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Abstract
Due to the explosive growth in data sources and label categories,

multi-view multi-label learning has garnered widespread attention.

However, multi-view multi-label data often exhibits incomplete

features and a huge number of unlabeled instances, due to the

technical limitations and high cost of manual labeling in practice.

Learning for such simultaneous missing of view features and labels

is crucial but rarely studied, particularly when the labeled samples

are limited. In this paper, we tackle this problem by proposing a

novel Deep Incomplete Multi-View Semi-Supervised Multi-Label

Learning method (DIMvSML). Specifically, to improve high-level

representations of missing features, deep graph network is firstly

employed to recover the feature information with structural simi-

larity relations. Meanwhile, we design the structure-specific deep

feature extractors to obtain discriminative information and preserve

the cross-view consistency for the recovered data with instance-

level contrastive loss. Furthermore, to eliminate the bias of the

estimate of the risk that the semi-supervised multi-label methods

minimise, we design a safe estimate framework with an unbiased

loss and improve its empirical performance by using pseudo-labels

of unlabeled data. Besides, we provide both the theoretical proof

of better estimate variance and the intuitive explanation of our

debiased framework. Finally, extensive experimental results on pub-

lic datasets validate the superiority of DIMvSML compared with

state-of-the-art methods.

CCS Concepts
•Computingmethodologies→Neural networks; Semi-supervised
learning settings.
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1 Introduction
Multi-label learning has attracted increasing attention due to its

widespread application in areas such as text classification [3, 34],

image annotation [2, 31], and computer vision tasks [7, 10]. Fur-

thermore, with the exponential increase of data sources and fea-

ture extraction methods, it is no longer adequate to describe and

analyze instances from a singular perspective [8]. In real-world

applications, objects are usually processed in multiple views, like

face information captured by diverse sensors and image data stored

using both video and audio techniques. Doubtlessly, the utilization

of multi-view data enables comprehensive and accurate descrip-

tion of observed instances [9, 45]. Besides, multi-view data offers

abundant data presentation modes, which can be combined with

multi-label to represent the rich information content and semantic

structure of complex data [39, 44]. Therefore, this paper focuses on

the multi-view multi-label classification task, namely MVMLC.

For MVMLC, many methods have been proposed, such as the

manifold regularization MVMLC [25], potential semantic-aware

LSA-MML [41] and label-embedding based method [46]. However,

these traditional methods assume that the given data has complete

views and labels, which is violated in practice. On the one hand,

the heterogeneous data collected from multiple sources may con-

tain missing views due to the quality of storage equipment and

the difficulty of storage methods [4]. For instance, in multi-view

multimedia annotation tasks, video, audio and subtitle serve as

distinct views. It is common to face situations where not all multi-

media content encompasses all three views [37]. On the other hand,

manual tagging of all labels being both challenging and expensive,

https://doi.org/10.1145/3664647.3681414
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Figure 1: The example of incomplete multi-view semi-
supervised multi-label data.

label information in real datasets frequently exhibits varying de-

grees of incompleteness [23]. Clearly, the absence of views and

labels detrimentally impacts MvMLC. In recent years, the chal-

lenges posed by the two types of missing have received widespread

attention and some works which can simultaneously handle both

issues have been proposed. iMvWL [33] combined two weighted

matrix factorization models into a unified framework to extract

the consensus representation and derive a subspace from missing

views with multiple labels. NAIML [17] exploited both consensus

across multiple views and the global and local structures among

multiple labels from rank constraint. By incorporating missing in-

formation into the weighted fusion and classification module, the

proposed DD-IMvMLC [37] could effectively explore available data

and label information to obtain the discriminative feature extractor

and classifier. DICNet [21] emphasized the utilization of stacked

auto-encoders to exploit the high-level semantic representations of

samples. Besides, it introduced an incomplete instance-level con-

trastive learning to capture consistent representations. Wen et al.

[22] proposed LMVCAT, which employed two transformer-style

modules for cross-view feature aggregation and multi-label classifi-

cation and utilized an adaptively weighted view fusion module to

obtain view-consistent embedding features.

These MVMLCmethods under incomplete data only focus on the

partial absence of multiple labels and each instance has a subset of

labels that can be utilized to infer the missing ones. However, multi-

view data not only suffers frommissing features but also encounters

unlabeled instances in reality. For example, the features and labels

of tumor patient data are obtained from various examinations and

tests [27]. Certain patients may face limitations in undergoing MRI

or PET scans, or in providing blood samples for laboratory testing,

thereby leading to corresponding views being unavailable. Besides,

factors such as research focus, resource constraint, and annotation

complexity greatly contribute to patient labels, including tumor

types, grading, treatment responses and so on, remaining unanno-

tated. In aggregate, real-world datasets often present simultaneous

problems of missing views and numerous unlabeled instances as

shown in Fig. 1. There are few methods available today that can

effectively address both issues. We are all aware that in supervised

multi-label scenarios, correlations within labels are beneficial for la-

bel recovery. However, in semi-supervised problem [24, 32], where

a sample lacks any annotations, solely considering methods for han-

dling missing from label relevance is simplistic. In fact, to address
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Figure 2: The label distribution obtained by three different
methods on Yeast.

the problem of semi-supervised multi-label under incomplete views,

we need to focus on the following three aspects: i) Since the stability

of the model will be seriously affected by the limited availability of

data, we should consider maximizing the reconstruction of missing

information. Rather than establishing losses only on observed data

[38, 47], we should enhance feature semantic from a data recovery

perspective and maintain the stability of the subsequent modules

[16]. ii) High-level representations should be explored to improve

the contribution of features to classification with limited labeled

instances. iii) Improperly incorporating unlabeled data to construct

an unsupervised loss undermines the unbiased estimation of ideal

risk from supervised losses, which makes the algorithm often lack

the support of statistical theory [35, 43]. Besides, it introduces bias

to the solution of supervised losses optimization, resulting in poten-

tial performance degradation of semi-supervised methods. In Fig. 2,

we select ten relatively balanced labels of Yeast to perform the ex-

periment of label distribution simulation and only set 20% of the test

data to be labeled. We can observe that when introducing unlabeled

data and learning with traditional biased semi-supervised losses,

the performance (marked in purple) tends to be worse than using

only supervised data (marked in green). Moreover, the harm caused

by the bias expands as the number of label categories increases,

which needs to be controlled in multi-label learning. Therefore, the

third aspect is to improve the framework of loss functions to make

semi-supervised model safe and robust.

To tackle these problems, we propose a novel deep incomplete

multi-view semi-supervised multi-label learning method named

DIMvSML. Specifically, for mitigating the negative influence of

missing views, DIMvSML employs the Graph Neural Network to

recover the missing data by capitalizing on the existing similarity

relations. Based on the auto-encoder structures, we design fea-

ture extractors and decoder networks to learn high-level semantic

and discriminative representations from all views. In addition, to

preserve the cross-view consensus, we adopt the instance-level con-

trastive loss to enhance the mutual information between different

views. An unbiased version of loss function is designed to elimi-

nate the risk of latent downgrade due to the introduction of the

unlabeled data and we prove theoretically that this framework also

has a lower estimate variance. As depicted in Fig. 2, utilizing our

unbiased loss function leads to stable performance compared to the

traditional semi-supervised loss when using unlabeled data. During

training, the pseudo-labels are assigned to explore the additional
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supervisory information contained in unlabeled data. The main

contributions of our work are summarised as follows:

• We propose the DIMvSML to solve this crucial, but rarely

studied problem. To our knowledge, this is the first GNN-

based multi-view multi-label learning framework capable of

handling both incomplete views and few labeled instances.

• DIMvSML is a unified framework designed to recover the ab-

sent views, preserve the high-level semantic representations

with cross-view consensus and provide a safe risk estimation

framework simultaneously.

• Extensive experimental results present that our DIMvSML

outperforms other compared approaches in almost all cases,

demonstrating its superiority and effectiveness.

2 Methodology
Notations and Problem Formulation. Suppose an incomplete

multi-view dataset with𝑁 instances and𝑉 views, i.e.,X = {𝑿 (𝑣) }𝑉
𝑣=1

,

where 𝑿 (𝑣) = {𝒙 (𝑣)
𝑖

}𝑁
𝑖=1

∈ R𝑁×𝑑𝑣
is the 𝑑𝑣 dimensional feature

matrix of the 𝑣-th view. Let 𝒀 ∈ {0, 1}𝑁×𝐶
represent the label ma-

trix and𝐶 is the number of categories. Besides,𝒚𝑖 ∈ {0, 1}𝐶 is a row

vector that denotes the label of the 𝑖-th instance. 𝑴 ∈ R𝑁×𝑉
is an

indicator matrix, where𝑴𝑖, 𝑗 = 1 indicates that the 𝑖-th instance has

the feature of the 𝑗-th view, otherwise 𝑴𝑖, 𝑗 = 0 means the feature

is missing and set as ‘NaN’. For convenience, we define 𝑛𝑙 and 𝑛𝑢
as the number of labeled and unlabeled instances, which satisfies

𝑛𝑙 ≪ 𝑁 and 𝑛𝑙 + 𝑛𝑢 = 𝑁 . We also denote L and U as the index

spaces for labeled and unlabeled instances, respectively.

Obviously, the missing features will affect the learning of comple-

mentary and consistency across all views and prevent subsequent

modules from using valid information. Furthermore, the scarcity

of labeled samples will seriously limit the learning of multi-label

semantics, which demands better utilization of unlabeled data to

prevent the harm caused by the bias of the semi-supervised loss. To

address these challenges, we propose a novel deep learning frame-

work named DIMvSML. The main framework of our DIMvSML is

illustrated in Fig. 3. Specifically, DIMvSML consists of three main

modules: (a) GNN-based feature completion module for recovering

the incomplete feature information; (b) Multi-view representation

learning module for capturing the high-level semantic representa-

tions and discriminative information from all views; (c) Safe semi-

supervised multi-label learning module for providing an unbiased

semi-supervised risk estimator with lower variance.

2.1 GNN-based Feature Completion Module
Since the absence of features will lead to the poor performance

of deep learning [30], data recovery is required to realize data

augmentation. Recently, GNN-based approaches have garnered

attention in data recovery owing to their capacity to extract the

geometric details embedded within data [19, 36]. Sato [28] further

presented theoretical evidence that substantiates the effectiveness

of GNNs in recovering hidden features. Therefore, we employ GNNs

to recover the missing views by leveraging the similarity relations

between the available data.

Firstly, we construct the view-specific graph 𝑺 (𝑣) ∈ R𝑁×𝑁

through 𝑘-nearest neighbors (𝑘-NN) algorithm. 𝑺 (𝑣) demonstrates

the relations between the corresponding instances of existing data

in the 𝑣-th view, where 𝑺 (𝑣)
𝑖, 𝑗

= 1 means 𝑴𝑖,𝑣𝑴 𝑗,𝑣 = 1 and 𝒙 (𝑣)
𝑗

is

the neighbor of 𝒙 (𝑣)
𝑖

. Considering the consistency across multiple

views, similarity relations between instances in existing views are

valid for the missing views. Therefore, we transfer the established

graph relations to find the available instances that are associated

with the missing ones in each view. Then the transferred 𝑘-NN

graph can be obtained by

𝑲 (𝑣) =
𝑉∑︁

𝑘=1,𝑘≠𝑣

𝑺 (𝑘 ) diag
(
𝑴:,𝑣

)
, (1)

where operator diag(·) forms a diagonal matrix, and 𝑴:,𝑣 denotes

the 𝑣-th column of the matrix 𝑴 . Secondly, we employ 𝑲 (𝑣)
as

the adjacency matrix and the related existing features as the iuput

nodes in each view-specific GNN to recover the missing data. After

the propagation of relation information over 𝑲 (𝑣)
in the first layer

of the GNN, the initially reconstructed data can be obtained by

�̂� (𝑣)
𝑖

= 𝜎
©­­«𝒃𝑣 +

∑︁
𝑲 (𝑣)
𝑖,𝑗

≥1

𝑲 (𝑣)
𝑖, 𝑗

𝝎𝑣𝒙
(𝑣)
𝑗

ª®®¬ , (2)

where 𝒃𝑣 and 𝝎𝑣 denote the bias and transformation matrix of

the 𝑣-th view, respectively. In our experiments, we set 𝜎 as the

rectified linear unit (ReLU) activation function. Finally, we combine

the reconstructed missing data with the existing data to acquire the

recovered matrices {𝑿 (𝑣) }𝑉
𝑣=1

. Moreover, in order to consolidate

the recovery performance, we minimize the rebuilding loss 𝐿
rb
only

over recovered data as follows:

𝐿
rb

=

𝑉∑︁
𝑣=1

∑︁
𝑲 (𝑣)
𝑖,𝑗

≥1




𝑿 (𝑣)
𝑖,:

− 𝒙 (𝑣)
𝑗




2
2

(1 −𝑴𝑖,𝑣) . (3)

2.2 Multi-view Representation Learning Module
Due to the small number of labeled instances in semi-supervised

learning (SSL), we need an efficient representation module to si-

multaneously explore the high-level semantic of features, unique

characteristic for each view and substantial connections between

features and labels. Therefore, we adopt the deep neural network

rather than the shallow linear model for adaptively extracting the

advanced representations. Besides, considering that different views

have their distinctive characteristics, the feature extraction network

𝐸 (𝑣) (·) and decoder network 𝐷 (𝑣) (·) should be tailored for each

view. Following [37, 40], we adopt the well-known network struc-

ture of stacked auto-encoder. These view-specific networks are

all composed of multi-layer perceptrons but with different hidden

layer dimensions. By constructing such network structure, we can

effectively capture the discriminative information inherent in each

view. Therefore, we set the structure of both the 𝐸 (𝑣) (·) and𝐷 (𝑣) (·)
as four stacked linear layers with ReLU activation functions i.e.,

{Linear, ReLU, Linear, ReLU, Linear, ReLU, Linear}. Specifically, for

the 𝑑𝑣 dimensional feature data of the 𝑣-th view, the dimensions of

the four linear layers in the encoder network are adaptively set as

0.8𝑑𝑣 , 0.8𝑑𝑣 , 1500, and 𝑑 , where 𝑑 is the corresponding dimension

of the last layer and can be adjusted according to the number of

label categories. In reverse, the dimensions of the decoder network
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Figure 3: The main framework of our proposed DIMvSML, which is composed of three modules: (a) GNN-based feature
completion module; (b) Multi-view representation learning module and (c) Safe semi-supervised learning module.

are set as 1500, 0.8𝑑𝑣 , 0.8𝑑𝑣 , 𝑑𝑣 . Through extraction of networks, we

can get the representation matrix 𝒁 (𝑣) = 𝐸 (𝑣) (𝑿 ) by minimizing

𝐿rc =
1

𝑛𝑙𝑉

𝑉∑︁
𝑣=1

[∑︁
𝑖∈L

(


𝑿 (𝑣)
𝑖,:

− 𝐷 (𝑣)
(
𝒁 (𝑣)
𝑖,:

)


2
2

/𝑑𝑣
)]

. (4)

To integrate the coded features, we obtain a common repre-

sentation matrix 𝒁 ∈ R𝑑𝑉 ×𝑁
by concatenating the view-specific

representations, , which maximizes the retention of recovered fea-

tures while minimizing complexity. For the purpose of effectively

exploring the correlations between features and labels, we employ

deep network classifier which transforms the feature space into a

probability space associated with the labels, i.e., the elements of

the output can be regarded as the probability of the instance to

the corresponding label. Therefore, we design the classifier as the

combination of two stacked linear layers and a Sigmoid activation

function, where the dimensions are set as 𝑑/2 and𝐶 . For improving

prediction accuracy, we use the cross entropy [5] to guide model

training. Suppose 𝑭 ∈ R𝑁×𝐶
is a prediction matrix generated by

classifier, we employ the following loss for labeled instances:

𝐿
bce

= − 1

𝑛𝑙𝐶

∑︁
𝑖∈L

𝐶∑︁
𝑗=1

(
𝑌𝑖 𝑗 log

(
𝐹𝑖 𝑗

)
+
(
1 − 𝑌𝑖 𝑗

)
log

(
1 − 𝐹𝑖 𝑗

) )
. (5)

2.3 Safe Semi-supervised Learning Module
To prevent the introduction of unlabeled data from causing perfor-

mance degradation, we provide a safe semi-supervised loss function

framework in this section. Assume that the shared parameters of

the whole network is Θ and the ultimate objective of our training

framework is to minimise a ideal risk R over a data distribution

𝑝 (𝑥,𝑦). Since the distribution 𝑝 (𝑥,𝑦) is unknowable, we generally
minimise a empirical risk

ˆR(Θ), which acts as a surrogate for R and

is computed on a sample of 𝑁 i.i.d points drawn from 𝑝 (𝑥,𝑦). Con-
sidering supervised losses from each labeled instance, we suppose

𝐿rc = 1

𝑛𝑙

∑
𝑖∈L 𝐺 (Θ;𝑥𝑖 ) and 𝐿

bce
= 1

𝑛𝑙

∑
𝑖∈L 𝑇 (Θ;𝑥𝑖 ;𝑦𝑖 ). Besides,

we let loss 𝐿 (Θ;𝑥𝑖 ;𝑦𝑖 ) = 𝐺 (Θ;𝑥𝑖 ) +𝜆1𝑇 (Θ;𝑥𝑖 ;𝑦𝑖 ). Then the super-

vised risk to minimise is

ˆR𝐶𝐶 (Θ) =
1

𝑛𝑙

∑︁
𝑖∈L

𝐿 (Θ;𝑥𝑖 ;𝑦𝑖 ) . (6)

This traditional supervised risk estimate is unbiased and converges

wisely to R(Θ). However, a notable limitation of this framework

under semi-supervised problem is that a considerable amount of

unlabeled data is not utilized. Therefore, we employ the instance-

level contrastive loss [20] on the unlabeled data to maximize the

mutual information between the representations of different views.

To calculate the mutual information, we use a Softmax activation

function 𝜎𝑠 at the last layer of the encoder and then we obtain

that �̃� (𝑣)
𝑖

= 𝜎𝑠 (𝒛 (𝑣)𝑖
), which is treated as a distribution probability

vector [14]. In other words, �̃� (𝑣) and �̃� (𝑣
∗ ) (1 ≤ 𝑣 < 𝑣∗ ≤ 𝑉 ) can be

seen as the distribution of two discrete cluster assignment variables

over 𝑑 classes. Therefore, we can compute the joint probability

distribution as below:

𝑃 (𝑣,𝑣∗ ) =
1

𝑛𝑢

∑︁
𝑖∈U

(
�̃�
(𝑣∗ )
𝑖

)𝑇
�̃�
(𝑣)
𝑖

. (7)

Then the mutual information between the 𝑣-th and 𝑣∗-th view can

be calculated through

ℓ𝑣,𝑣∗ = −
𝑚∑︁
𝑡=1

𝑚∑︁
𝑡 ′=1

P(𝑣,𝑣
∗ )

𝑡,𝑡 ′ ln

©­­«
P(𝑣,𝑣

∗ )
𝑡,𝑡 ′(

P(𝑣)𝑡

)𝛼+1 (
P(𝑣

∗ )
𝑡 ′

)𝛼+1 ª®®¬ , (8)

where 𝑷 (𝑣)
and 𝑷 (𝑣∗ )

are the marginal probability distribution of

the 𝑣-th and 𝑣∗-th view. In our experiments, we simply fix the

balanced parameter 𝛼 to 9. The loss 𝐿𝑖𝑐𝑙
−
under unlabeled data

can be obtained by enumerating the mutual information between
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different views, i.e.,

𝐿
icl

− =
1

𝑉

∑︁
1≤𝑣<𝑣∗≤𝑉

ℓ𝑣,𝑣∗ . (9)

To facilitate subsequent analysis, we turn 𝐿
icl

−
into the form 𝐿

icl

− =
1

𝑛𝑢

∑
𝑖∈U 𝐻 (Θ;𝑥𝑖 ). The concrete form of the three instance-level

losses 𝐺 (Θ;𝑥𝑖 ), 𝑇 (Θ;𝑥𝑖 ;𝑦𝑖 ) and 𝐻 (Θ;𝑥𝑖 ) is easily acquired and

will be listed in Appendix. After introducing unlabeled data , we

aim to minimise the SSL risk :

ˆR𝑆𝑆𝐿 (Θ) =
1

𝑛𝑙

∑︁
𝑖∈L

𝐿 (Θ;𝑥𝑖 ;𝑦𝑖 ) +
𝜆2

𝑛𝑢

∑︁
𝑖∈U

𝐻 (Θ;𝑥𝑖 ) . (10)

Since unlabeled data lacks the necessary labeled guidance for clas-

sification, introducing it often carries the risk of potential per-

formance degradation, especially when the data distribution as-

sumption is not satisfied [18]. Even though the learning methods

presented in the Eq. (10) can handle some basic SSL problems, the

SSL risk estimate is biased or even asymptotic, which not only

hinders the use of statistical learning theory, but also damages the

actual effect of the model [26]. Moreover, the biased harm becomes

prominent when the number of label categories increases. Hence,

in multi-label classification, we should compensate for this bias

in the loss function. Inspired by Hugo et al. [29], we obtain the

following unbiased version of the SSL estimator:

ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) = 1

𝑛𝑙

∑︁
𝑖∈L

𝐿 (Θ;𝑥𝑖 ; 𝑦𝑖 ) +
𝜆2

𝑛𝑢

∑︁
𝑖∈U

𝐻 (Θ;𝑥𝑖 ) −
𝜆2

𝑛𝑙

∑︁
𝑖∈L

𝐻 (Θ;𝑥𝑖 ) . (11)

This framework uses labelled data to annul the bias, which do not

rely on data distribution assumption. In addition to being unbiased,

this framework also has favorable estimate variance. To measure

the variance of the risk estimate in the Eq.(11), we require informa-

tion regarding instance tagging. Therefore, we introduce a binary

random variable 𝑟 ∼ B(𝜋) that states whether or not a data point
is labelled. 𝑟𝑖 = 1 denotes the 𝑖-th instance is labeled and 𝑟𝑖 = 0 de-

notes missing. 𝜋 ∈ (0, 1) is the probability of being labelled. Under

the assumption that the missingness of a label is independent of its

feature and value, we can obtain the following theorem:

Theorem 1. When 𝜆1 is fixed, the function 𝜆2 ↦→ V
(
ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) | 𝑟

)
reaches its minimum for:

𝜆2
∗ =

𝑛𝑢

𝑛

(
Cov(𝐺 (Θ;𝑥,𝑦), 𝐻 (Θ;𝑥))

V(𝐻 (Θ;𝑥)) + Cov (𝜆1𝑇 (Θ;𝑥,𝑦), 𝐻 (Θ;𝑥))
V(𝐻 (Θ;𝑥))

)
and at 𝜆2∗:

V
(
ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) | 𝑟

)���
𝜆2

∗ =

(
1 − 𝑛𝑢

𝑛
𝜌2𝐿,𝐻

)
V
(
ˆR𝐶𝐶 (Θ) | 𝑟

)
≤ V

(
ˆR𝐶𝐶 (Θ) | 𝑟

)
,

where 𝜌𝐿,𝐻 = Corr(𝐿(Θ;𝑥,𝑦), 𝐻 (Θ;𝑥)).

A detailed proof of this theorem is presented in Appendix. From

the theorem 1, we can know that the variance of the unbiased esti-

mate
ˆR𝐷𝑒𝑆𝑆𝐿 (𝜃 ) is less than that of

ˆR𝐶𝐶 (Θ) using only supervised

data when 𝜆1 and 𝜆2 meet certain conditions. This theorem also

guides us to simultaneously adjust 𝜆1 and 𝜆2 to achieve a stable

risk estimation effect in practice. When our estimate is unbiased

and the variance is smaller, we can theoretically ensure that our

semi-supervised module is safe when introducing the unlabeled

data and no worse than using only supervised data. To validate

the correctness of our unbiased framework analysis, we train our

DIMvSML on Yeast and split the test dataset into 20% labeled and

80% unlabeled data to calculate the
ˆR𝑆𝑆𝐿 (Θ) and ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) risks

that we compared to the oracle risk estimate using all the test set.

For variance test experiment, we split 50 times the test set to esti-

mate the variance of the risk estimator. Besides, we compute 𝜆2
∗

using the entire test set. As shown in Fig. 4, the result illustrates that

ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) is unbiased for any value of 𝜆2 and its variance can be

optimised by adjusting 𝜆2 when 𝜆1 is fixed. Besides, it can be seen

that V( ˆR𝐷𝑒𝑆𝑆𝐿 (Θ)) is less than V( ˆR𝑆𝑆𝐿 (Θ)) in most cases and the

theoretical value of 𝜆2
∗
is close to the minimum point calculated

from the actual sampling.
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Figure 4: Intuitive explanation of our theoretical analysis.
(Left) Risk estimate value for ˆR𝑆𝑆𝐿 (Θ) and ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) com-
pared to the true value of the risk. (Right) The influence of
𝜆2 on the raios of V( ˆR𝐷𝑆𝑆𝐿 (Θ))V( ˆR𝑆𝑆𝐿 (Θ)) when 𝜆1 = 1.

Due to the capability to supply new labeled data for training,

pseudo-label methods have gained significant prominence in deep

semi-supervised classification tasks [15]. Therefore, we assign pseudo-

labels to exploit additional supervisory information and improve

model performance. Since the classification confidence exhibited in

the early stage of classifier is low, we choose the output of classifier

as labels for unlabeled instances at half of the total training epoch.

Then all instances are incorporated into training process.

2.4 Training Strategy
The training strategy employed in DIMvSML contains two phases:

pre-training and alternative optimization. In the pre-training phase,

we only use the rebuilding loss 𝐿
rb
to simply train the view-specific

GNNs. During the alternate optimization phase, the three proposed

modules mutually complement each other, resulting in simultane-

ous enhancement of classification performance. Denote the loss

𝐿
icl

+ = 1

𝑛𝑙

∑
𝑖∈L 𝐻 (Θ;𝑥𝑖 ), the overall loss of our DIMvSML in

alternative optimization phase be formulated as

𝐿 = 𝐿rc + 𝜆1𝐿bce + 𝜆2 (𝐿icl− − 𝐿
icl

+), (12)

where 𝜆1 and 𝜆2 are penalty coefficients. The training process of

our DIMvSML is summarized in Appendix.

3 Experiments
3.1 Experimental Setup
Datasets. In our experiments, six public multi-view multi-label

datasets are selected to validate the proposed method, i.e., Yeast
[12], Corel 5k [6], VOC 2007 [7], Esp Game [1], IAPR TC-12



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Quanjiang Li and Tingjin Luo et al.

Table 1: Ranking Loss, ACC, AP and AUC of different methods on six public datasets with LER fixed to 20% and PER fixed to
50%. The best result on each row is bolded and the second-best result is underlined.

Dataset Metric TM3L iMVWL NAIML DD-IMvMLC DICNET LMVCAT DIMvSML

Ranking Loss↓ 25.21±0.55 21.86±0.68 23.67±0.80 25.63±4.89 22.52±0.49 24.54±0.78 20.04±0.64
ACC ↑ 69.53±0.31 72.13±0.40 75.53±0.34 71.37±2.16 70.46±1.02 73.51±0.73 78.34±0.72

Yeast AP↑ 66.73±0.57 69.92±0.31 69.26±0.73 67.72±3.75 69.32±0.51 67.57±0.99 72.48±0.41
AUC↑ 55.42±1.19 49.99±0.76 59.09±1.19 52.42±2.06 54.30±1.06 60.41±1.45 62.47±1.58

Ranking Loss↓ 30.39±0.32 22.62±0.77 22.59±0.42 16.93±0.44 16.40±0.35 17.33±0.79 14.42±0.90
ACC ↑ 98.65±0.02 97.46±0.09 98.63±0.03 98.68±0.00 98.69±0.01 98.69±0.01 98.70±0.01

Corel 5k AP↑ 22.53±0.75 14.74±1.96 27.61±0.64 26.17±0.45 28.54±0.74 26.97±0.87 29.90±1.79
AUC↑ 58.53±1.31 50.18±0.74 61.67±0.63 54.22±0.83 55.80±1.07 56.62±1.70 66.38±2.83

Ranking Loss↓ 29.05±0.41 32.54±1.24 29.36±1.72 29.76±2.36 24.67±0.41 20.57±1.38 17.87±0.65
ACC ↑ 92.29±0.04 87.83±0.25 88.37±2.45 92.48±0.04 92.68±0.05 91.22±0.55 93.41±0.09

VOC 2007 AP↑ 44.44±0.48 41.02±0.71 41.84±1.00 43.28±1.06 46.45±0.45 51.21±1.32 56.05±0.57
AUC↑ 59.60±0.20 50.08±0.14 49.99±1.33 52.33±1.01 58.36±0.84 73.45±1.40 76.30±1.42

Ranking Loss↓ 31.76±0.29 25.28±0.61 24.13±0.33 21.75±1.61 19.98±0.25 19.45±0.26 18.26±0.32
ACC ↑ 98.15±0.02 96.90±0.09 98.25±0.00 98.24±0.00 98.24±0.01 98.24±0.01 98.26±0.01

Esp Game AP↑ 18.02±0.17 15.76±2.13 25.03±0.26 21.56±1.35 25.00±0.35 26.04±0.28 26.17±0.56
AUC↑ 55.82±0.45 49.92±0.18 58.94±0.49 52.69±1.85 53.98±0.18 62.00±0.89 65.10±0.58

Ranking Loss↓ 25.40±0.19 23.62±0.80 24.63±0.57 19.72±0.99 17.16±0.23 16.50±0.42 15.21±1.69
ACC ↑ 97.90±0.02 96.61±0.06 97.04±1.22 98.03±0.01 98.04±0.01 98.02±0.01 98.06±0.01

IAPR TC-12 AP↑ 22.53±0.19 16.50±1.23 19.88±0.23 22.26±0.63 25.18±0.16 27.11±0.57 27.90±2.35
AUC↑ 59.18±0.28 49.93±0.38 50.25±0.45 55.48±1.14 59.20±0.16 65.13±0.94 69.04±3.64

Ranking Loss↓ 24.14±0.24 19.95±0.29 19.89±2.95 17.12±1.10 15.30±0.34 14.09±0.77 13.83±0.25
ACC ↑ 86.90±0.12 83.87±0.05 84.35±0.98 87.69±0.03 87.58±0.07 87.61±0.64 88.78±0.17

MIR FLICKR AP↑ 47.55±0.44 44.41±0.43 45.75±1.37 50.71±1.69 54.29±0.55 55.46±0.09 57.56±0.45
AUC↑ 58.30±0.28 50.13±0.30 49.43±0.90 60.94±2.92 63.19±0.43 72.38±1.14 74.36±0.30

[11], MIR FLICKR [13]. For the first dateset, we pick Genetic

Expression and Phylogenetic Profile as two views; for the other

five datasets, we choose six types of features as six views, i.e., GIST,

HSV, DenseHue, DenseSift, RGB, and LAB.

Comparison Methods. To validate the effectiveness of DIMvSML,

we compare it with six state-of-the-art approaches, which can be

categorized into two groups: traditional methods and deep meth-

ods. Traditional methods include: TM3L [42], iMvWL [33], NAIML

[17], while deep methods include DD-IMvMLC [37], DICNet [21],

LMVCAT [22]. Five of them are introduced in the preliminaries

and TM3L is a multi-view multi-label classification method, which

can handle partial multi-label data. Noting that except for TM3L,

the other five methods can handle both feature and label miss-

ing simultaneously. Therefore, the missing views are populated by

their average instance calculated from the corresponding available

instances of the same view for TM3L in our experiment. For all

comparison methods, we will prioritize the parameter settings rec-

ommended in the original code implementations or specified in

their respective papers.

Data Preparation. Each dataset can be divided into training, vali-

dation and test sets in the ratio of 7:1:2. To simulate the partial view

setting, we randomly remove some views of samples from each set.

Concretely, according to the pre-set partial example ratio (PER),

PER% instances are randomly selected as incomplete instances,

which randomly missing 1 ∼ 𝑉 − 1 views (at least one view per

instance is available to keep the total number of samples constant).

For the SSL situation, according to the pre-set labeled example ratio

(LER), we randomly select LER% instances as labeled instances in

the training dataset.

Implementation Details. The 𝑘-NN graphs are constructed based

on the Euclidean distance metric, where the neighbor number 𝑘 is

fixed to 10 for all datasets. The Adam optimizer is employed with

an initial learning rate of 0.0001 for optimizing the training loss.

In addition, Ranking Loss (RL), Accuracy (ACC), Average Preci-

sion (AP) and adapted area under curve (AUC) are adopted as four

evaluation metrics. All the experimental results are derived from

ten independent runs of the methods, and the final average results

along with their corresponding standard deviations are presented.

Our model is implemented by PyTorch on one NVIDIA GeForce

RTX 4090 with GPU of 24GB memory.

3.2 Performance Evaluation
To comprehensively verify our DIMvSML, we compare it with six

competitivemethods from two key aspects: i) viewmissing and ii) la-

bel insufficient. For viewmissing, we fix LER to 20%, while PER is se-

lected in {0%, 10%, 30%, 50%, 70%, 90%}. For label insufficient, we fix

PER to 50%, while LER is chosen in {15%, 20%, 25%, 30%, 35%, 40% 45%}.
The statistical results are presented in Table 1, Fig. 5 and Fig. 6. Tabel

1 displays the four metrics with LER fixed at 20% and PER fixed

at 50%, while Fig. 5 and Fig. 6 show the AUC when LER and PER

change respectively. The additional results of Rankingloss and AP

are shown in Appendix.

Regarding the missing view, we can find that 1) When PER= 0%,

DIMvSML achieves the best performance on all datasets, which
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Figure 5: AUC comparisons on six datasets with LER varying from 15% to 55% while PER=50%.

indicates that the proposed method is also stable and effective in the

classification tasks under complete views. 2) With PER increasing

from 10% to 90%, DIMvSML still outperforms the other six methods.

It shows our method adequately addresses the problem of missing

views and is beneficial for feature completion. 3) DIMvSML has the

capability to address scenarios where the absence of certain views

significantly impacts the classification process. In other words, even

when all compared methods fail to deliver satisfactory results, our

approach continues to exhibit a considerable effect. For example,

DIMvSML and the most competitive method achieve AUC of 70.27%

and 61.78% when PER=10% on Corel 5k, revealing an increase of

nearly 10% percent. As for label insufficient, we have the following

observations: 1) Our method achieves better among all compared

methods in almost all cases. 2) Our DIMvSML is robust to few

labeled instances since it consistently exhibits relatively promis-

ing performance with lower LER. For example, DIMvSML and the

second-best method LMVCAT achieve AUC of 74.79% and 73.8%

when LER=45% on IAPR TC-12. As LER=15%, the performance of

DIMvSML is 71.64% and superior to 61.25% of LMVCAT.

3.3 Ablation Study
The ablation experiments on VOC 2007 and IAPR TC-12 are car-

ried out to thoroughly investigate the impact of the three critical

modules of DIMvSML. When the GNN-based feature completion

module (𝑆1) is disabled, we employ the average strategy to fill the

missing data. When the Multi-view representation learning mod-

ule (𝑆2) is disabled, we simply concatenate each view and remove

the loss 𝐿rc. As for the safe semi- supervised learning module, we

compare the classification performance under the
ˆR𝐶𝐶 (Θ) and the

ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) loss framework since we focus on whether the intro-

duction of unlabeled data would actually improve performance.

The ablation results are listed in Table 2. We can know that: 1) In

the first three rows, performance is reduced when 𝑆1 and 𝑆2 are

removed respectively, which indicates that our method is effective

for data recovery and feature extraction. 2) In the last two rows,

the performance of our debiased framework
ˆR𝐷𝑒𝑆𝑆𝐿 (Θ) is better

than
ˆR𝐶𝐶 (Θ) using only supervised data. It demonstrates that our

method indeed enhances model performance with the introduction

of unlabeled data and provide a reliable effect for semi-supervised

classification.

3.4 Parameter Sensitivity
We conduct experiments on VOC 2007 and IAPR TC-12 to analyze

the sensitivity of 𝜆1 and 𝜆2. Two parameters are selected from the

range of {0.01, 0.1, 1, 10, 100} and the joint influence are presented in
the heatmap as shown in the Fig. 7. Since the difference between the

best performance and the worst is 22.9 on VOC 2007, we can learn

that our method is sensitive to both parameters. The result further
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Figure 6: AUC comparisons on six datasets with PER varying from 0% to 90% while LER=20%.

Table 2: Ablation study on VOC 2007 and IAPR TC-12 with
PER=50% and LER=20%. ‘!’ and ‘%’ represent the used and
not used corresponding item, respectively.

𝑆1 𝑆2 ˆR𝐶𝐶 (Θ) ˆR𝐷𝑒𝑆𝑆𝐿 (Θ)
VOC 2007 IAPR TC-12

AP AUC AP AUC

% ! % ! 54.14 73.81 25.98 67.15

! % % ! 49.08 68.98 19.93 59.92

! ! % ! 56.05 76.30 27.90 69.04

! ! ! % 53.55 73.28 23.54 66.21

! ! % ! 56.05 76.30 27.90 69.04

validates the Theorem 1 and emphasizes the need to simultaneously

adjust 𝜆1 and 𝜆2 to approach the condition for the Theorem 1, which

ensures stable performance.

4 Conclusion
To tackle the incomplete multi-view semi-supervised multi-label

problem, we propose a novel deep learning based method named

DIMvSML in this paper. DIMvSML incorporates both the GNN-

based feature completion, view-specific representation extraction

network and safe semi-supervised multi-label learning module to

preserve discriminative feature and enhance the semantic label
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Figure 7: Parameter analysis of the trade-off parameters 𝜆1
and 𝜆2 on VOC 2007 and IAPR TC-12.

information. Besides, we design an unbiased loss to alleviate the

bias from large amount of unlabeled data and provide theoreti-

cal analysis of our safe risk estimator. Therefore, our DIMvSML

can eliminate the negative effect of the incomplete data and use

unlabeled information safely for efficient classification. Finally, ex-

tensive experimental results on six public datasets demonstrate the

effectiveness and superiority of DIMvSML. In the future, we will

further extend to solve other multi-label problems under incomplete

views, such as class-imbalance and noisy labels etc.
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