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ABSTRACT

In this paper, we study offline preference-based reinforcement learning (PbRL),
where learning is based on pre-collected preference feedback over pairs of trajec-
tories. While offline PbRL has demonstrated remarkable empirical success, ex-
isting theoretical approaches face challenges in ensuring conservatism under un-
certainty, requiring computationally intractable confidence set constructions. We
address this limitation by proposing Adversarial Preference-based Policy Opti-
mization (APPO), a computationally efficient algorithm for offline PbRL that guar-
antees sample complexity bounds without relying on explicit confidence sets. By
framing PbRL as a two-player game between a policy and a model, our approach
enforces conservatism in a tractable manner. Using standard assumptions on func-
tion approximation and bounded trajectory concentrability, we derive a sample
complexity bound. To our knowledge, APPO is the first offline PbRL algorithm to
offer both statistical efficiency and practical applicability. Experimental results on
continuous control tasks demonstrate that APPO effectively learns from complex
datasets, showing comparable performance with existing state-of-the-art methods.

1 INTRODUCTION

While Reinforcement Learning (RL) has achieved remarkable success in real-world applica-
tions (Mnih, 2013; Silver et al., 2017; Kalashnikov et al., 2018; Brohan et al., 2022), its performance
heavily depends on the design of the reward function (Wirth et al., 2017), which can be challenging
in practice. To address this issue, preference-based reinforcement learning (PbRL), also known as
reinforcement learning with human feedback, has gained increasing attention as an alternative to
manually designed rewards. In PbRL, a reward model is learned from preference feedback provided
by human experts, who compare pairs of trajectories (Christiano et al., 2017). This approach enables
the learning process to align better with human intentions. PbRL has demonstrated its effectiveness
in various domains, including gaming (MacGlashan et al., 2017; Christiano et al., 2017; Warnell
et al., 2018), natural language processing (Ziegler et al., 2019; Stiennon et al., 2020; Nakano et al.,
2021; Ouyang et al., 2022; Bai et al., 2022), and robotics (Brown et al., 2019; Shin et al., 2023).

However, collecting preference feedback can be costly, especially when real-time feedback from
human experts is required. In such cases, learning from pre-collected data is preferred over on-
line learning. This approach is referred to as offline PbRL, where the learning process relies solely
on pre-collected trajectories and preference feedback. Empirical studies have shown the effective-
ness of offline PbRL (Kim et al., 2023; An et al., 2023; Shin et al., 2023; Hejna & Sadigh, 2024),
leveraging techniques from deep RL literature. On the theoretical side, prior works prove that tra-
jectory concentrability with respect to the data-collecting distribution leads to a sample complexity
bound (Zhu et al., 2023; Zhan et al., 2024a; Pace et al., 2024). However, they rely on the explicit
construction of confidence sets to achieve conservatism (pessimism). Dealing with such confidence
sets in the general function approximation setting requires intractable optimizations: Zhan et al.
(2024a) involve tri-level constrained optimization with respect to the confidence sets of rewards and
transitions, Pace et al. (2024) use uncertainty penalty defined as the width of confidence sets, and
the analysis of Zhu et al. (2023) is restricted to linear models. Despite provable sample complexity
bounds, existing offline PbRL algorithms become computationally intractable with general function
approximation.
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In this work, we propose a computationally and statistically efficient offline PbRL algorithm, Ad-
versarial Preference-based Policy Optimization (APPO). Our analysis is based on general function
approximation for both the model and value function classes. Moreover, standard assumptions on
function classes and bounded trajectory concentrability (Zhan et al., 2024a) are sufficient to estab-
lish our sample complexity bound. Beyond its strong statistical guarantees, our algorithm is simple
to implement using standard optimization techniques. The core idea behind our algorithm is the
two-player game formulation of model-based PbRL, which has been used in other areas of RL (Ra-
jeswaran et al., 2020; Rigter et al., 2022; Cheng et al., 2022; Shen et al., 2024; Bhardwaj et al.,
2024). By framing PbRL as a game between a policy and a model, we ensure conservatism without
explicitly constructing intractable confidence sets. Furthermore, our novel reparameterization tech-
nique allows us to find a near-optimal policy efficiently via adversarial training. To the best of our
knowledge, APPO is the first offline PbRL algorithm with both statistical performance guarantees
and a practical implementation. Our contributions can be summarized as follows:

• We propose APPO, a simple algorithm for offline PbRL with general function approxima-
tion. Based on the two-player game formulation of PbRL in conjunction with our reparam-
eterization technique for the reward model, our algorithm ensures provable conservatism
without explicit construction of confidence sets. To our knowledge, our APPO is the first
computationally efficient offline PbRL algorithm providing a sample complexity bound.

• We prove the sample complexity of our proposed algorithm under standard assumptions on
the function classes and concentrability. The result is rooted in our novel sub-optimality
decomposition, which shows that adversarial training leads to model conservatism.

• We present a practical implementation of APPO that can learn with large datasets using
neural networks. Experiments on continuous control tasks demonstrate that APPO achieves
performance comparable to existing state-of-the-art algorithms.

1.1 RELATED WORK

Provable Online PbRL. In the tabular setting, Novoseller et al. (2020) developed an algorithm
grounded in posterior sampling and the dueling bandit framework (Yue et al., 2012), demonstrat-
ing an asymptotic rate for Bayesian regret. Xu et al. (2020) proposed an algorithm leveraging an
exploration bonus for previously unseen states, which provides a sample complexity bound. Saha
et al. (2023) and Zhan et al. (2024b) focused on the linear preference model with a known linear
feature map, each offering regret and sample complexity bounds. However, their algorithms require
solving an optimization argmaxπ,π′ ∥Eτ∼π[ϕ(τ)]− Eτ∼π′ [ϕ(τ)]∥Σ for some positive definite ma-
trix Σ, which is computationally intractable. To address this challenge in the linear model, Wu &
Sun (2024) devised a randomized algorithm with a provable regret bound and further proposed a
model-based posterior sampling algorithm under the bounded Eluder dimension (Russo & Van Roy,
2013) assumption, ensuring bounded Bayesian regret. Recent works have also explored provably
efficient algorithms under the general function approximation setting (Chen et al., 2022; Wu & Sun,
2024; Chen et al., 2023). Chen et al. (2022) introduced an exploration-bonus-based algorithm that
provides bounded regret in both pairwise and n-wise comparison settings. Additionally, Chen et al.
(2023) leveraged the conditional value-at-risk operator (Artzner, 1997) to devise an algorithm with a
regret guarantee. Du et al. (2024) took a different approach, studying neural function approximation
in the context of reward models. In another notable work, Swamy et al. (2024) reframed PbRL as a
zero-sum game between two policies, encompassing general reward models.

Provable Offline PbRL. While there has been a growing amount of research on online PbRL,
the theoretical understanding of offline PbRL remains relatively limited. A primary challenge
in offline PbRL, much like in offline standard RL, is ensuring sufficient conservatism in the
model. Zhu et al. (2023) addressed this challenge by proposing a pessimistic maximum like-
lihood estimation (MLE) algorithm for the linear model with known transitions. Zhan et al.
(2024a) extended this idea to general function approximation, highlighting the importance of tra-
jectory concentrability in establishing a lower bound for sample complexity. Despite the prov-
able sample complexity bound, their proposed algorithm, FREEHAND-transition, relies on solv-
ing argmaxπ argminr∈R̂ argminP∈P̂{Eτ∼P,π[r(τ)] − Eτ∼P⋆,π[r(τ)]} where R̂ is the confi-
dence set of rewards and P̂ is the confidence set of transitions, which is intractable in prac-
tice. Pace et al. (2024) study a different but related setting, where the agent elicits high-quality
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preference information from offline data. Their method achieves conservatism through explicit
uncertainty penalties defined as uR(τ) = supr1,r2∈R̂ |r1(τ) − r2(τ)| (reward uncertainty) and
uP (s, a) = supP1,P2∈P̂ ∥P1(· | s, a)− P2(· | s, a)∥1 (transition uncertainty), which makes it in-
tractable with general function approximation. Chang et al. (2024) also explored a slightly different
scenario where the data collection policy is known and online interaction is allowed. They demon-
strated that a simple natural policy gradient combined with MLE reward is provably efficient, but
their sample complexity bound is affected by an additional concentrability coefficient relative to
KL-regularized policies.

Adversarial Training in RL. Adversarial training is a widely used approach in RL literature (Ra-
jeswaran et al., 2020; Pásztor et al., 2024), especially offline (standard) RL (Rigter et al., 2022;
Cheng et al., 2022; Bhardwaj et al., 2024). The basic idea is to leverage adversarial training to
implement conservative policy optimization. Recently, adversarial training has also been applied in
human preference alignment (Makar-Limanov et al., 2024; Cheng et al., 2024; Shen et al., 2024).
The most closely related work to ours is Shen et al. (2024), which also formulated PbRL as a two-
player game. However, their focus is on online PbRL, and while they provide proof of convergence
for the optimization objective, this does not necessarily translate into a sample complexity guarantee.

2 PRELIMINARIES

Markov Decision Processes. We consider an episodic MDP (S,A, H, {P ⋆h}Hh=1, {r⋆h}Hh=1), where
S and A are the state space and the action space, H is the length of each episode, P ⋆ = {P ⋆h}Hh=1

is the collection of transition probability distributions, and r⋆ = {r⋆h}Hh=1 is the collection of reward
functions. Each episode starts at some initial state s1 without loss of generality1, and the episode
ends after H steps. For each step h ∈ [H], the agent observes the state sh, and then takes action ah.
The environment generates reward r⋆h(sh, ah) (note that, in the preference-based learning setting,
rewards at each step are unobservable to the agent) and next state sh+1 according to the transition
probability P ⋆h (· | sh, ah).
The agent takes actions based on its policy π = {πh}h∈[H], where πh(· | s) is a probability distri-
bution over A. The state-value function and the action-value function of policy π with respect to
reward r = {rh}Hh=1 are the expected sum of rewards up to termination, starting from sh = s and
(sh, ah) = (s, a) respectively, following the policy π. Formally, they are defined as

V πh,r(s) := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s

]
, Qπh,r := Eπ

[
H∑

h′=h

rh(sh′ , ah′) | sh = s, ah = a

]
.

To simplify the notation, for g : S 7→ R, we use Pg(s, a) to denote Es′∼P (·|s,a)[g(s
′)]. For any

policy π and reward r, the Bellman equation relates Qπ to V π as

Qπh,r(s, a) = rh(s, a) + P ⋆V πh+1,r(s, a), V
π
h,r(s) = Ea∼πh(·|s)[Q

π
h,r(s, a)], V

π
H+1(s) = 0.

Given a policy π = {πh}h∈[H], we define the state visitation distribution as dπh(s) := Pπ(sh = s)
where Pπ is the probability distribution of trajectories (s1, a1, . . . , sH , aH) when the agent uses
policy π. We overload the notation to denote the state-action visitation distribution, dπh(s, a) :=
Pπ(sh = s, ah = a). In addition, we denote the distribution of trajectories under π by dπ(τ).

Offline Preference-based Reinforcement Learning. We consider the offline PbRL problem, where
the agent cannot observe the true reward r⋆ but only binary preference feedback over trajectory
pairs. Specifically, we are given a preference dataset Dpref = {(τm,0, τm,1, ym)}Mm=1 that consists
of i.i.d. trajectory pairs τm,i = {sm,ih , am,ih }Hh=1 (i = 0, 1) sampled by some reference policy µ.
For a monotonically increasing link function Φ : R 7→ [0, 1], we assume the preference feedback
ym ∈ {0, 1} is generated by the following preference model:

P(y = 1 | τ0, τ1) = P(τ1 is preferred over τ0) = Φ(r⋆(τ1)− r⋆(τ0))

where we denote r⋆(τ) =
∑H
h=1 r

⋆
h(sh, ah) for given trajectory τ = (s1, a1, . . . , sH , aH). Addi-

tionally, we assume that κ = 1/(infx∈[−R,R] Φ
′(x)), where R is a bound on trajectory returns, is

1Our result easily extends to the general case with an initial distribution ρ(·). We can modify the MDP by
setting a fixed initial state s1 and P1(· | s1, a) = ρ(·) for all a ∈ A.
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finite. When Φ is set to be the sigmoid function σ(x) = 1/(1 + exp(−x)), we obtain the widely
used Bradely-Terry-Luce model (Bradley & Terry, 1952). In addition to the preference dataset, we
have an unlabeled trajectory dataset Dtraj = {(τn,0, τn,1)}Nn=1 where the trajectory pairs are sam-
pled i.i.d. by executing the reference policy µ. The agent’s goal is to find an ϵ-optimal policy π̂ with
respect to the optimal policy π⋆, which satisfies V π

⋆

1,r⋆(s1)− V π̂1,r⋆(s1) ≤ ϵ.
General Function Approximation. We consider general function approximation for rewards and
transitions: the function class of rewards R and the function class of transitions P . We do not
impose any specific structure on them, so R and P can contain expressive functions such as neural
networks. Based on the function classes, we construct a reward model using maximum likelihood
estimation r̂ ∈ argminr∈RH L̂R(r) where

L̂R(r) = − E
(τ0,τ1,y)∼Dpref

[
y · log Φ(r(τ1)− r(τ0)) + (1− y) · log Φ(r(τ0)− r(τ1))

]
.

Similarly, we learn a transition model P̂h ∈ argminP∈P L̂T (P ;h) for all h ∈ [H], where

L̂T (P ;h) = E(sh,ah,sh+1)∼Dtraj [logP (sh+1 | sh, ah)]

Additional Notations. We denote [n] := {1, 2, . . . , n} for n ∈ N. For x, y ∈ Rd, ⟨x, y⟩ denotes
the inner product of x and y. Given a function f : S ×A 7→ R and a policy π, we write f ◦ π(s) :=
Ea∼π(·|s)[f(s, a)]. For given dataset D, we use Ex∼D[f(x)] to denote 1

|D|
∑
x∈D f(x).

3 ALGORITHM

3.1 PBRL AS A TWO-PLAYER GAME

A previous study on model-based PbRL by Zhan et al. (2024a) proves that the following optimization
problem yields a near-optimal policy π̂, for an appropriately chosen constant ζ:

π̂ ∈ argmax
π

min
r∈R̂

(
V π1,r(s1)− V

µ
1,r(s1)

)
where R̂ =

{
r ∈ RH : L̂R(r) ≤ L̂R(r̂) + ζ

}
. (1)

The minimization with respect to reward model r ∈ R̂ ensures conservatism, which is essential for
a provable guarantee. However, the constrained optimization is intractable with general function
approximation. To address this challenge, we formulate the model-based PbRL problem as a two-
player Stackelberg game (Von Stackelberg, 2010) between the policy and the reward:

π̂ ∈ argmax
π

(
V π1,rπ (s1)− V

µ
1,rπ (s1)

)
subject to rπ ∈ argmin

r∈RH

(
V π1,r(s1)− V

µ
1,r(s1) + E(r; r̂)

)
. (2)

Here, E(r; r̂) is a loss function that penalizes r if it deviates from r̂. In the Stackelberg game
formulation, the reward minimizes V π1,r(s1) − V µ1,r(s1), while the policy maximizes it. We can
interpret this competition by viewing V π1,r(s1)−V

µ
1,r(s1) as the relative performance of π compared

to µ with respect to reward r. Intuitively, π maximizes the cumulative reward rπ , as in the standard
RL setup. However, rπ minimizes the cumulative reward when evaluated under π. This competition
facilitates conservatism and makes π robust to model error.

Then, what loss function E leads to a provable bound? A naive choice might be L̂R(r) − L̂R(r̂),
as it leads to the Lagrangian dual form of the optimization problem in (1), while disregarding the
Lagrangian multiplier. However, the loss E(r; r̂) = L̂R(r) − L̂R(r̂) does not guarantee statistical
efficiency, because the Stackelberg game in (2) does not include the Lagrangian multiplier for the
likelihood constraint. Instead, we propose the trajectory-pair ℓ1 loss:

E(r; r̂) = Eτ0,τ1∼µ
[∣∣{r(τ0)− r(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣] ,

which leads to a provable guarantee (Theorem 4.1). Intuitively, this loss measures the deviation of r
from r̂ by evaluating the difference in total reward (return) between the two trajectories. Given the
unlabeled trajectory dataset Dtraj, we approximate E(r; r̂) with its finite-sample version:

ÊDtraj(r; r̂) = E(τ0,τ1)∼Dtraj

[∣∣{r(τ0)− r(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣] .
In the following two sections, we discuss how to implement the optimization in (2) in a sample-
efficient manner.

4



Published as a conference paper at ICLR 2025

Algorithm 1 Adversarial Preference-based Policy Optimization with Rollout (APPO-rollout)

1: Input: Number of rollouts K1,K2, constant η, π1
h = Unif(A) for all h ∈ [H]

2: Estimate r̂ ∈ argminr∈RH L̂R(r)
3: for t = 1, · · · , T do
4: Execute πt to collect K1 trajectories Dtrollout

5: Optimize rt ∈ argminr∈RH

(
Eτ∼Dt

rollout
[r(τ)]− Eτ∼Dtraj [r(τ)] + λÊDtraj(r; r̂)

)
6: Compute Q̄t via PE(µ, πt, r̂,K2) in Algorithm 3
7: Update policy πt+1

h (a | s) ∝ πth(a | s) exp(ηQ̄th(s, a)) for all h ∈ [H]
8: end for
9: Return π̄ = 1

T

∑T
t=1 πt

Algorithm 2 Adversarial Preference-based Policy Optimization (APPO)

1: Input: Constant η, Initial policy π1
h = Unif(A) for all h ∈ [H]

2: Estimate r̂ ∈ argminr∈RH L̂R(r), P̂h ∈ argminP∈P L̂T (P ;h) for all h ∈ [H]
3: for t = 1, · · · , T do
4: f t ∈ argmin

f∈FH

(∑H
h=1 E(sh,ah)∼Dtraj [fh ◦ πth(sh)− fh(sh, ah)] + λÊDtraj(f ; P̂ , r̂)

)
5: Update policy πt+1

h (a | s) ∝ πth(a | s) exp(ηf th(s, a)) for h ∈ [H]
6: end for
7: Return π̂ = 1

T

∑T
t=1 π

t

3.2 ADVERSARIAL OPTIMIZATION FOR PBRL

In this section, we present an algorithm, APPO-rollout, that serves as a building block of our main
algorithm. For APPO-rollout, we consider the setting where the transition P ⋆ is known or where
online interaction (without preference feedback) is possible. This is a temporary assumption, as our
main algorithm (Algorithm 2) works with an unknown transition.

Algorithm 1 presents the pseudo-code of APPO-rollout, which is based on the Stackelberg game
formulation of PbRL that we discussed. Inspired by the adversarial training methods in offline
RL under the standard setting (Cheng et al., 2022; Rigter et al., 2022; Bhardwaj et al., 2024), we
alternately optimize the policy and reward to solve the optimization problem in (2).

Reward Model Update for Provable Conservatism. The reward model update aims to solve the
following optimization problem approximately:

argmin
r∈RH

(
E

τ∼πt
[r(τ)]− E

τ∼µ
[r(τ)] + λE(r; r̂)

)
= argmin

r∈RH

(
V π

t

1,r(s1)− V
µ
1,r(s1) + λE(r; r̂)

)
, (3)

which is the inner optimization in (2). The expectations Eτ∼µ[r(τ)] and E(r; r̂) are approximated
using offline data Dtraj. Also, we collect trajectories by executing πt, to compute the finite-sample
version of Eτ∼πt [r(τ)]. Note that the trajectory rollout (Line 4) is possible since we assume a known
transition P ⋆ or access to online interaction.

Policy Update. After optimizing rt, we estimate the action-value function of πt with respect to
rt using a policy evaluation subroutine PE, whose pseudo-code is provided in Algorithm 3. This
subroutine computes an approximate value function Q̄t using Monte Carlo estimation, providing an
error bound relative to the true value function Qπ

t

rt . The theoretical analysis of PE is presented in
Appendix B. With the estimated value function Q̄t, we then proceed to update the policy using trust
region policy optimization (TRPO) (Schulman et al., 2015) update.

3.3 APPO: REPARAMETERIZED ALGORITHM FOR UNKNOWN TRANSITION

In this section, we consider the setting where the transition P ⋆ is unknown. In Algorithm 1, the
information from the transition P ⋆ is utilized in Line 4, where we collect on-policy trajectories to
approximate Eτ∼πt [r(τ)]. Moreover, the policy evaluation step in Algorithm 3 involves trajectory
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rollouts. To bypass such on-policy rollouts, we make the following observation:

Eτ∼πt [r(τ)]− Eτ∼µ[r(τ)] = V π
t

1,r(s1)− V
µ
1,r(s1)

=

H∑
h=1

E(sh,ah)∼dµh

[
(Qπ

t

h,r ◦ πth)(sh)−Qπ
t

h,r(sh, ah)
]

(4)

which is due to the performance difference lemma (Lemma E.1). Since the expectation on the right
is taken with respect to dµh, the data-generating distribution of Dtraj, we can approximate it using
Dtraj. Furthermore, given the policy πt, the Bellman equation implies a mapping between reward
models and action-value functions. Specifically, for given reward model r = {rh}Hh=1, we have the
action-value function {Qπt

h,r}Hh=1. Conversely, suppose that we have a function class F that contains
every action-value function. For f = {fh}Hh=1 ∈ FH , we can construct the corresponding reward
model satisfying the Bellman equation fh = rh+P

⋆
h (fh+1◦πth+1). Formally, we define the induced

reward models:

Definition 1 (Induced reward model). Given f = {fh}Hh=1 ∈ FH , and a policy {πh}Hh=1, we define
the induced reward model rπP⋆,f = {rπh,P⋆,f}Hh=1 where rπh,P⋆,f = fh − P ⋆h (fh+1 ◦ πh+1) for
h ∈ [H] (we set fH+1 = 0 by convention).

Therefore, given reward model r and action-value function f , we have that

Qπh,r = rh + P ⋆(Qπh+1,r ◦ πh+1), fh = rπh,P⋆,r + P ⋆h (fh+1 ◦ πh) for all h ∈ [H].

Importantly, the mapping does not need to be bijective for our theoretical analysis, as long as the
Bellman equation holds. Using this mapping in conjunction with our observation in (4), we repa-
rameterize the optimization problem in (3) as:

argmin
f∈FH

(
H∑
h=1

E(sh,ah)∼dµh

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
+ λE(f ;P ⋆, r̂)

)
(5)

where E(f ;P ⋆, r̂) = E(τ0,τ1)∼µ

[∣∣∣{rπt

P⋆,f (τ
0)− rπ

t

P⋆,f (τ
1)} − {r̂(τ0)− r̂(τ1)}

∣∣∣] .
The offline dataset Dtraj is sufficient to approximate the optimization objective in (5) with

E(sh,ah)∼Dtraj

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
≈ E(sh,ah)∼dµh

[
(fh ◦ πth)(sh)− fh(sh, ah)

]
ÊDtraj(f ; P̂ , r̂) := E(τ0,τ1)∼Dtraj

[∣∣∣{rπt

P̂ ,f
(τ0)− rπ

t

P̂ ,f
(τ1)} − {r̂(τ0)− r̂(τ1)}

∣∣∣] ≈ E(f ;P ⋆, r̂),
where we use the estimated transition model P̂ in place of P ⋆. Moreover, since we directly optimize
the action-value function, a policy evaluation oracle is not required to update the policy. Therefore,
this reparameterization allows us to solve the optimization problem in (2) without access to the true
transition P ⋆ or a policy evaluation oracle. The complete pseudo-code is presented in Algorithm 2.

Remark on Computational Complexity. The computational complexity of APPO is primarily de-
termined by the value function optimization (Line 4) and the policy update (Line 5). Although
optimizing f t is generally a non-convex problem, it can be efficiently implemented using gradient-
based methods when F is a class of neural networks. For the policy update, it is known that
πt+1
h (a | s) ∝ πth(a | s) exp(ηf th(s, a)) is derived from the TRPO objective (Schulman et al.,

2015; Neu et al., 2017):

πt+1
h ∈ argmax

π
E
sh∼dπ

t

h

[
f th ◦ π(sh)− η−1DKL

(
π(· | sh)∥πth(· | sh)

)]
,

which is widely used in deep RL. As a result, the policy update is efficient within the deep learning
framework. In practice, other policy optimization techniques (Schulman et al., 2017; Fujimoto et al.,
2018; Haarnoja et al., 2018) can also be applied. Overall, APPO relies on solving two standard non-
convex optimizations to compute f t and πt, both of which are practical to implement with neural
function approximation. This computational efficiency contrasts with that of existing offline PbRL
algorithms, which require intractable optimization over confidence sets, as discussed in Section 1.1.
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4 THEORETICAL ANALYSIS

In this section, we present theoretical analyses of our proposed algorithm, APPO. We note that
APPO-rollout also guarantees a sample complexity bound, which is presented in Appendix C.

We assume the reward class R and the transition class P are realizable and rewards are bounded.
These are standard assumptions (Chen et al., 2023; Zhan et al., 2024a; Pace et al., 2024).

Assumption 1 (Reward realizability). We have r⋆h ∈ R for all h ∈ [H]. In addition, every r ∈ RH
satisfies 0 ≤ r(τ) ≤ R for any trajectory τ .

Assumption 2 (Transition realizability). We have P ⋆h ∈ P for all h ∈ [H].

Additionally, we introduce the value function class and assume it is bounded. Note that every Qπh,r
satisfies the condition ∥f∥∞ ≤ R due to Assumption 1.

Assumption 3 (Value function class). For any h ∈ [H], r ∈ RH , and policy π, we have Qπh,r ∈ F .
In addition, every f ∈ F satisfies 0 ≤ f(s, a) ≤ R for all (s, a) ∈ S ×A.

The following assumption defines the trajectory concentrability coefficient between the optimal pol-
icy π⋆ and the reference policy µ.

Assumption 4 (Trajectory concentrability). There exists a finite constantCTR such that the behavior

policy µ and the optimal policy π⋆ satisfy supτ
dπ

⋆
(τ)

dµ(τ) ≤ CTR.

The bounded CTR ensures that the support of dµ sufficiently covers the support of dπ
⋆

, similar to
the concentrability condition in Zhan et al. (2024a)2. As a result, we expect Dtraj to contain high-
quality trajectories. The lower bound in Zhan et al. (2024a) shows that the trajectory concentrability
is essential in offline PbRL. This implies that offline PbRL is strictly more challenging than offline
standard RL, where step-wise concentrability is sufficient to achieve a performance guarantee (Ue-
hara & Sun, 2022). We now present the sample complexity bound.

Theorem 4.1. Suppose Assumptions 1,2, 3, and 4 hold. With probability at least 1− δ, Algorithm 2

with λ = Θ(CTR), λ > CTR, η =
√

2 log |A|
R2T achieves

V π
⋆

1,r⋆ − V π̂1,r⋆

≤ O

(
CTR

√
κ2H

M
log
|R|
δ

+RH

√
1

N
max

{
HT log

H|F|
δ

, log
H|P|
δ

}
+RH

√
log |A|
T

)
.

Setting T = Θ
(
R2H2 log |A|

ϵ2

)
, N = Θ

(
max

{
R4H5 log |A| log(H|F|/δ)

ϵ4 , R
2H2 log(H|P|/δ)

ϵ2

})
, and

M = Θ
(
C2

TRκ
2H log(|R|/δ)

ϵ2

)
, Algorithm 2 achieves ϵ-optimal policy, i.e. V π

⋆

1,r⋆ − V π̄1,r⋆ ≤ ϵ.

Discussion on Theorem 4.1. Our analysis naturally extends to infinite function classes by applying
the standard covering number argument, replacing the cardinalities |R|, |P|, and |F| with covering
numbers. To our knowledge, FREEHAND-transition Zhan et al. (2024a) is the only statistically effi-
cient algorithm for offline PbRL in stochastic MDPs. Our sample complexity bound matches theirs
for labeled data (M ). However, FREEHAND-transition requires Θ

(
C2

PR
2H2 log(H|P|/δ)

ϵ2

)
unlabeled

trajectories where CP is the trajectory concentrability for transition 3. This highlights a trade-off:
While FREEHAND-transition has tighter bounds for unlabeled data (N ), it is computationally in-
tractable. That is, FREEHAND-transition requires solving a nearly intractable nested optimization
problem. Therefore, our APPO is the first offline PbRL algorithm to achieve both provable statistical
efficiency and computational efficiency.

2Our analysis remains valid under an alternative definition based on the reward model error ratio, similar to
that used by Zhan et al. (2024a).

3Zhan et al. (2024a) consider reward functions defined over trajectories, thus their reward class Gr is com-
parable to our RH . They use bracketing numbers in their bound, but we write here |P| for simplicity.
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Proof Sketch. We outline the proof of Theorem 4.1, where the detailed proof is deferred to Ap-
pendix D. The key observation is our novel sub-optimality decomposition:

V π
⋆

1,r⋆ − V π
t

1,r⋆

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE error

+V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

,

where rt = rπ
t

P⋆,ft , and the initial state s1 is omitted here for readability. The term (I) is bounded by
a standard MLE guarantee (Lemma E.2), while the policy update rule ensures that the sum of terms
(III) over T steps is bounded (Lemma D.3). For (II), Assumption 4 and λ > CTR imply that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt = Eτ0∼π⋆,τ1∼µ

[
rt(τ0)− r̂(τ0)− rt(τ1) + r̂(τ1)

]
≤ CTREτ0∼π⋆,τ1∼µ

[∣∣rt(τ0)− r̂(τ0)− rt(τ1) + r̂(τ1)
∣∣] ≤ λE(f t;P ⋆, r̂).

Observe that APPO approximately solves the optimization problem in (5) (Lemma D.1), and this
optimization problem is equivalent to argminf∈FH{V π

t

1,rπ
t

P⋆,f

− V µ
1,rπ

t

P⋆,f

+ λE(f ;P ⋆, r̂)}. Since

rπ
t

P⋆,ft = rt and rπ
t

P⋆,Qπt = r⋆, it follows that

V π
t

1,rt − V
µ
1,rt + λE(f t;P ⋆, r̂) ≤ V π

t

1,r⋆ − V
µ
1,r⋆ + λE(Qπ

t

;P ⋆, r̂) + ϵ.

where ϵ represents an approximation error. Thus, we obtain (II)≤ ϵ. Combining the results with
V π

⋆

1,r⋆ − V π̂1,r⋆ = 1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
, we complete the proof.

5 PRACTICAL IMPLEMENTATION OF APPO

While providing strong statistical guarantees, APPO allows practical implementation with neural
networks, leveraging advanced training techniques from deep learning. In this section, we present a
practical version of APPO tailored for deep PbRL. The pseudo-code is outlined in Algorithm 4. For
practical implementation, we assume the standard discounted MDP setting in deep PbRL (Christiano
et al., 2017), where trajectory segments of length L are given and preference labels are assigned to
segment pairs.

Reward Learning. While our theoretical analysis is based on the maximum likelihood estimator,
any reward learning strategy can be employed. This flexibility allows APPO to benefit from state-of-
the-arts preference learning methods, such as data augmentation (Park et al., 2022) and active query
techniques (Shin et al., 2023; Hwang et al., 2024; Choi et al., 2024).

Training Value Functions. Given a parameterized policy πθ and an action-value function Qϕ, the
optimization objective in (5) can be adapted to the discounted setting as follows:

argmin
ϕ

E(s,a)∼dµ [(Qϕ ◦ πθ)(s)−Qϕ(s, a)] + λE(τ0,τ1)∼µ
[∣∣(rθϕ − r̂)(τ0)− (rθϕ − r̂)(τ1)

∣∣]
where rθϕ(τ) =

∑L
l=1 (Qϕ(sl, al)− γ(Qϕ ◦ πθ)(sl+1)) for the segment τ = (s1, a1, . . . , sL, aL).

We employ the approximation P ⋆(Qϕ ◦ πθ)(sl, al) ≈ (Qϕ ◦ πθ)(sl+1) to avoid the need for a tran-
sition model. Additionally, to stabilize training, we apply the clipped double Q-learning trick (Fu-
jimoto et al., 2018; Haarnoja et al., 2018) and maintain a separate value-function Vψ . Given mini-
batches of trajectory pairs Btraj and transition tuples Btup, each action-value function Qϕi is trained
by minimizing Lλϕi = λLadv

ϕi + Eϕi (where λ is moved to the first term, without loss of generality),
defined as follows:

Ladv
ϕi (Btup) = E(s,a)∼Btup

[
Qϕi(s, πθ(s))−Qϕi(s, a)

]
,

and Eϕi(Btraj) = E(τ0,τ1)∼Btraj

[∣∣∣{rψϕi(τ
0)− rψϕi(τ

1)} − {r̂(τ0)− r̂(τ1)}
∣∣∣] . (6)

Here, we use the notation rψϕi(τ) =
∑L
l=1

(
Qϕi(sl, al)− γVψ(sh+l)

)
, and πθ(s) denotes an action

sampled from πθ(· | s). Given target Q-networks {ϕ̄i}i∈{1,2}, we train Vψ by minimizing

Lψ(Btup) = Es∼Btup

[(
Vψ(s)− min

i∈{1,2}
Qϕ̄i(sh+1, πθ(sh+1))

)2
]
, (7)
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Dataset &
# of feedback Oracle MR PT DPPO IPL APPO (ours)

BPT-500 88.33 ±4.76 10.08 ±7.57 22.87 ±9.06 3.93 ±4.34 34.73 ±13.9 53.52 ±13.9

box-close-500 93.40 ±3.10 29.12 ±13.2 0.33 ±1.16 10.20 ±11.5 5.93 ±5.81 18.24 ±15.6

dial-turn-500 75.40 ±5.47 61.44 ±6.08 68.67 ±12.4 26.67 ±22.2 31.53 ±12.5 80.96 ±4.49

sweep-500 98.33 ±1.87 86.96 ±6.93 43.07 ±24.6 10.47 ±15.8 27.20 ±23.8 26.80 ±5.32

BPT-wall-500 56.27 ±6.32 0.32 ±0.30 0.87 ±1.43 0.80 ±1.51 8.93 ±9.84 64.32 ±21.0

sweep-into-500 78.80 ±7.96 28.40 ±5.47 20.53 ±8.26 23.07 ±7.02 32.20 ±7.35 24.08 ±5.91

drawer-open-500 100.00 ±0.00 98.00 ±2.32 88.73 ±11.6 35.93 ±11.2 19.00 ±13.6 87.68 ±10.0

lever-pull-500 98.47 ±1.77 79.28 ±2.95 82.40 ±22.7 10.13 ±12.2 31.20 ±15.8 75.76 ±7.17

BPT-1000 88.33 ±4.76 8.48 ±5.80 18.27 ±10.6 3.20 ±3.04 36.67 ±17.4 59.04 ±19.0

box-close-1000 93.40 ±3.10 27.04 ±14.5 2.27 ±2.86 9.33 ±9.60 6.73 ±8.41 34.24 ±18.5

dial-turn-1000 75.40 ±5.47 69.44 ±4.70 68.80 ±5.50 36.40 ±21.9 43.93 ±13.4 81.44 ±6.73

sweep-1000 98.33 ±1.87 87.52 ±7.87 29.13 ±14.6 8.73 ±16.4 38.33 ±24.9 17.36 ±12.4

BPT-wall-1000 56.27 ±6.32 0.48 ±0.47 2.13 ±2.96 0.27 ±0.85 14.07 ±11.5 62.96 ±18.4

sweep-into-1000 78.80 ±7.96 26.00 ±5.53 20.27 ±7.84 23.33 ±7.80 30.40 ±7.74 18.16 ±11.1

drawer-open-1000 100.00 ±0.00 98.40 ±2.82 95.40 ±7.27 36.47 ±7.30 28.53 ±18.4 98.56 ±2.68

lever-pull-1000 98.47 ±1.77 88.96 ±3.94 72.93 ±10.2 8.53 ±9.96 40.40 ±17.4 76.96 ±4.40

Average Rank - 2.316 3.125 4.375 3.063 2.125

Table 1: Success rates on Meta-World medium-replay dataset with 500 and 1000 preference feed-
back samples, averaged over 5 random seeds. The results of baselines, Oracle, PT, DPPO, and IPL,
are taken from Choi et al. (2024), where Oracle refers to the policy trained using IQL with ground-
truth rewards. The abbreviation BPT stands for button-press-topdown.

Intuitively, the term Ladv
ϕ ensures conservatism by regularizing Qϕ to have lower values near dπθ

and higher values near dµ. Additional insight can be gained by rearranging the integrand of Eϕ:

rψϕi(τ)− r̂(τ) =
L∑
l=1

(
Qϕi(sl, al)− r̂(sl, al)− γVψ(sl+1))

)
.

This expression represents the sum of the TD errors evaluated over the segment τ . Thus, the loss Eϕ
minimizes the difference in trajectory TD errors between τ0 and τ1.

Training Policy. We directly optimize the policy using the loss function in (8). The entropy regular-
ization term is similar to that in SAC (Haarnoja et al., 2018), except that we use a randomly sampled
Qϕi instead of the clipped value mini∈[1,2]Qϕi . The policy loss is given by:

Lθ(Btup) = Es∼Btup

[
Qϕi(s, πθ(s))− απθ(s, πθ(s))

]
, i ∼ Unif{1, 2} (8)

6 EXPERIMENTS

Datasets and Evaluation. We evaluate our proposed algorithm on the Meta-World (Yu et al., 2020)
medium-replay and medium-expert datasets from Choi et al. (2024). Our main experiments use
the medium-replay dataset, while the experiments with the medium-expert dataset are presented
in Appendix F. These datasets have a favorable property: they are not learnable with incorrect re-
wards (random or constant). This property is crucial for evaluating offline RL algorithms since their
survival instinct can allow them to perform well even with completely incorrect reward signals (Li
et al., 2024). For more details on the dataset, see Choi et al. (2024). Following the experiment pro-
tocol of Choi et al. (2024), the preference dataset consists of pairs of randomly sampled trajectory
segments of length 25. The preference label is generated based on the ground truth reward, where
a (0, 1) label is assigned if the trajectory rewards differ by more than a threshold of 12.5, and a
(0.5, 0.5) label is assigned otherwise. We evaluate algorithm performance using the success rate for
each task, which indicates whether the agent successfully completes the task.

Algorithms. We consider four offline PbRL algorithms as baselines: Markovian Reward (MR),
Preference Transformer (PT) (Kim et al., 2023), Direct Preference-based Policy Optimization

9
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Figure 1: Effect of the conservatism regularizer λ.
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Figure 2: Success rates of APPO and MR, with varying number of preference feedback samples.

(DPPO) (An et al., 2023), and Inverse Preference Learning (IPL) (Hejna & Sadigh, 2024). MR is an
instance of IQL (Kostrikov et al., 2022) trained with a Markovian reward model, while PT assumes
a general sequential reward model implemented using a Transformer (Vaswani, 2017) architecture.
DPPO directly optimizes the policy without using a reward model, while the other baseline methods
are based on IQL (Kostrikov et al., 2022). We evaluate the practical version of APPO in Algorithm 4,
using the same reward model as MR and setting λ = 0.03. Further details are in Appendix G.

6.1 EVALUATION RESULTS

Table 1 shows the performance of algorithms on the Meta-World control tasks. APPO outperforms
or shows comparable performance in almost every dataset. Notably, APPO outperforms the policy
trained with ground truth rewards in the dial-turn and button-press-topdown-wall datasets. We also
observe that MR is a strong baseline, as reported in previous works (Hejna & Sadigh, 2024; Choi
et al., 2024). These results suggest that APPO performs comparably to state-of-the-art baselines, even
with a provable statistical guarantee.

Effect of Conservatism Regularizer. We investigate the effect of conservatism regularizer λ, the
coefficient to balance the adversarial loss Ladv

ϕ and the trajectory-pair ℓ1 loss Eϕ. In Figure 1, APPO
learns successfully with a wide range of λ, but a properly tuned λ improves performance and stabil-
ity. We note that APPO has only one algorithmic hyperparameter λ, whereas IQL-based algorithms
(MR, PT, IPL) require at least two (expectile parameter and temperature). DPPO, on the other hand,
has two hyperparameters (conservatism regularizer and smoothness regularizer).

Effect of Preference Dataset Size. In PbRL, learning from small preference datasets is desired
for cost-efficient learning. We evaluate the effect of preference dataset size on APPO’s performance,
varying the number of feedback samples from 100 to 2000. Figure 2 shows that APPO is robust
to preference dataset size, displaying variance comparable to MR, a strong baseline, as shown in
Table 1. Note that APPO outperforms a policy trained with ground truth rewards, using only 100
preference feedback samples.
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REPRODUCIBILITY

We describe the experimental details in Section 6 and Section G, including training protocol and
neural network architecture. Our code is available at https://github.com/oh-lab/APPO.git.
As explained in Section 6, we use the Meta-World medium-replay dataset from Choi et al. (2024),
which is available in their official repository along with download instructions.
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Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 1029–1038. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Alizée Pace, Bernhard Schölkopf, Gunnar Ratsch, and Giorgia Ramponi. Preference elicitation for
offline reinforcement learning. In ICML 2024 Workshop: Foundations of Reinforcement Learning
and Control – Connections and Perspectives, 2024. URL https://openreview.net/forum?
id=YGaRv4UCRh.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. SURF:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=TfhfZLQ2EJO.

Barna Pásztor, Parnian Kassraie, and Andreas Krause. Bandits with preference feedback: A stackel-
berg game perspective. In The Thirty-eighth Annual Conference on Neural Information Process-
ing Systems, 2024. URL https://openreview.net/forum?id=wIE991zhXH.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In International conference on machine learning, pp. 7953–7963.
PMLR, 2020.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082–16097,
2022.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26, 2013.

13

https://openreview.net/forum?id=OWZVD-l-ZrC
https://openreview.net/forum?id=YGaRv4UCRh
https://openreview.net/forum?id=YGaRv4UCRh
https://openreview.net/forum?id=TfhfZLQ2EJO
https://openreview.net/forum?id=wIE991zhXH


Published as a conference paper at ICLR 2025

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with trajec-
tory preferences. In International Conference on Artificial Intelligence and Statistics, pp. 6263–
6289. PMLR, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforce-
ment learning and RLHF. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=Xb3IXEBYuw.

Daniel Shin, Anca Dragan, and Daniel S. Brown. Benchmarks and algorithms for offline preference-
based reward learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Steven Wu, and Alekh Agarwal. A minimaximalist
approach to reinforcement learning from human feedback. In Forty-first International Conference
on Machine Learning, 2024.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. In International Conference on Learning Representations, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interac-
tive agent shaping in high-dimensional state spaces. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Runzhe Wu and Wen Sun. Making RL with preference-based feedback efficient via randomization.
In The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=Pe2lo3QOvo.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-
inforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

14

https://openreview.net/forum?id=Xb3IXEBYuw
https://openreview.net/forum?id=Pe2lo3QOvo
https://openreview.net/forum?id=Pe2lo3QOvo


Published as a conference paper at ICLR 2025

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D. Lee, and Wen Sun. Provable offline
preference-based reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024a.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. Provable reward-agnostic preference-
based reinforcement learning. In The Twelfth International Conference on Learning Representa-
tions, 2024b.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15



Published as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Empirical PbRL. Incorporating preference feedback into reinforcement learning has been explored
through various approaches. One standard method involves training a reward model from prefer-
ences, which is then used to train a standard RL algorithm (Christiano et al., 2017; Ibarz et al.,
2018). A variety of techniques have emerged in this area, including unsupervised pre-training (Lee
et al., 2021), exploration driven by uncertainty (Liang et al., 2022), data augmentation (Park et al.,
2022), and meta-learning (Hejna III & Sadigh, 2023), to list a few. Another prominent line of re-
search focuses on preference learning via active query methods (Shin et al., 2023; Hwang et al.,
2024; Choi et al., 2024), which have shown strong empirical performance.

Beyond the conventional Markov reward model, some studies have proposed alternative reward
structures. For example, Kim et al. (2023) employed transformer architectures for reward mod-
eling, while Liu et al. (2022) and Hejna & Sadigh (2024) explored learning action-value functions
rather than directly modeling rewards. Several approaches bypass explicit reward models altogether,
instead optimizing policies directly (An et al., 2023; Kang et al., 2023; Hejna et al., 2024).

B DETAILS ON THE POLICY EVALUATION SUBROUTINE

We present a simple policy evaluation subroutine in Algorithm 3. It requires online rollouts and
access to the reference policy. The idea of policy evaluation via online rollouts is adopted from
Chang et al. (2024), while the analysis follows standard methods.

Algorithm 3 PE: Monte Carlo Policy Evaluation

1: Input: Reference policy µ, Current policy πt, Estimated reward r̂, Number of rollout K
2: for h ∈ [H] do
3: Collect K i.i.d. trajectories {(sk1 , ak1 , . . . , skH , akH)}Kk=1

4: where akj ∼ µj(· | skj ) for j < h, akh ∼ 1
2 (µh + πth)(· | skh), and akj ∼ πtj(· | skj ) for j > h

5: Compute qkh =
∑H
j=h r̂(s

k
j , a

k
j ), then set Dth = {(skh, akh, qkh)}Kk=1

6: Least square value function estimation Q̄th = argminf∈F
1
K

∑
(s,a,q)∈Dt

h
(f(s, a)− q)2

7: end for
8: Return {Q̄th}Hh=1

We have the following guarantee.
Lemma B.1. With probability at least 1− δ, Algorithm 3 guarantees that, for every (t, h) ∈ [T ]×
[H],

Es∼dµh,a∼ 1
2 (µ

h+πt
h)

[(
Q̄th(s, a)−Qπ

t

h,rt(s, a)
)2]
≤ c3R

2 log(TH|F|/δ)
K2

=: ϵ2PE

where c3 is an absolute constant.

Proof. Since
∥∥∥Qπh,r∥∥∥∞ ≤ R for any policy π and r ∈ RH , Lemma E.4 with B = R and K = K2

leads to

Es∼dµh,a∼ 1
2 (µ

h+πt
h)

[(
Q̄th(s, a)−Qπ

t

h,rt(s, a)
)2]
≤ c3R

2 log(|F|/δ)
K2

for any fixed (t, h) ∈ [T ]×[H]. The union bound over all (t, h) ∈ [T ]×[H] concludes the proof.
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C THEORETICAL ANALYSIS OF APPO-rollout

In this section, we provide theoretical analyses of APPO-rollout, a naı̈ve algorithm for solving
the optimization problem (2). The ideas presented in this section are relevant to the proof of Theo-
rem 4.1, and the results are valuable for comparison with related works.

Before stating the theorem, we define step-wise concentrability, which is always bounded by CTR.

Definition 2 (Step-wise concentrability). CST = maxh∈[H] sup(s,a)∈S×A
dπ

⋆

h (s,a)
dµh(s,a)

Lemma C.1. It always holds that CST ≤ CTR.

Proof. For a fixed pair (s, a), consider the set of trajectories T (s, a) := {τ = (s1, a1, . . . , sH , aH) :
sh = s, ah = a}. Then we have that

dπh(s, a) =

∫
T (s,a)

dπ(τ)dτ.

for any fixed policy π. Therefore, for every (s, a) ∈ S ×A, we have that

dπ
⋆

h (s, a)

dµh(s, a)
=

∫
T (s,a)

dπ
⋆

(τ)dτ∫
T (s,a)

dµ(τ)dτ
≤ sup

τ

dπ
⋆

(τ)

dµ(τ)
= CTR.

Taking the supremum on both sides concludes the proof.

Theorem C.2. Suppose Assumptions 1 and 4 hold. With probability at least 1− δ, Algorithm 1 with

λ = Θ(CTR), λ > CTR, η =
√

2 log |A|
R2T achieves

V π
⋆

1,r⋆ − V π̂1,r⋆

≤ O

√log
|R|
δ

(
CTRκ

√
H√

M
+

R√
K1

+
R√
N

)
+RH

√
log |A|
T

+RH

√
CST

K2
log

TH|F|
δ

 .

Setting T = Θ
(
R2H2 log |A|

ϵ2

)
, N = K1 = Θ

(
R2 log(|R|/δ)

ϵ2

)
, M = Θ

(
C2

TRκ
2H log(|R|/δ)

ϵ2

)
, and

K2 = Θ
(
R2H2CST log(TH|F|/δ)

ϵ2

)
, Algorithm 2 achieves ϵ-optimal policy, i.e. V π

⋆

1,r⋆ − V π̄1,r⋆ ≤ ϵ.

Discussion on Theorem C.2. We compare this bound with PbRL algorithms that assume a known
transition model or allow online rollouts. In comparison to FREEHAND (Zhan et al., 2024a),
APPO-rollout achieves a nearly identical rate for labeled data, but unlike FREEHAND, it re-
quires additional unlabeled trajectories. This represents a trade-off between statistical efficiency
and computational complexity, as FREEHAND relies on solving a nearly intractable nested opti-
mization problem. Another comparable algorithm is DR-PO (Chang et al., 2024), which estab-
lishes a sample complexity of Θ

(
(CTR+CSFT)κ

2 log(|R|/δ)
ϵ2

)
for labeled data. Unlike APPO-rollout,

DR-PO assumes homogeneous rewards, which removes dependence on H from the bound. While
their bound is tighter in CTR, it comes at the cost of dependence on an additional factor, CSFT =

supπ∈D supτ
dπ(τ)
dµ(τ) , where D is a set of policies close to µ in terms of KL divergence. This addi-

tional term arises because DR-PO does not explicitly ensure conservatism.

For simplicity, we introduce some notation regarding optimization objectives in Algorithm 1. For
r, r̃ ∈ RH , we define

L̂topt(r; r̃) := Eτ∼Drollout [r(τ)]− Eτ∼Dtraj [r(τ)] + λÊDtraj(r; r̃)

and its population version as

Ltopt(r; r̃) := Eτ∼πt [r(τ)]− Eτ∼µ [r(τ)] + λE(r; r̃).
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C.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optimization objective L̂topt(r; r̂) is close to its
population version, Ltopt(r; r̃). The result ensures that rt is a good approximation of the solution to
the optimization program with infinite samples, i.e.

rt ≈ argmin
r∈RH

Ltopt(r; r̂).

Lemma C.3. With probability at least 1− δ/2, for all t ∈ [T ], we have

Lopt(r
t; r̂) ≤ Lopt(r

⋆; r̂) + 2ϵ̃approx

where ϵ̃approx is defined in Lemma C.4.

Proof. We have the following decomposition:

Ltopt(r
t; r̂)− Ltopt(r

⋆; r̂)

= Ltopt(r
t;πt)− L̂topt(r

t; r̂)︸ ︷︷ ︸
(I)

+ L̂topt(r
t; r̂)− L̂topt(r

⋆; r̂)︸ ︷︷ ︸
(II)

+ L̂topt(r
⋆; r̂)− Ltopt(r

⋆; r̂)︸ ︷︷ ︸
(III)

Conditioned on the event defined by Lemma D.2, (I) and (III) are bounded by ϵopt. Moreover, the
optimality of rt implies (II)≤ 0.

Lemma C.4. With probability at least 1− δ/2, for every t ∈ [T ] and r ∈ RH , it holds that

∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣ ≤ R

√
log(6|R|/δ)

2K1
+ 2R

√
2 log(6|R|/δ)

N
:= ϵ̃approx

Proof. Fix r ∈ RH , and note that∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣

≤
∣∣∣Eτ∼Dt

rollout
[r(τ)]− Eτ∼πt [r(τ)]

∣∣∣+ ∣∣Eτ∼Dtraj [r(τ)]− Eτ∼µ[r(τ)]
∣∣

+
∣∣E(τ0,τ1)∼Dtraj

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]
− E(τ0,τ1)∼µ

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]∣∣ .
Since |r(τ)| ≤ R and |(r− r̂)(τ)| ≤ R for any trajectory τ , each term can be bounded by Hoeffding
inequality. Specifically, each of these three events occurs with probability at least 1− δ/6:

∣∣∣Eτ∼Dt
rollout

[r(τ)]− Eτ∼πt [r(τ)]
∣∣∣ ≤ R

√
log(6/δ)

2K1
,

∣∣Eτ∼Dtraj [r(τ)]− Eτ∼µ[r(τ)]
∣∣ ≤ R√ log(6/δ)

2N
,

∣∣E(τ0,τ1)∼Dtraj

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]
− E(τ0,τ1)∼µ

[
(r − r̂)(τ0)− (r − r̂)(τ1)

]∣∣ ≤ 2R

√
log(6/δ)

2N
.

Taking union bound over these events and all r ∈ RH , with probability at least 1− δ/2, it holds that

∣∣∣Ltopt(r; r̂)− L̂topt(r; r̂)
∣∣∣ ≤ R

√
log(6|R|/δ)

2K1
+R

√
log(6|R|/δ)

2N
+ 2R

√
log(6|R|/δ)

2N

≤ R

√
log(6|R|/δ)

2K1
+ 2R

√
2 log(6|R|/δ)

N

for every r ∈ RH .
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C.2 POLICY UPDATE

We present the guarantee regarding the policy update steps. The proofs in this section are based on
the standard analysis of the natural policy gradient (also referred to as trust region policy optimiza-
tion) (Cai et al., 2020; Chang et al., 2024).

Lemma C.5. With probability at least 1− δ/4, it holds that

1

T

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
≤ RH

√
log |A|
2T

+ 2HϵPE

√
2CST

Proof of Lemma C.5. The performance difference lemma (Lemma E.1) implies that

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)

=

T∑
t=1

Eπ⋆

[
H∑
h=1

⟨Qπ
t

h,rt(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

=

T∑
t=1

H∑
h=1

Es∼dπ⋆

h

[
⟨Q̄th(s, ·), π⋆h(· | s)− πth(· | s)⟩

]
︸ ︷︷ ︸

(I)

+

T∑
t=1

H∑
h=1

Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h(· | sh)− πth(· | sh)⟩
]

︸ ︷︷ ︸
(II)

Bounding (I). Decompose the inner product inside the expectation:

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πth(· | s)⟩
⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1

h (· | s)⟩+ ⟨ηQ̄th(sh, ·), πt+1
h (· | s)− πth(· | s)⟩

≤ ⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ η

∥∥Q̄th(sh, ·)∥∥∞ ∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

≤ ⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ ηR

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

(9)

where we use Hölder’s inequality with the fact that
∥∥Q̄th∥∥∞ ≤ R. Now recall that the policy update

step (Line 7) in Algorithm 1 leads to

πt+1
h (· | s) = 1

Zth(s)
πth(· | s) exp

(
ηQ̄th(s, ·)

)
where Zth(s) =

∑
a∈A π

t
h(a | s) exp

(
ηQ̄th(s, a)

)
. Using the relationship ηQ̄th(s, a) = logZth(s) +

log πt+1
h (a | s)− log πth(a | s), it holds that

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩

= ⟨logZth(s) + log πt+1
h (· | s)− log πth(· | s), π⋆h(· | s)− πt+1

h (· | s)⟩
= ⟨log πt+1

h (· | s)− log πth(· | s), π⋆(· | s)− πt+1
h (· | s)⟩

= ⟨log πt+1
h (· | s)− log πth(· | s), π⋆(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= ⟨log

πt+1
h (· | s)
π⋆h(· | s)

+ log
π⋆h(· | s)
πth(· | s)

, π⋆h(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
−DKL

(
πt+1
h (· | s)∥πth(· | s)

)
≤ DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1
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where the second equality holds since Zth(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (9), we obtain

T∑
t=1

⟨ηQ̄th(sh, ·), π⋆h(· | s)− πth(· | s)⟩

=

T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

(
ηR
∥∥π⋆h(· | s)− πt+1

h (· | s)
∥∥
1
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

)

≤
T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

η2R2

2

= DKL

(
π⋆h(· | s)∥π1

h(· | s)
)
−DKL

(
π⋆h(· | s)∥πT+1

h (· | s)
)
+
η2R2T

2

≤ log |A|+ η2R2T

2

where the first inequality holds since ∀x ∈ R ax − x2/2 ≤ a2/2, and the second inequality holds

due to the fact that π1
h = Unif(A). Finally, setting η =

√
2 log |A|
R2T , (I) is bounded by

(I) =
H∑
h=1

Es∼dπ⋆

h

[
T∑
t=1

⟨Q̄th(s, ·), π⋆(· | s)− πt(· | s)⟩

]

≤
H∑
h=1

log |A|
η

+
ηR2T

2
= RH

√
T log |A|

2

Bounding (II). We condition on the event defined by Lemma B.1. Then we have

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h⟩
]∣∣∣

=
∣∣∣E(s,a)∼dπ⋆

h

[
Qπ

t

h,rt(s, a)− Q̄th(s, a)
]∣∣∣

≤

√
E(s,a)∼dπ⋆

h

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√√√√2

(
max
h∈[H]

sup
(s,a)∈S×A

dπ
⋆

h (s, a)

dµh(s, a)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤
√
2CSTϵ2PE

where the first inequality holds due to Jensen’s inequality, the second inequality uses importance
sampling, and the last inequality uses Lemma B.1.
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∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), πth⟩
]∣∣∣

=
∣∣∣Es∼dπ⋆

h ,a∼πt
h

[
Qπ

t

h,rt(s, a)− Q̄th(s, a)
]∣∣∣

≤

√
Es∼dπ⋆

h ,a∼πt
h

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√
2

(
max
h∈[H]

sup
s∈S

dπ
⋆

h (s)

dµh(s)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤

√
2

(
max
h∈[H]

sup
s∈S

dπ
⋆

h (s)

dµh(s)

)
Es∼dµh,a∼ 1

2 (π
t
h+µh)

[(
Qπ

t

h,rt(s, a)− Q̄th(s, a)
)2]

≤
√
2CSTϵ2PE.

Therefore, we obtain the bound

(II) ≤
T∑
t=1

H∑
h=1

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), π⋆h(· | sh)⟩
]∣∣∣

+

T∑
t=1

H∑
h=1

∣∣∣Es∼dπ⋆

h

[
⟨(Qπ

t

h,rt − Q̄th)(s, ·), πth(· | sh)⟩
]∣∣∣

≤ 2THϵPE

√
2CST.

We conclude the proof by combining the bounds on (I) and (II).

Now we prove Theorem C.2 based on the lemmas.

Proof of Theorem C.2. We condition on the event defined by Lemma E.2 (with δ′ = δ/4),
Lemma C.3, and Lemma C.5, which hold simultaneously with probability at least 1 − δ. Consider
the following sub-optimality decomposition at step t:

V π
⋆

1,r⋆ − V π
t

1,r⋆ = V π
⋆

1,r⋆ − V π
⋆

1,r̂ + V π
⋆

1,r̂ − V π
⋆

1,rt + V π
⋆

1,rt − V π
t

1,r⋆ + V π
t

1,rt − V π
t

1,rt

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE estimation error

+ V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

, (10)

where we omit the initial state s1 for simplicity.

Bounding (I). Since we condition on the event defined by Lemma E.2, we have

(I) = V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂

= Eτ0∼π⋆,τ1∼µ
[
r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)

]
≤
√
Eτ0∼π⋆,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTREτ0,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTRϵr(δ/4).
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Bounding (II). We can relate the terms V π
⋆

1,r̂−rt − V
µ
1,r̂−rt to E(rt;P ⋆, r̂). By Assumption 4, we

have that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt

= Eτ0∼π⋆,τ1∼µ
[
r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)

]
≤ CTREτ0,τ1∼µ

[
|r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)|

]
= CTRE(rt; r̂) ≤ λE(rt; r̂)

where the last inequality holds since E(rt; r̂) is non-negative and λ ≥ CTR. Further, Lemma C.3
implies

λE(rt; r̂) ≤ V π
t

1,r⋆ − V
µ
1,r⋆ − V π

t

1,rt + V µ1,rt + λE(r⋆; r̂) + 2ϵ̃approx

≤ V π
t

1,r⋆ − V
µ
1,r⋆ − V π

t

1,rt + V µ1,rt + λϵ̃r(δ/4) + 2ϵ̃approx

where the last inequality holds due to Lemma E.2:

E(r⋆; r̂) = Eτ0,τ1∼µ
[
|r̂(τ0)− r̂(τ1)− r⋆(τ0) + r⋆(τ1)|

]
≤
√

Eτ0,τ1∼µ [|r̂(τ0)− r̂(τ1)− r⋆(τ0) + r⋆(τ1)|2] ≤ ϵr(δ/4).

Therefore, we have

(II) ≤ λϵr(δ/4) + 2ϵ̃approx.

Bounding Sub-optimality. Putting the bounds on (I) and (II) into (10), we have

V π
⋆

1,r⋆ − V π
t

1,r⋆

≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx + V π

⋆

1,rt − V π
t

1,rt (11)

Since Algorithm 1 returns the mixture policy π̂ = 1
T

∑T
t=1 π

t, the sub-optimality is V π
⋆

1,r⋆ −V π̂1,r⋆ =
1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
. Using the bound in (11) and Lemma C.5, it holds that

V π
⋆

1,r⋆ − V π̂1,r⋆

=
1

T

T∑
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx +

1

T

T∑
t=1

(
V π

⋆

1,rt − V π
t

1,rt

)
≤
√
CTRϵr(δ/4) + λϵr(δ/4) + 2ϵ̃approx +RH

√
log |A|
2T

+ 2HϵPE

√
CST

≤ O

√log
|R|
δ

(
CTRκ

√
H√

M
+

R√
K1

+
R√
N

)
+RH

√
log |A|
T

+RH

√
CST

K2
log

TH|F|
δ
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D DETAILED PROOF OF THEOREM 4.1

For simplicity, we introduce some notations regarding optimization objectives in Algorithm 2. For
f ∈ FH , we define

L̂topt(f ; P̃ , r̃) :=

H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
+ λÊDtraj(f ; P̃ , r̃)

and its population version as

Ltopt(f ; P̃ , r̃) :=

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]
+ λE(f ; P̃ , r̃)

D.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optimization objective L̂topt(f ; P̂ , r̂) is close to its
population versionLtopt(f ; P̃ , r̃). The result ensures that f t is a good approximation for the solutions
to the optimization program with infinite samples, i.e.

f t ≈ argmin
f∈FH

Ltopt(f ;P
⋆, r̂).

Remark. For this section, we assume that the maximum likelihood transition estimator P̂ is com-
puted using half of Dtraj, and the losses L̂topt(f ; P̂ , r̂) are computed from the other half. This in-
creases the sample complexity only by a constant factor but helps avoid union bound over P in the
proof of Lemma D.2.

Lemma D.1. With probability at least 1− δ/2, for all t ∈ [T ], we have that

Ltopt(f
t; r̂) ≤ Ltopt(Q

πt

; r̂) + 2ϵapprox

where ϵapprox is defined in Lemma D.2.

Proof. Consider this decomposition:

Ltopt(f
t; r̂)− Ltopt(Q

πt

; r̂)

= Ltopt(f
t; r̂)− L̂topt(f

t; P̂ , r̂)︸ ︷︷ ︸
(I)

+ L̂topt(f
t; P̂ , r̂)− L̂topt(Q

πt

; P̂ , r̂)︸ ︷︷ ︸
(II)

+ L̂topt(Q
πt

; P̂ , r̂)− Ltopt(Q
πt

; r̂)︸ ︷︷ ︸
(III)

.

Conditioned on the event defined by Lemma D.2, (I) and (III) are bounded by ϵapprox. Moreover,
the optimality of f t implies (II)≤ 0.

Lemma D.2. With probability at least 1− δ/2, for every t ∈ [T ] and f ∈ FH , it holds that∣∣∣L̂topt(f ; P̂ , r̂)− Ltopt(f ; r̂)
∣∣∣ ≤ 8R

√
H3T log(8H|F|/δ)

N
+ 2RHϵP (δ/8) := ϵapprox.

Proof. Due to the policy update in Line 7 of Algorithm 2, the policies {πth}(t,h)∈[T ]×[H] belongs to
the following function class:

Π =

π(a | s) = exp
(∑T

i=1 ηf
i(s, a)

)
∑
a′∈A exp

(∑T
i=1 ηf

i(s, a′)
) : f i ∈ F for all i ∈ [T ]

 .

It is clear that |Π| ≤ |F|T .
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Step 1. Fix h ∈ [H], f ∈ F , and π ∈ Π. Since |f ◦ π(s)| ≤ R for all s ∈ S, Hoeffding inequality
implies that

∣∣∣Esh∈Dtraj [f ◦ π(sh)]− Esh∼dµh [f ◦ π(sh)]
∣∣∣ ≤ R√ log(8/δ)

2N

with probability at least 1− δ/8. Similarly, since |f(s, a)| ≤ R for all (s, a) ∈ S ×A, it holds that

∣∣∣E(sh,ah)∼Dtraj [f(sh, ah)]− E(sh,ah)∼dµh [f(sh, ah)]
∣∣∣ ≤ R√ log(8/δ)

2N

with probability at least 1− δ/8. Thus, with probability at least 1− δ/4, we have∣∣∣E(sh,ah)∼Dtraj [f ◦ π(sh)− f(sh, ah)]− E(sh,ah)∼dµh [f ◦ π(sh)− f(sh, ah)]
∣∣∣

≤
∣∣∣E(sh,ah)∼Dtraj [f ◦ π(sh)]− E(sh,ah)∼dµh [f ◦ π(sh)]

∣∣∣
+
∣∣∣E(sh,ah)∼Dtraj [f(sh, ah)]− E(sh,ah)∼dµh [f(sh, ah)]

∣∣∣
≤ R

√
2 log(8/δ)

N
.

Consider union bound over all h ∈ [H], f ∈ F , and π ∈ Π. Since πth ∈ Π for every (t, h) ∈
[T ]× [H], with probability at least 1− δ/4, we have∣∣∣∣∣

H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
−

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣∣∣
≤

H∑
h=1

∣∣∣E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
− E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣
≤ RH

√
2 log(8H|F||Π|/δ)

N
≤ 2RH

√
T log(8H|F|/δ)

N
.

for every f ∈ F .

Step 2. We have that

|ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ |ÊDtraj(f ; P̂ , r̂)− E(f ; P̂ , r̂)|+ |E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)|. (12)

Again, we use Hoeffding inequality to bound the first term. Fix f ∈ FH and π = {πh}Hh=1 ∈ ΠH

and consider the function rπ
P̂ ,f

(Recall that rπ
h,P̂ ,f

(s, a) = fh(s, a) − P̂ (fh+1 ◦ πh+1)(s, a) for all
h ∈ [H] and (s, a) ∈ S ×A). Since |(rπ

P̂ ,f
− r̂)(τ)| ≤ 2RH for any trajectory τ , we have that∣∣∣E(τ0,τ1)∼Dtraj

[∣∣∣(rπ
P̂ ,f
− r̂)(τ0)− (rπ

P̂ ,f
− r̂)(τ1)

∣∣∣]− E(τ0,τ1)∼µ

[∣∣∣(rπ
P̂ ,f
− r̂)(τ0)− (rπ

P̂ ,f
− r̂)(τ1)

∣∣∣]∣∣∣
≤ 2RH

√
2 log(8/δ)

N

with probability at least 1−δ/8. Applying union bound over all f ∈ FH and π ∈ ΠH , since πth ∈ Π
for every (t, h) ∈ [T ]× [H], it holds that

|ÊDtraj(f ; P̂ , r̂)− E(f ; P̂ , r̂)| ≤ 2RH

√
2H log(8|F||Π|/δ)

N
≤ 4RH

√
HT log(8|F|/δ)

N
(13)

for every f ∈ F , with probability at least 1− δ/8.
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On the other hand, the second term in (12) is bounded by

|E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)|

≤ E(τ0,τ1)∼µ

[∣∣∣∣∣
H∑
h=1

(P ⋆ − P̂ )(fh ◦ πth)(s0h, a0h)−
H∑
h=1

(P ⋆ − P̂ )(fh ◦ πth)(s1h, a1h)

∣∣∣∣∣
]

≤ Eτ0∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(s0h, a0h)∣∣∣
]
+ Eτ1∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(s1h, a1h)∣∣∣
]

= 2Eτ∼µ

[
H∑
h=1

∣∣∣(P ⋆ − P̂ )(fh ◦ πth)(sh, ah)∣∣∣
]

≤ 2REτ∼µ

[
H∑
h=1

∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]

= 2R

H∑
h=1

E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]
where the first inequality holds since we have ||a| − |b|| ≤ |a − b| for all a, b ∈ R, and the
third inequality holds due to Hölder’s inequality with the fact that ∥fh ◦ πth∥∞ ≤ R. Furthermore,
Lemma E.3 implies

|E(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ 2R

H∑
h=1

E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥
1

]

≤ 2R

H∑
h=1

√
E(sh,ah)∼dµh

[∥∥∥P ⋆(· | sh, ah)− P̂ (· | sh, ah)∥∥∥2
1

]
≤ 2RHϵP (δ/8) (14)

with probability at least 1−δ/8. Taking union bound of the two event (13) and (14), with probability
at least 1− δ/4, it holds that

|ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)| ≤ 2RH

√
HT log(8|F|/δ)

N
+ 2RHϵP (δ/8)

for every f ∈ F .

Finally, we conclude the proof by combining the bounds in Step 1 and Step 2. With probability at
least 1− δ/2, for every f ∈ F , it hols that∣∣∣L̂topt(f ; P̂ , r̂)− Ltopt(f ; r̂)

∣∣∣
≤

∣∣∣∣∣
H∑
h=1

E(sh,ah)∼Dtraj

[
fh ◦ πth(sh)− fh(sh, ah)

]
−

H∑
h=1

E(sh,ah)∼dµh

[
fh ◦ πth(sh)− fh(sh, ah)

]∣∣∣∣∣
+
∣∣∣ÊDtraj(f ; P̂ , r̂)− E(f ;P ⋆, r̂)

∣∣∣
≤ 4RH

√
T log(8H|F|/δ)

N
+ 2RH

√
HT log(8|F|/δ)

N
+ 2RHϵP (δ/8)

≤ 8R

√
H3T log(8H|F|/δ)

N
+ 2RHϵP (δ/8).

D.2 POLICY UPDATE

The analysis of the policy update step in Algorithm 2 follows the same argument in Lemma C.5.
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Lemma D.3. For any sequence of functions {f t}Tt=1, the policy update (Line 7) in Algorithm 2
guarantees that

1

T

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
≤ RH

√
log |A|
2T

where rt = rπ
t

P⋆,ft , i.e. rth(s, a) = f th(s, a) − P ⋆(f th+1 ◦ πth+1)(s, a) for all h ∈ [H] and (s, a) ∈
S ×A.

Proof. Since we have the Bellman equation f th = rth + P ⋆h (f
t
h+1 ◦ πth+1) for all h ∈ [H], we can

apply the performance difference lemma (Lemma E.1) to obtain

T∑
t=1

(
V π

⋆

1,rt(s1)− V π
t

1,rt(s1)
)
=

T∑
t=1

H∑
h=1

Eπ⋆

[
⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]
.

Rearranging the inner product term, we see that

⟨ηf th(sh, ·), π⋆h(· | s)− πth(· | s)⟩
⟨ηf th(sh, ·), π⋆h(· | s)− πt+1

h (· | s)⟩+ ⟨ηf th(sh, ·), πt+1
h (· | s)− πth(· | s)⟩

≤ ⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ η

∥∥f th(sh, ·)∥∥∞ ∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

≤ ⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩+ ηR

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥
1

(15)

where we use Hölder’s inequality with the fact that ∥f th∥∞ ≤ R. Now recall that the policy update
step in Algorithm 3 leads to

πt+1
h (· | s) = 1

Zth(s)
πth(· | s) exp

(
ηf th(s, ·)

)
where Zth(s) =

∑
a∈A π

t
h(a | s) exp (ηf th(s, a)). Using the relationship ηf th(s, a) = logZth(s) +

log πt+1
h (a | s)− log πth(a | s), it holds that

⟨ηf th(sh, ·), π⋆h(· | s)− πt+1
h (· | s)⟩

= ⟨logZth(s) + log πt+1
h (· | s)− log πth(· | s), π⋆h(· | s)− πt+1

h (· | s)⟩
= ⟨log πt+1

h (· | s)− log πth(· | s), π⋆(· | s)− πt+1
h (· | s)⟩

= ⟨log πt+1
h (· | s)− log πth(· | s), π⋆(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= ⟨log

πt+1
h (· | s)
π⋆h(· | s)

+ log
π⋆h(· | s)
πth(· | s)

, π⋆h(· | s)⟩ −DKL

(
πt+1
h (· | s)∥πth(· | s)

)
= DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
−DKL

(
πt+1
h (· | s)∥πth(· | s)

)
≤ DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
)
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

where the second equality holds since Zth(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (15), we obtain
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T∑
t=1

⟨ηf th(sh, ·), π⋆h(· | s)− πth(· | s)⟩

=

T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

(
ηR
∥∥π⋆h(· | s)− πt+1

h (· | s)
∥∥
1
− 1

2

∥∥π⋆h(· | s)− πt+1
h (· | s)

∥∥2
1

)

≤
T∑
t=1

(
DKL

(
π⋆h(· | s)∥πth(· | s)

)
−DKL

(
π⋆h(· | s)∥πt+1

h (· | s)
))

+

T∑
t=1

η2R2

2

= DKL

(
π⋆h(· | s)∥π1

h(· | s)
)
−DKL

(
π⋆h(· | s)∥πT+1

h (· | s)
)
+
η2R2T

2

≤ log |A|+ η2R2T

2

where the first inequality holds since ∀x ∈ R ax − x2/2 ≤ a2/2, and the second inequality holds

due to the fact that π1
h = Unif(A). Finally, setting η =

√
2 log |A|
R2T , we have

T∑
t=1

V π
⋆

1,rt − V π
t

1,rt =

T∑
t=1

Eπ⋆

[
H∑
h=1

⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

=

H∑
h=1

Eπ⋆

[
T∑
t=1

⟨f th(sh, ·), π⋆h(· | sh)− πth(· | sh)⟩

]

≤
H∑
h=1

(
log |A|
η

+
ηR2T

2

)
= RH

√
T log |A|

2
.

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. For simplicity, we write rt = rπ
t

P⋆,ft , i.e. rth(s, a) = f th(s, a) − P ⋆h (f th+1 ◦
πth+1)(s, a) for all (s, a) ∈ S × A and h ∈ [H]. The condition rt ∈ RH is not required; we only
rely on the boundedness ∥rth∥∞ ≤ R for all h, which Assumption 3 guarantees.

Condition on the events in Lemma E.2 (with δ′ = δ/2) and Lemma D.1, which hold simultaneously
with probability at least 1− δ. Consider the following sub-optimality decomposition at step t:

V π
⋆

1,r⋆ − V π
t

1,r⋆ = V π
⋆

1,r⋆ − V π
⋆

1,r̂ + V π
⋆

1,r̂ − V π
⋆

1,rt + V π
⋆

1,rt − V π
t

1,r⋆ + V π
t

1,rt − V π
t

1,rt

= V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂︸ ︷︷ ︸

(I) : MLE estimation error

+ V π
⋆

1,r̂−rt − V
µ
1,r̂−rt − V

πt

1,r⋆ + V µ1,r⋆ + V π
t

1,rt − V
µ
1,rt︸ ︷︷ ︸

(II) : Optimization error

+ V π
⋆

1,rt − V π
t

1,rt︸ ︷︷ ︸
(III) : Policy update regret

, (16)

where we omit the initial state s1 for simplicity.
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Bounding (I). Using Lemma E.2, the MLE estimation error is bounded by:

(I) = V π
⋆

1,r⋆−r̂ − V
µ
1,r⋆−r̂

= Eτ0∼π⋆,τ1∼µ
[
r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)

]
≤
√
Eτ0∼π⋆,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTREτ0,τ1∼µ [|r⋆(τ0)− r⋆(τ1)− r̂(τ0) + r̂(τ1)|2]

≤
√
CTRϵr(δ/2)

Bounding (II). We can relate the terms V π
⋆

1,r̂−rt−V
µ
1,r̂−rt to the trajectory-pair ℓ1 loss E(f t;P ⋆, r̂).

By Assumption 4, we have that

V π
⋆

1,r̂−rt − V
µ
1,r̂−rt

= Eτ0∼π⋆,τ1∼µ
[
r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)

]
≤ CTREτ0,τ1∼µ

[
|r̂(τ0)− r̂(τ1)− rt(τ0) + rt(τ1)|

]
= CTREτ0,τ1∼µ

[
|rπ

t

P⋆,ft(τ0)− rπ
t

P⋆,ft(τ1)− r̂(τ0) + r̂(τ1)|
]

= CTRE(f t;P ⋆, r̂) ≤ λE(f t;P ⋆, r̂)

where the last inequality holds since E(f t;P ⋆, r̂) is non-negative and λ ≥ CTR. Further, Lemma D.1
and Lemma E.1 implies

λE(f t;P ⋆, r̂) ≤
H∑
h=1

E(sh,ah)∼dµh

[
Qπ

t

h ◦ πth(sh)−Qπ
t

h (sh, ah)
]
+ λE(Qπ

t

;P ⋆, r̂)

−
H∑
h=1

E(sh,ah)∼dµh

[
f th ◦ πth(sh)− f th(sh, ah)

]
+ 2ϵapprox

=
(
V π

t

1,r⋆ − V
µ
1,r⋆

)
+ λE(Qπ

t

;P ⋆, r̂)−
(
V π

t

1,rt − V
µ
1,rt

)
+ 2ϵapprox.

On the other hand, note that

rπ
t

P⋆,Qπt (τ) =

H∑
h=1

(
Qπ

t

h (sh, ah)− P ⋆(Qπ
t

h+1 ◦ πth+1)(sh, ah)
)

=

H∑
h=1

(
Qπ

t

h (sh, ah)− P ⋆V π
t

h+1(sh, ah)
)

=

H∑
h=1

r⋆h(sh, ah) = r⋆(τ)

for any τ = (s1, a1, . . . , sH , aH), i.e. rπ
t

P⋆,Qπt = r⋆. Thus, we have

λE(Qπ
t

;P ⋆, r̂) = λE(τ0,τ1)∼µ
[∣∣{r⋆(τ0)− r⋆(τ1)} − {r̂(τ0)− r̂(τ1)}∣∣]

≤ λ
√

E(τ0,τ1)∼µ

[
|{r⋆(τ0)− r⋆(τ1)} − {r̂(τ0)− r̂(τ1)}|2

]
≤ λϵr(δ/2)

where the inequality follows from Lemma E.2. Combining the results, we obtain

(II) =
(
V π

⋆

1,r̂−rt − V
µ
1,r̂−rt

)
−
(
V π

t

1,r⋆ − V
µ
1,r⋆

)
+
(
V π

t

1,rt − V
µ
1,rt

)
≤ λE(Qπ

t

;P ⋆, r̂) + 2ϵapprox ≤ λϵr(δ/2) + 2ϵapprox
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Bounding Sub-optimality. Finally, we bound the sub-optimality V π
⋆

1,r⋆−V π̂1,r⋆ . Putting the bounds
on (I) and (II) into (16), we have

V π
⋆

1,r⋆ − V π
t

1,r⋆

≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox + V π

⋆

1,rt − V π
t

1,rt

Since Algorithm 2 returns the mixture policy π̂ = 1
T

∑T
t=1 π

t, the sub-optimality is V π
⋆

1,r⋆ −V π̂1,r⋆ =
1
T

∑T
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
. Using the bounds we derived and Lemma D.3, it holds that

V π
⋆

1,r⋆ − V π̂1,r⋆

=
1

T

T∑
t=1

(
V π

⋆

1,r⋆ − V π
t

1,r⋆

)
≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox +

1

T

T∑
t=1

(
V π

⋆

1,rt − V π
t

1,rt

)
≤
√
CTRϵr(δ/2) + λϵr(δ/2) + 2ϵapprox +RH

√
log |A|
2T

≤ O

(
CTR

√
κ2H log(|R|/δ)

M
+R

√
H3T log(H|F|/δ)

N
+RH

√
log(H|P|/δ)

N
+RH

√
log |A|
T

)

≤ O

(
CTR

√
κ2H log(|R|/δ)

M
+RH

√
max{HT log(H|F|/δ), log(H|P|/δ)}

N
+RH

√
log |A|
T

)
.

E SUPPORTING LEMMAS

Lemma E.1 (Performance Difference Lemma (Kakade & Langford, 2002)). Let P be any transition
probability, and denote the corresponding value function by V . Let π, p̃i be any policies. For any
reward r, we have that

V π1,r(s1)− V π̃1,r(s1) =
H∑
h=1

Esh∼dπh
[
⟨Qπ̃h,r(sh, ·), π(· | sh)− π̃(· | sh)⟩

]
Proof. Recursively applying the Bellman equation, we obtain

V π1,r(s1)− V π̃1,r(s1) = Eπ[r(s1, a1) + V π2,r(s2)]− Eπ[V π̃1,r(s1)]
= Eπ[Qπ̃1,r(s1, a1)− V π̃2,r(s2) + V π2,r(s2)]− Eπ[V π̃1,r(s1)]
= Eπ[Qπ̃1,r(s1, a1)− V π̃1,r(s1)] + Eπ[V π2,r(s2)− V π̃2,r(s2)]
= Eπ[⟨Qπ̃1,r(s1, ·), π(· | s1)− π̃(· | s1)⟩] + Eπ[V π2,r(s2)− V π̃2,r(s2)]
= · · ·

=

H∑
h=1

Esh∼dπh
[
⟨Qπ̃h,r(sh, ·), π(· | sh)− π̃(· | sh)⟩

]
.

Lemma E.2 (Lemma 2 in Zhan et al. (2024a)). With probability at least 1− δ′, we have

Eτ0,τ1∼µ
[
|(r̂(τ0)− r̂(τ1))− (r⋆(τ0)− r⋆(τ1))|2

]
≤ c1κ

2H log(|R|/δ′)
M

:= ϵ2r(δ
′)
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Lemma E.3 (Lemma 3 in Zhan et al. (2024a)). With probability at least 1 − δ′, for all h ∈ [H], it
holds that

E(sh,ah)∼dµh

[∥∥∥P̂h(· | sh, ah)− P ⋆(· | sh, ah)∥∥∥2
1

]
≤ c2 log(H|P|/δ′)

N
:= ϵ2P (δ

′)

where c2 is an absolute constant.

Lemma E.4 (Lemma 15 in Song et al. (2023)). Fix any B > 0, δ ∈ (0, 1) and assume we have a
class of real-valued functionsH : X → [−B,B]. Suppose we have K i.i.d. samples {(xk, yk)}Kk=1

where xk ∼ ρ and yk = h⋆(xk)+ϵk where h⋆ ∈ H and {ϵk}Kk=1 are independent random variables
such that E[ϵk | xk] = 0. Additionally, suppose that maxk |yk| ≤ R and supx∈X |h⋆(x)| ≤ B.
Then, with probability at least 1−δ, the least square estimator ĥ ∈ argminh∈H

∑K
k=1(h(xk)−yk)2

satisfies:

Ex∼ρ
[(
ĥ(x)− h⋆(x)

)2]
≤ c2B

2 log(|H|/δ)
K

where c2 is an absolute constant.

Algorithm 4 APPO (Practical version)

1: Input: Batch size B, Learning rates αϕ, αψ, αθ, constants λ > 0, τ ∈ (0, 1)
2: Train reward model r̂ based on Dpref ▷ Use any reward learning method
3: for step= 1, 2, . . . do
4: Sample mini-batch of transition tuples Btup and trajectory pairs Btraj from Dtraj

5: Train Q functions ϕi ← ϕi − αϕ∇ϕiLλϕi(Btup,Btraj) for i ∈ {1, 2} (6)
6: Update target Q function ϕ̄i = (1− τ)ϕ̄i + τϕi for i ∈ {1, 2}
7: Train V function ψ ← ψ − αψ∇ψLψ(Btup) (7)
8: Train actor θ ← θ + αθ∇θLθ(Btup) (8)
9: end for
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F ADDITIONAL EXPERIMENTS

F.1 EVALUATION ON THE META-WORLD medium-expert DATASET

To further assess the generalization capability of APPO, we collected the Meta-World
medium-expert dataset following the data collection procedures outlined in prior works (Hejna
& Sadigh, 2024; Choi et al., 2024). Detailed information on the dataset is provided in Section G.
For comparison, we use MR, the most effective baseline method identified in Table 1. The results in
Table 2 show that APPO consistently outperforms or matches MR.

# of feedback 500 1000

Dataset dial-turn sweep-into dial-turn sweep-into

MR 15.80±12.73 14.32±3.39 26.08±18.78 8.48±1.92

APPO 32.40±13.56 12.80±5.35 39.20±15.69 14.56±6.25

Table 2: Success rates on Meta-World medium-expert dataset with 500, 1000 preference feedback
samples, averaged over 5 random seeds.

F.2 EFFECT OF DATASET SIZE
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Figure 3: Success rates of APPO and MR evaluated in Meta-World medium-replay datasets, with
varying dataset sizes. The number of preference feedback samples is fixed at 1000.

To examine the impact of dataset size |Dtraj|, we conducted experiments with varying sizes of the
Meta-World medium-replay datasets. As shown in Figure 3, the performance of MR fluctuates
with changes in dataset size, whereas the performance of APPO exhibits a more consistent and grad-
ual response to dataset size variations.

F.3 LEARNING CURVES FROM EXPERIMENTS.

Figure 4 and Figure 5 show the learning curves of the experiments in Table 1 and Table 2. Each
algorithm is trained for 250,000 gradient steps, with evaluations conducted every 5,000 steps. The
success rates from the final five evaluation points are averaged and reported in Table 1 and Table 2.
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Dataset BPT box-close dial-turn sweep BPT-wall sweep-into drawer-open lever-pull

Size (×105) 1.0 8.0 3.0 7.0 1.5 1.0 1.0 3.0

Table 3: The sizes of Meta-World medium-replay datasets (Choi et al., 2024). The abbreviation
BPT indicates button-press-topdown.

G EXPERIMENTAL DETAILS

G.1 DATASETS

The Meta-World medium-replay dataset from Choi et al. (2024) consists of replay buffers gener-
ated by SAC (Haarnoja et al., 2018) agents with an approximate success rate of 50%. The dataset
sizes are detailed in Table 3.

The Meta-World medium-expert dataset was collected following the procedures described in prior
works (Hejna & Sadigh, 2024; Choi et al., 2024). Each dataset contains trajectories from five
sources: (1) an expert policy, (2) expert policies for randomized variants and goals of the task,
(3) expert policies for different tasks, (4) a random policy, and (5) an ϵ-greedy expert policy that
takes greedy actions with a 50% probability. These trajectories are included in the dataset in propor-
tions of 1 : 1 : 2 : 4 : 4, respectively. Additionally, standard Gaussian noise was added to the actions
of each policy. The dataset sizes match those of the medium-replay dataset.

G.2 IMPLEMENTATION AND HYPERPARAMETERS.

For a fair comparison with baseline methods, we train the reward model and MR following the offi-
cial implementation of Choi et al. (2024). The reward model is implemented by an ensemble model
of three fully connected neural networks with three hidden layers, each containing 128 neurons. For
critics (Q and V) and policies, we use fully connected neural networks with three hidden layers of
256 neurons each. Other hyperparameters are listed in Table 4. We find that using a lower learning
rate for π and softer target network updates improves the stability of APPO training. Experiments
were conducted on an Intel Xeon Gold 6226R CPU and an Nvidia GeForce RTX 3090 GPU. Each
training session consists of 250,000 gradient steps, taking approximately 3-4 hours to complete. Our
code is available at https://github.com/oh-lab/APPO.git.
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Algorithm Component Value

Reward model

Neural networks 3-layers, hidden dimension 128
Activation ReLU for hidden activations, Tanh for final activation
Optimizer Adam (Kingma & Ba, 2015) with learning rate 1e-3
Batch size 512
Epochs 300
Ensembles 3

MR

Neural networks (Q, V, π) 3-layers, hidden dimension 256
Activaton ReLU for hidden activations
Q, V, π optimizer Adam with learning rate 3e-4
Batch size 256
Target network soft update 0.005
β (IQL advantage weight) 3.0
τ (IQL expectile parameter) 0.7
discount factor 0.99

APPO

Neural networks (Q, V, π) 3-layers, hidden dimension 256
Activaton LeakyReLU for hidden activations
Q,V, α optimizer Adam with learning rate 3e-4
π optimizer Adam with learning rate 3e-5
Batch size 256 transitions and 16 trajectory pairs
Target network soft update 0.001
discount factor 0.99

Table 4: Implementation details and hyperparameters. For the reward model and MR algorithm, we
follow the official implementation of Choi et al. (2024).
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Figure 4: Learning Curves from the experiments in Table 1.
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Figure 5: Learning Curves from the experiments in Table 2.

35


	Introduction
	Related Work

	Preliminaries
	Algorithm
	PbRL as a Two-player Game
	Adversarial Optimization for PbRL
	APPO: Reparameterized Algorithm for Unknown Transition

	Theoretical Analysis
	Practical Implementation of APPO
	Experiments
	Evaluation Results

	Additional Related Work
	Details on the Policy Evaluation Subroutine
	Theoretical Analysis of APPO-rollout
	Optimization Error
	Policy Update

	Detailed Proof of Theorem 4.1
	Optimization Error
	Policy Update

	Supporting Lemmas
	Additional Experiments
	Evaluation on the Meta-World medium-expert Dataset
	Effect of Dataset Size
	Learning Curves from Experiments.

	Experimental Details
	Datasets
	Implementation and Hyperparameters.


