤ 2(αw(G,win) + αw(G,wout))
K

+Q(G2) . by Equation (47)

As a last step, recursively repeat the same reasoning on Q(G2) and iterate it until reaching
GK to conclude that

Q(G) ≤ 2
K∑

r=1

αw(Gr, w
in) + αw(Gr, w

out)
K − r + 1 ≤ 3(αw(G,win) + αw(G,wout)) ln(K + 1) .

We finally have all the tools required for demonstrating the next lemma. It essentially
corresponds to Alon et al. [2015, Lemma 5] with the addition of edge probabilities. The
main difference is that we show an upper bound in terms of two distinct independence
numbers. They are both computed over the graph G with vertex weights defined in terms
of the worst-case edge probabilities. To be specific, we have a first weight assignment w−

to vertices such that w−
G (i) = w−

i =
(
minj∈Cin(i) p(j, i)

)−1 is the reciprocal of the minimum
incoming edge probability for vertex i. The second assignment w+, instead, assigns weight
w+

G (i) = w+
i =

(
minj∈Cout(i) p(i, j)

)−1 equal to the inverse of the minimum outgoing edge
probability for i.
Lemma 17. Let G = (V,E) be a directed graph with |V | = K ≥ 2 and edge probabilities
p(i, j), and such that (i, i) ∈ E for all i ∈ V . Let zi ∈ R+ be a positive weight assigned to
each i ∈ V . Assume that

∑
i∈V zi ≤ 1 and that zi ≥ β for all i ∈ V , given some constant

β ∈ (0, 1
2 ]. Then,∑

i∈V

zi∑
j∈Cin(i) zjp(j, i)

≤ 6(αw(G,w−) + αw(G,w+)) ln
(

2K2

βρ

)
,

where ρ = mini∈V

∑
j∈Cin(i) p(j, i) > 0.
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Proof. The structure of this proof is similar to that of Alon et al. [2015, Lemma 5]. Define
a discretization of z1, . . . , zK such that (mi − 1)/M ≤ zi ≤ mi/M for positive integers
m1, . . . ,mK and M =

⌈
2K
βρ

⌉
. The discretized values are such that, for all i ∈ V ,∑

j∈Cin(i)

mjp(j, i) ≥M
∑

j∈Cin(i)

zjp(j, i) ≥
2K
βρ

β
∑

j∈Cin(i)

p(j, i) ≥ 2K ≥ 2|C in(i)| , (48)

where the first inequality holds because zj ≤ mj/M , the second follows by definition of M
and by the assumption on zj , whereas the third is due to the definition of ρ. Then, the sum
of interest becomes∑

i∈V

zi∑
j∈Cin(i) zjp(j, i)

≤
∑
i∈V

mi

M
∑

j∈Cin(i) zjp(j, i)
since zi ≤ mi/M

≤
∑
i∈V

mi∑
j∈Cin(i) mjp(j, i)− |C in(i)| since Mzj ≥ mj − 1

≤ 2
∑
i∈V

mi∑
j∈Cin(i) mjp(j, i)

by Equation (48). (49)

Now build a new directed graph G′ = (V ′, E′) derived (as in the proof of Alon et al. [2015,
Lemma 5]) from graph G by replacing each node i ∈ V with a clique Ki of size mi and all its
edges having probability p(i, i). Additionally add an edge from any i′ ∈ Ki to any j′ ∈ Kj

having edge probability p(i, j) if and only if (i, j) ∈ E. As a consequence, the right-hand
side of Equation (49) is equal to

2
∑
i∈V ′

1∑
j∈Cin

G′ (i) p(j, i)
.

Observe that the independent sets in G are preserved in G′: any independent set S = {i : i ∈
V ′} ∈ I(G′) in G′ has a corresponding one {i : i′ ∈ S, i′ ∈ Ki} in G with same cardinality
and weight, assuming that the weight of i′ ∈ Ki in G′ is equal to the weight of i ∈ V
according to the weight assignment in G. We can reduce this latter sum to the same form as
in Lemma 16 by assigning vertex weights

win
i′ =

( ∑
j∈Cin(i)

mj∑
k∈Cin(i) mk

p(j, i)
)−1

, wout
i′ =

( ∑
j∈Cout(i)

mj∑
k∈Cout(i) mk

p(i, j)
)−1

,

to each vertex i′ ∈ Ki, for all i ∈ V . Indeed, the previous sum becomes∑
i∈V ′

1∑
j∈Cin

G′ (i) p(j, i)
=
∑
i∈V ′

win
i

|C in
G′(i)|

≤ 3(αw(G′, win) + αw(G′, wout)) ln(|V ′|+ 1) by Lemma 16
≤ 3(αw(G,w−) + αw(G,w+)) ln(|V ′|+ 1) ,

where the last inequality follows from the fact that win
i′ ≤ w−

i and wout
i′ ≤ w+

i for all i ∈ V
and all i′ ∈ Ki.
We conclude the proof by observing that this newly constructed graph also has

1 + |V ′| = 1 +
∑
i∈V

mi ≤ 1 +
∑
i∈V

(Mzi + 1) ≤ K +M + 1 ≤ 2K
(

1 + 1
βρ

)
≤ 2K2

βρ

vertices, where the final inequality holds because βρ ≤ K/2 by definition, and we used the
fact that K ≥ 2.
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