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ABSTRACT

Combining data from different sources can improve data analysis tasks such as
clustering. However, most of the current multi-view clustering methods are limited
to specific domains or rely on a suboptimal and computationally intensive two-stage
process of representation learning and clustering. We propose an end-to-end deep
learning-based multi-view clustering framework for general data types (such as
images and tables). Our approach involves generating meaningful fused representa-
tions using a novel permutation-based canonical correlation objective. We provide
a theoretical analysis showing how the learned embeddings approximate those
obtained by supervised linear discriminant analysis (LDA). Cluster assignments are
learned by identifying consistent pseudo-labels across multiple views. Additionally,
we establish a theoretical bound on the error caused by incorrect pseudo-labels
in the unsupervised representations compared to LDA. Extensive experiments on
ten multi-view clustering benchmark datasets provide empirical evidence for the
effectiveness of the proposed model.

1 INTRODUCTION

Clustering is an important task in data-driven scientific discovery that focuses on categorizing samples
into groups based on semantic relationships. This allows for a deeper understanding of complex
datasets and is used in various domains such as gene expression analysis in bioinformatics (Armingol
et al., 2021), efficient categorizing of large-scale medical images (Kart et al., 2021), and in collider
physics (Mikuni & Canelli, 2021). Existing clustering approaches can be broadly categorized as
centroid-based (Boley et al., 1999; Jain, 2010; Velmurugan & Santhanam, 2011), density-based
(Januzaj et al., 2004; Kriegel & Pfeifle, 2005; Chen & Tu, 2007; Duan et al., 2007), distribution-based
(Preheim et al., 2013; Jiang et al., 2011a), and hierarchical (Murtagh, 1983; Carlsson et al., 2010).
Multi-view clustering is an extension of the clustering paradigm that simultaneously leverages diverse
views of the same observations (Sun & Tao, 2014; Kumar et al., 2011; Li et al., 2018b).

The main idea behind multi-view clustering is to combine information from multiple data facets (or
views) to obtain a more comprehensive and accurate understanding of the underlying data structures.
Each view may capture distinct aspects or facets of the data, and by integrating them, we can discover
hidden patterns and relationships that might be obscured in any single view (Huang et al., 2012; Xu
et al., 2013). This approach has great potential in applications like communication systems content
delivery (Vázquez & Pérez-Neira, 2020), community detection in social networks (Zhao et al., 2022;
Shi et al., 2022), cancer subtype identification in bioinformatics (Wen et al., 2021), and personalized
genetic analysis through multi-modal clustering frameworks (Li et al., 2023; Kuang et al., 2024).

Existing multiview clustering (MVC) methods can be divided into traditional (non-deep) and deep
learning-based methods. Traditional MVC methods include: subspace (Cao et al., 2015; Luo et al.,
2018; Li et al., 2019a), matrix factorization (Zhao et al., 2017; Wen et al., 2018; Yang et al., 2021),
and graph learning-based methods (Nie et al., 2017; Zhan et al., 2017; Zhu et al., 2018). The main
drawbacks of the traditional methods are poor representation ability, high computation complexity,
and limited performance in real-world data (Guo & Ye, 2019).
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Recently, several deep learning-based MVC schemes have demonstrated promising representation
and clustering capabilities (Abavisani & Patel, 2018; Alwassel et al., 2019; Li et al., 2019b; Yin
et al., 2020; Wen et al., 2020; Xu et al., 2021a;b). Most of these methods adopt a two-stage approach,
where they first learn representations, followed by clustering, as seen in works such as Lin et al.
(2021); Xu et al. (2021b); Abavisani & Patel (2018); Alwassel et al. (2019); Li et al. (2019b); Cao
et al. (2015); Zhang et al. (2017a); Brbić & Kopriva (2018); Tang et al. (2018). However, such a
two-stage procedure can be computationally expensive and does not directly update the model’s
weights based on cluster assignments; therefore, it may lead to suboptimal results.

A few studies presented an end-to-end scheme for MV representation learning and clustering (Tang
& Liu, 2022; Trosten et al., 2021b; Chen et al., 2020; 2023; Sun et al., 2024; Chao et al., 2024; Gupta
et al., 2024)). By performing both tasks simultaneously, MVC can improve the data embeddings
by making them more suited for cluster assignments. However, the multi-view fusion process
used in these studies may not be adaptable to all types of data, which can limit their generalization
capabilities across a wide range of datasets.

We introduce a new approach called COrrelation-based PERmutations (COPER) that aims to address
the main challenges of multi-view clustering. Our deep learning model combines clustering and rep-
resentation learning tasks, providing an end-to-end MVC framework for fusion and clustering. This
eliminates the need for an additional step. The approach involves learning data representations through
a novel self-supervision technique, where within-class pseudo-labels are permuted (PER) across
different views for canonical correlation (CO) analysis loss. The proposed framework approximates
the same projection that would have been achieved by the (supervised) linear discriminant analysis
(LDA) method (Fisher, 1936), under some mild assumptions. This projection enhances clustering
capabilities as it maximizes between-class variance while minimizing within-class variation.

Table 1: Average performance.
Method ACC ARI NMI
DSMVC 48.6 34.1 47.2
CVCL 51.1 37.1 48.5
ICMVC 45.5 30.3 41.6
RMCNC 40.7 22.1 31.0
OPMC 55.9 41.4 52.9
MVCAN 44.1 29.5 40.9
AE 38.6 19.4 30.9
DCCA-AE 47.8 29.3 41.4
ℓ0-DCCA 44.2 26.8 40.8
COPER 61.6 47.8 54.0

Our main contributions are summarized as follows: (i) Develop
a deep learning model that exploits self-supervision and a CCA-
based objective for end-to-end MVC. (ii) Present a multi-view
pseudo-labeling procedure for identifying consistent labels
across views. (iii) Demonstrate empirically and theoretically
that within-cluster permutation can improve the usability of
CCA-based representations for MVC by enhancing cluster
separation. (iv) Analyze the relation between the solution of
our new permutation-based CCA procedure and the solution
obtained by the supervised LDA. Which further justifies the
usability of our model for MVC. This analysis indicates that our method can be applied to a broader
range of CCA-based methods. (v) Conduct a comprehensive experimental evaluation to demonstrate
the superiority of our proposed model over the state-of-the-art deep MVC models. In Table 1, we
summarize the average performance for all baselines on ten datasets: COPER improves the best
baselines in ACC, ARI, and NMI metrics.

2 BACKGROUND

2.1 CANONICAL CORRELATION ANALYSIS (CCA)

Canonical Correlation Analysis (CCA) (Harold, 1936; Thompson, 1984) is a well-celebrated statistical
framework for multi-view/modal representation learning. CCA can help analyze the associations
between two sets of paired observations. This framework and its nonlinear extensions (Bach &
Jordan, 2002; Michaeli et al., 2016; Lindenbaum et al., 2020; Salhov et al., 2020; Andrew et al.,
2013) have been applied in various domains, including biology (Pimentel et al., 2018), neuroscience
(Al-Shargie et al., 2017), medicine (Zhang et al., 2017b), and engineering (Chen et al., 2017).

The main goal of CCA is to find linear combinations of variables from each view, aiming to maximize
their correlation. Formally, denoting the observations as X(1) ∈ RD1×N and X(2) ∈ RD2×N , where
both modalities are centered and encompass N samples with D1 and D2 attributes, respectively.
CCA seeks for canonical vectors a ∈ RD1 and b ∈ RD2 such that u = aTX(1) and v = bTX(2).
The objective is to maximize correlations between these canonical variates, as represented by the
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Figure 1: Our proposed deep learning model, COrrelation-based PERmutations (COPER). Two
modalities v and w, are processed through view-specific encoders, creating latent embeddings (H(v)

and H(w)). The embeddings are learned using a correlation maximization loss and then fused to
serve as input for the clustering head. The clustering head estimates a probability matrix, denoted as
P , which is used to derive multi-view pseudo-labels. We then generate within-cluster permutations
based on these pseudo-labels. The permuted samples are used to update the CCA representation. By
changing the pairing of observations fed into the CCA objective, we enhance cluster separation and
extract embeddings that theoretically approximate the solution of supervised Linear Discriminant
Analysis (LDA), as demonstrated in Section 4.3.

following optimization task:

max
a,b ̸=0

aTX(1)(X(2))T b√
aTX(1)(X(1))Ta

√
bTX(2)(X(2))T b

. (1)

These canonical vectors can be found by solving the generalized eigenpair problem

C−1
1 C12C

−1
2 C21a = λa, C−1

2 C21C
−1
1 C12b = λb,

where C1,C2 are within view sample covariance matrices and C12,C21 are cross-view sample
covariance matrices.

Various extensions of CCA have been proposed to study non-linear relationships between the observed
modalities. Some kernel-based methods, such as Kernel CCA (Bach & Jordan, 2002), Non-parametric
CCA (Michaeli et al., 2016), and Multi-view Diffusion maps (Lindenbaum et al., 2015; Salhov et al.,
2020), explore non-linear connections within reproducing Hilbert spaces. However, these methods
are limited by pre-defined kernels, have restricted interpolation capabilities, and do not scale well
with large datasets.

To overcome these limitations Andrew et al. (2013) introduced Deep CCA (DCCA), which extends
traditional CCA by leveraging neural networks to model non-linear interactions between input
features. This enables more flexible and scalable modeling of complex relationships in large datasets.
Section 4.4.1 describes how we incorporate a DCCA objective to embed the multi-view data.

2.2 LINEAR DISCRIMINANT ANALYSIS (LDA)

Fisher’s linear discriminant analysis (LDA) aims to preserve variance while seeking the optimal linear
discriminant function (Fisher, 1936). Unlike unsupervised techniques such as principal component
analysis (PCA) or canonical correlation analysis (CCA), LDA is a supervised method that incorporates
categorical class label information to identify meaningful projections. LDA’s objective function is
designed to be maximized through a projection that increases the between-class scatter and reduces
the within-class scatter.

For a dataset X ∈ RN×D and it’s covariance matrix C, we denote the within-class covariance matrix
as Ce and the between-cluster covariance matrix as Ca.

The optimization for LDA can be formulated as the following form (left), and its corresponding
generalized eigenproblem (right):

max
h̸=0

hTCah

hTCeh
; → Cah = λCeh, C−1

e Cah = λh, (2)
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where h is the eigenvector that maximizes the LDA objective. The representation obtained by h is
ideal for clustering as it aims to maximize the distance between class means while minimizing the
variance within each class. A detailed formulation of LDA can be found in Appendix G.1. Despite
the ideal properties of LDAs representation, it is not traditionally used for unsupervised learning
tasks such as clustering as it requires labeled data for its objective. Several existing works use LDA
adaptations for feature extraction and dimensionality reduction for downstream clustering (Pang et al.,
2014; Zhu & Hastie, 2003).

2.3 SELF-SUPERVISION FOR CLUSTERING

Self-supervised learning is a method for acquiring meaningful data representations without using
labeled data. It leverages information from unlabeled samples to create tasks that do not require
manual annotations. In clustering tasks, self-supervision improves data representation learning by
assigning pseudo-labels to unlabeled data based on semantic similarities between samples.

In single-view data, two-stage clustering frameworks proposed by Caron et al. (2018; 2020); Nousi &
Tefas (2020) alternate between clustering and using the cluster assignments as pseudo-labels to revise
image representations. Niu et al. (2022) have introduced a pseudo-labeling method that encourages
the formation of more meaningful and coherent clusters that align with the semantic content of
the images. Their framework treats some pseudo-labels as reliable, synergizing the similarity and
discrepancy of the samples. For multi-view datasets, clustering and self-supervision frameworks (Xin
et al., 2021; Alwassel et al., 2019; Li et al., 2018a) offer loss components that enforce consensus in the
latent multi-view representations. We propose a novel pseudo-labeling scheme suited for a multi-view
setting, this scheme is suited for general data (image, tabular, etc.) and does not required any prior,
domain specific knowledge. One of our method’s critical and novel components is a simple update of
the corresponding pairing of samples in multi-view data. Furthermore, we show a theoretical analysis
that the obtained, updated CCA representation enhances cluster separation and is, therefore, suited
for clustering.

3 RELATED WORK

Several existing MVC methods incorporate Deep Canonical correlation analysis (DCCA) during
their representation learning phase. These methods obtain a useful representation by transforming
multiple views into maximally correlated embeddings using nonlinear transformations (Xin et al.,
2021; Chandar et al., 2016; Cao et al., 2015; Tang et al., 2018). However, these methods use a
suboptimal two-stage procedure, first creating the representation learned through DCCA and then
independently applying the clustering scheme.

A few end-to-end, multi-view DCCA-based clustering solutions have been proposed; these include
Tang et al. (2018), which update their representations to improve the clustering capabilities. We
have developed a model that belongs to the category of end-to-end representation learning and
clustering. However, we have introduced several new elements that set our approach apart from
existing schemes. These include a novel self-supervised permutation procedure that enhances the
representation, as well as a multi-view pseudo-label selection scheme. Empirical results show that
these new components significantly improve clustering capabilities, as presented in Section 5.1. In
addition, our self-supervised permutation procedure is invariant to any CCA-based method.

4 THE PROPOSED METHOD

4.1 PROBLEM SETUP

We are given a set of multi-view data X = {X(v) ∈ Rdv×N}nv
v=1 with nv views and N samples.

Each view is defined by X(v) = [x
(v)
1 ,x

(v)
2 , ...,x

(v)
N ] and each x

(v)
i is a dv-dimensional instance.

Our objective is to predict cluster assignment yi for each tuple of instances (x(1)
i ,x

(2)
i , ...,x

(nv)
i ), i =

1, ..., N in X and the number of clusters is K.
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4.2 HIGH LEVEL SOLUTION

At the core of our proposed solution are three complementary components based on multi-view
observations: (i) end-to-end representation learning, (ii) multi-view reliable pseudo-labels prediction,
and (iii) within-cluster sample permutations.

Our representation learning component aims to create aligned data embedding by using a maximum
correlation objective. This embedding captures the shared information across multiple views of the
data. More details about this component can be found in Section 4.4.1. The second component
involves fusing the embeddings and predicting pseudo labels using a clustering head. We then present
a filtration procedure to select reliable representatives in each cluster. Both pseudo and reliable labels
are used for self-supervision as they enforce agreement between the embeddings of different views.
This component is described in Section 4.4.2.

Our final component uses the selected reliable label representatives and introduces permutation to
the samples belonging to the same pseudo-labels. The permuted samples are then used to update
the CCA representation, approximating LDA and thereby improving clustering performance (see
Section 4.3). Through both theoretical and empirical analysis, we show that these permutations can
enhance cluster separation when using CCA-based objectives. An overview of our model, called
COPER, is presented in Fig. 1, and a complete description of the method appears in Section 4.4.
We now introduce the theoretical justification for the within-cluster permutations, which are a core
component of our method.

4.3 THEORETICAL GUARANTEES

COPER incorporates within-cluster permutation to enhance the learned multi-view embedding. The
justification for this technique lies in two theoretical aspects. The first follows Kursun et al. (2011),
which artificially created multi-view data from a single view by pairing samples with other samples
from the same class. The authors then demonstrate that applying CCA to such data is equivalent to
linear discriminant analysis (LDA) (Fisher, 1936) (described in 2.2). Here, as part of our contribution,
we show theoretically that within-cluster permutations of multi-view data lead to similar results (see
Section 4.3.1 and 4.3.2). This is also backed up by empirical evidence presented in Figure 3.

The second theoretical justification for our permutations was presented by Chaudhuri et al. (2009).
The authors showed that CCA-based objectives can improve cluster separation if the views are
uncorrelated for samples within a given cluster. Our within-cluster permutations help obtain this
property, as we demonstrate empirically in Figure 7 in Appendix F.

Definition 4.1 A permutation is defined for the vector of indices Īk ⊆ 1, ..., N̄k. These are indices of
Nk samples whose pseudo-labels correspond to cluster k. The within-cluster permutation is defined
as the application of the following operator Πl

k Īk, where Πl
k is randomly sampled from the set of all

permutation matrices of size N̄k × N̄k. A permutation for all clusters is denoted as Πl.

Where l represents the permutation index, as permutations may be applied multiple times across
different training batches and epochs (refer to Figure 2). This flexibility allows our model to adapt
to various scenarios. Once these permutations are applied to samples across the different views
(v = 1, ..., nv), we can augment the data with new artificially paired samples across views. In
the following subsection, we show a connection between the solution of CCA induced by this
within-cluster permutation augmentation procedure and the solution of LDA.

4.3.1 APPROXIMATION OF LDA

In Kursun et al. (2011), the authors constructed an artificial multi-view dataset from a single view by
pairing samples with other samples from the same class labels. This procedure creates a multi-view
dataset in which the shared information across views is the class label. They proved that applying
CCA to such augmented data converges to the solution of LDA (described in Section 2.2).

We assume all views capture a common source, a shared underlying variable denoted as θ. For
instance, θ can describe a mixture model that captures the true cluster structure in the data. Similar
assumptions are also present in Benton et al. (2017); Lyu & Fu (2020). Based on this, we can prove a
relation between our scheme and LDA. Formally, we start from the following assumption:
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Figure 2: Illustration of how within-cluster permutations can enhance the embeddings learned by
CCA. We use a binary subset of FashionMNIST and split the images to create the two views. Next,
we embed the data by applying CCA to both views, X(v) and X(w). As described in Subsection
4.4.2, the embeddings are used to extract multi-view pseudo-labels, then within-cluster permutations
Π1 are used to create new corresponding pairs of samples X̃ (v) and X̃ (w). They are then used as
augmentations to perform a second CCA (middle pair of images). This process is repeated with Π2

(right-most pair of images). As shown by this example, using within-cluster permutations enhance
the representations learned by CCA, improving clustering performance from an adjusted Rand index
(ARI) of 0.598 to 0.872.

Assumption 4.2 For two different views v, w, the observations are created by some pushforward
function (with noise) of some latent common parameter θ that is shared across the views. Specifically,
Xv = fv(θ, ϵv) and ϵv is view specific noise.

Following our assumption, θ is shared across all views and contains the cluster information. Therefore,
applying within-cluster permutations on v, w (assuming there are no false cluster assignments) would
be equivalent to constructing an artificial multi-view dataset in Kursun et al. (2011). We show that
the following proposition holds:

Proposition 4.3 The embedding learned through the CCA objective using within-cluster permutation
for v and w converges to the same representation extracted when applying the LDA objective from 2
to θ.

A proof of this proposition appears in Appendix G.2, where we show that hLDA = hCCA. The proof
follows the analysis of Kursun et al. (2011). Intuitively, this result indicates that the label information
is “leaked” into embedding learned by CCA once we apply the within-cluster permutations. This
enhances cluster separation in the obtained representation and is, therefore, suitable for clustering. In
Section 4.3.3, we conduct an experiment using Fashion MNIST to demonstrate how within-cluster
permutation can enhance the embedding learned by CCA. We visually illustrate how permutations
can improve cluster embeddings in Figure 2.

4.3.2 ERROR BOUND

Since our model relies on pseudo-labels, these can induce errors in the within-cluster permutation,
influencing the learned representations. If such label errors are induced, Proposition 4.3 breaks, and
the solution of CCA with permutations is no longer equivalent to the solution of LDA.

To quantify this effect, we treat these induced errors as a perturbation matrix. We substitute C−1
e Ca

from Eq. 2 with A and denote D as the perturbation noise such that Â = A+D. In addition, we use
tools from perturbation theory (Stewart & Sun, 1990) to provide the following upper bound for the
approximated LDA eigenvalues: |λ̂i − λi| ≤ ||D||2, i = 1 . . . n, where λi is the i’th LDA eigenvalue
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(i) (ii)
Figure 3: (i) Case study of permutation CCA using Fashion MNIST. (a) Permuting more samples
within a cluster improves cluster separation as measured by the Adjusted Rand Index (ARI). We
compare labeled permutation (supervised) to pseudo-label-based (unsupervised) and random. (b)
Permuting more samples also pushes the representation obtained by CCA towards LDA, as indicated
by the gap between eigenvalues. (ii) An experiment on LDA approximation with induced label
noise. We perform LDA on different subsets of F-MNIST. We gradually increased the number of
samples starting from 20% and analyzed the effect on the resulting eigenvalues λ̂i, compared to
the eigenvalues obtained from LDA on the entire dataset λi. As expected adding more correctly
annotated samples reduces the eigenvalue gap, while noisy annotations increase it.

obtained from A; λ̂i is the i’th LDA approximated eigenvalue obtained from Â; and n is the total
number of eigenvalues. In Appendix G.3, we provide a complete derivation of this approximation.
In subsection 4.3.3, we conduct a controlled experiment to evaluate how label noise influences this
approximation. This implies that the more the pseudo-labels resemble the ground truth labels, the
closer the representation is to LDA.

4.3.3 CASE STUDY ON FASHION MNIST

We conduct a controlled experiment using F-MNIST (Xiao et al., 2017) to corroborate our theoretical
results presented in this section, as shown in Figure 2. First, we create two coupled views by
horizontally splitting the images. CCA is subsequently performed on the multi-view dataset, with
different versions of within-cluster sample permutations.

First, we only permute samples with the same label. We show in Fig. 3 (a) that such supervised per-
mutations improve cluster separation, as evidenced by the increased ARI. Moreover, our experiments
in panel (b) indicate that the CCA solution becomes more similar to the LDA solution.

Next, we repeated the evaluations in panels (a) and (b) using permutations based on pseudo-labels.
We also included the results based on random permutations and the original data (no permutation) as
baselines. The results show that pseudo-label-based permutations also improve cluster separation and
bring the representation of CCA closer to the solution of LDA.

We conducted an additional experiment to measure the error induced by falsely annotated pseudo-
labels. This experiment complements our LDA approximation presented in subsection 4.3.2. We
perform LDA on different subsets of F-MNIST. We gradually increased the number of samples
starting from 20% and analyzed the effect on the resulting eigenvalues, compared to the eigenvalues
obtained from LDA on the entire dataset. The results, as shown in Fig. 3, demonstrate that introducing
false annotations increases the gap between the eigenvalues. On the other hand, including samples
with accurate annotations rapidly converges the solution to the precise LDA solution.

4.4 METHOD DETAILS

4.4.1 DEEP CANONICALLY CORRELATED ENCODERS

To learn meaningful representations from the multi-view observations, we use encoders with a
maximum correlation objective (Andrew et al., 2013). Specifically, we train view-specific encoders
F (v) which extract latent representations h(v)

i .

We utilize a correlation loss to encourage the embeddings to be correlated (see Subsection 2.1). This
enables our model to extract shared information across views and reduce view-specific noise, proving
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useful for multi-view clustering (Xin et al., 2021; Chandar et al., 2016; Cao et al., 2015; Tang et al.,
2018).

For two different views, v, w we denote the latent representations by H(v) ∈ RN×dv , and H(w) ∈
RN×dw generated by the encoders F (v) and F (w) respectively. H̄

(v) and H̄
(w) are denoted as

the centered representations of H(v) and H(w) respectively. The covariance matrix between these
representations can be expressed as Cvw = H̄

(v)
(H̄

(w)
)T /(N − 1). Similarly, the covariance

matrices of H̄(v) and H̄
(w) as Cv = H̄

(v)
(H̄

(v)
)T /(N − 1) and Cw = H̄

(w)
(H̄

(w)
)T /(N − 1).

The correlation loss is defined by Eq. 3:

Lcorr(H̄
(v)

, H̄
(w)

) = −Trace
[
C−1/2

w CwvC
−1
v CvwC

−1/2
w

]
. (3)

4.4.2 MULTI-VIEW PSEUDO-LABELING

A key aspect of our model is the generation of pseudo-labels, which are utilized for self-supervision to
improve the representation learned by our model. Below are the main steps for creating pseudo-labels
in a multi-view setting, illustrated in Figure 4. We present them concisely and provide additional
details and a detailed example of these steps in Appendix D.

Figure 4: A high-level illustration of our
pseudo-labeling scheme for a single view w.
Appendix D.1 provides a complimentary Fig-
ure (5) for the entire process, with correspond-
ing samples in view v and additional details.

Label Prediction The cluster head G predicts clus-
ter assignments by fusing latent embeddings from
multiple views

∑
v wvH

(v), where wv are learnable
weights. The output P ∈ RN×K is a probability
matrix where each row corresponds to the cluster
probabilities for a sample. For each cluster k, we
select the top B samples with the highest probabili-
ties to form the set Tk of confidently labeled samples.
The union of all such sets is denoted as T .

Label Refinement Since samples assigned to the
same cluster may have different representations
across views, we refine the cluster assignments for
each view separately. We compute view-specific clus-
ter centers h̄

(v)
k and evaluate the similarity of each

sample to these centers using cosine similarity. Sam-
ples with similarity above a threshold λ are retained,
and pseudo-labels ŷ(v)

i are created based on their sim-
ilarity scores. This ensures that each sample is more
accurately assigned to clusters in each view. As part
of our experiment’s evaluation, a detailed analysis of
λ is described in Section E.3.

Multi-view Agreement For samples assigned to clusters in multiple views, we enforce agreement
between views by retaining only those where the cluster predictions are consistent across views (i.e.,
argmax(p(v)

i ) is the same for all views).

View-Specific Probabilities To train the model, view-specific probability matrices P (v) are com-
puted using H(v). The remaining samples in T and their pseudo-labels ŷ(v)

i are used for optimizing
the cluster assignments. The final training set for each view v is X (v) = {(xi, ŷ

(v)
i ) | i ∈ T }.

5 EXPERIMENTS

5.1 DEEP BASELINES COMPARISON

We conduct extensive experiments with ten publicly available multi-view datasets used in recent
works (Chen et al., 2023; Tang & Liu, 2022; Chao et al., 2024; Sun et al., 2024). The properties
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Table 2: Clustering ACC evaluation using ten datasets. Our model (COPER) is compared against four
recent end-to-end MVC models (DSMVC (Tang & Liu, 2022), CVCL (Chen et al., 2023), ICMVC
(Chao et al., 2024), RMCNC (Sun et al., 2024), OPMC (Liu et al., 2021), MVCAN (Xu et al., 2024)),
and two two-stage schemes. The ARI, and NMI evaluations are in Table 6

.
Method METABRIC Reuters Caltech101-20 VOC Caltech5V-7 RBGD MNIST-USPS CCV MSRVC1 Scene15

ACC
DSMVC 40.60±3.8 46.37±4.4 39.33±2.4 57.82±5.0 79.24±9.5 39.77±3.6 70.06±10.3 17.90±1.2 60.71±15.2 34.30±2.9
CVCL 42.66±6.2 45.06±8.0 33.50±1.4 36.88±3.1 78.58±5.0 31.04±1.8 99.38±0.1 26.23±1.9 77.90±12.3 40.16±1.8

ICMVC 32.12±1.16 38.18±0.78 26.54±0.52 36.94±1.29 60.97±2.37 32.97±1.23 99.29±0.08 20.88±1.21 66.28±6.11 41.26±0.89
RMCNC 32.55±1.30 37.61±1.50 36.73±1.38 39.66±1.48 56.77±2.98 33.22±1.85 76.37±4.13 21.46±0.69 32.38±1.35 40.03±0.98
OPMC 41.25±0.40 47.50±0.65 48.25±1.95 62.86±1.78 88.51±0.57 41.96±1.40 72.31±0.24 26.91±0.44 88.00±1.10 40.97±1.69

MVCAN 48.32±1.28 45.44±2.81 45.56±1.67 17.85±0.35 75.63±0.14 21.93±0.49 85.57±1.14 19.29±0.80 42.95±1.14 38.51±1.85
AE 38.92±2.5 43.35±4.0 40.39±2.3 36.66±2.69 54.48±3.2 32.16±1.6 33.83±3.6 15.58±0.6 56.76±3.8 33.59±2.3

DCCA-AE 45.39±2.8 43.18±2.8 48.18±3.4 46.53±2.7 58.37±3.9 32.59±1.3 92.19±2.4 18.28±0.9 59.62±1.1 33.70±2.0
ℓ0-DCCA 41.64±2.8 34.44±3.69 39.24±2.04 44.46±1.18 47.46±2.38 28.10±1.74 99.54±0.09 25.41±0.83 42.57±2.60 38.67±1.88
COPER 49.13±3.2 53.15±3.3 54.83±3.9 64.65±2.6 82.81±5.1 49.80±0.8 99.88±0.0 28.06±1.1 92.57±0.8 40.68±1.6

Table 3: Clustering ACC evaluation on linear embedding schemes. We applied K-means to the Raw
dataset, PCA or CCA-transformed, and CCA-transformed with permutations (CCA w perm). The
ARI, and NMI evaluations are in Table 7

Method METABRIC Reuters Caltech101-20 VOC Caltech5V-7 RBGD MNIST-USPS CCV MSRVC1 Scene15
ACC

Raw 35.18±2.9 37.16±5.9 42.98±3.1 52.41±7.3 73.54±6.3 43.15±1.8 69.78±6.3 16.25±0.7 74.00±7.3 37.91±0.9
PCA 37.72±1.4 42.56±2.9 41.47±3.4 43.66±4.9 74.26±6.3 42.64±1.9 68.14±3.9 16.17±0.5 74.14±6.1 37.53±1.2
CCA 40.05±2.1 42.85±2.5 42.34±3.1 53.1±4.1 75.96±5.2 41.47±2.2 80.15±5.0 16.16±0.7 73.29±7.3 37.59±1.3

CCA w perm 40.6±1.6 43.16±1.7 43.08±3.8 53.52±4.4 77.44±5.6 44.29±2.1 84.99±6.3 16.39±0.6 75.00±4.1 38.25±1.2

of the datasets are presented in Table B, and a complete description appears in Appendix B. The
implementation details are detailed in Appendix E.1

We assess the clustering performance with three commonly used metrics: Clustering Accuracy (ACC),
adjusted Rand index (ARI), and Normalized Mutual Information (NMI). ACC and ARI are scored
between 0 and 1, with higher values indicating better clustering performance. We conducted each
experiment 10 times and reported the mean and standard deviation for each metric. We compare our
model to deep end-to-end models DSMVC (Tang & Liu, 2022), CVCL (Chen et al., 2023), ICMVC
(Chao et al., 2024) and RMCNC (Sun et al., 2024), OPMC Liu et al. (2021), MVCAN Xu et al. (2024)
1 in addition to two-stage baselines, where K-means was applied: Autoencoder (AE) transformations;
Deep CCA with autoencoders (DCCA-AE) (Chandar et al., 2016; Wang et al., 2015) and L0-CCA
Lindenbaum et al. (2021) transformations. The last was successfully applied for clustering in (Benton
et al., 2017; Gao et al., 2020). We present our ACC results in Table 2 and ACC, ARI, NMI in 6.
Our model surpasses state-of-the-art models in both accuracy and the adjusted Rand index across all
datasets. The accuracy improvement reaches up to 7%2.

5.2 PERMUTATIONS ENHANCE PERFORMANCE IN LINEAR BASELINES

We now evaluate the effect of applying permutations on representations learned with linear models.
We present in Table 3 ACC evaluation of K-means applied on raw samples (Raw) without any
feature transformations, PCA transformations (PCA), linear CCA transformations (CCA), and CCA-
transformed samples with permutations (CCA w perm). These results demonstrate that the clustering
accuracy can be improved by introducing our within-cluster permutation procedure. We further show
ARI and NMI results in Table 7.

5.3 ABLATION STUDY

We performed an ablation study to assess the impact of different components of our model. We
created five variations of our model, each including different subsets of the components of COPER.
These variations were: (i) COPER with linear encoder, (ii) COPER without the correlation loss, (iii)

1The code implementation provided by (Sun et al., 2024; Lindenbaum et al., 2021) is restricted to two views,
hence we randomly chose two views from each dataset with more than two views

2We note that the results of Chen et al. (2023); Tang & Liu (2022) are different from the values reported by
the authors. We report the mean over ten runs, while they report the best result out of ten runs. We argue that our
evaluation, which includes the standard deviation, provides a more informative indication of the capabilities of
each method. The best results can be found in the Appendix, Table H
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COPER without the within-cluster permutations, (iv) COPER without the multi-view agreement term,
and (v) COPER. We conducted this ablation study using the MSRVC1 dataset.

Table 4: Ablation study on the MSRVC1 datasets.
Model ACC ARI NMI
COPER with linear F 48.00±4.6 22.22±5.0 32.26±5.3
COPER w/o Lcorr 79.71±3.3 64.46±4.4 70.76±4.1
COPER w/o permutations 85.33±7.5 74.80±10.2 79.87±7.2
COPER w/o multi-view agree. 86.29±7.7 76.10±10.6 80.81±7.6
COPER 92.57±0.8 84.57±1.4 86.91±1.3

Table 4 presents the clustering metrics across variations of COPER. The results indicate that the
correlation loss, permutations, and multi-view agreements are essential components of our model and
boost the accuracy by 6-12%.

5.4 SCALABILITY STUDY

In this section, we assess the scalability of our model using a large-scale dataset. We generated two
different views from the first 300,000 samples of the infinite MNIST dataset (Loosli et al., 2007)
- one view with random background noise and the other with random background images from
CIFAR10 (Krizhevsky, 2009). Table 5 shows the clustering performance of 10 experiments, along
with the mean and standard deviation of each metric. Since deep learning methods are known to be
suitable for large-scale datasets, we compared our model to two recent end-to-end deep MVC models:
DSMVC (Chao et al., 2024) and RMCNC (Sun et al., 2024). Other methods were not included due
to practical limitations imposed by the scale of the dataset 3. Our evaluation demonstrates that our
method provides significantly more accurate cluster assignments for this large and noisy dataset.

Table 5: Clustering performance metrics on large datasets generated using infinite MNIST.
Model ACC ARI NMI
DSMVC 11.69±0.02 00.22±0.05 00.42±0.10
RMCNC 54.47±6.23 47.51±5.26 57.73±3.33
COPER 81.93±5.44 66.75±5.29 70.08±4.08

Results show that COPER outperforms both DSMVC (Chao et al., 2024) and RMCNC (Sun et al.,
2024). Indicating that it is scalable compared to other baselines.

5.5 CONCLUSION AND LIMITATIONS

Our work presents a new approach called COrrelation-based PERmutations (COPER), a deep learning
model for multi-view clustering (MVC). COPER integrates clustering and representation tasks into
an end-to-end framework, eliminating the need for a separate clustering step. The model employs
a unique self-supervision task, where within-cluster pseudo-labels are permuted across views for
canonical correlation analysis loss, contributing to the maximization of between-class variance and
minimization of within-class variation in the shared embedding space. We demonstrate that, under
mild assumptions, our model approximates the projection achieved by linear discriminant analysis
(LDA). Finally, we perform an extensive experimental evaluation showing that our model can cluster
diverse data types accurately.

Our model has limitations, such as the potential need for relatively large batch sizes due to the DCCA
loss (Andrew et al., 2013). This can be addressed by alternative objectives like soft decorrelation
(Chang et al., 2018). Additionally, the loss combination presented here is suboptimal, and exploring
smarter multitask schemes such as (Achituve et al., 2024) is a promising direction for improving the
method. Other directions for future work include introducing interpretability modules (Svirsky &
Lindenbaum, 2024) and extending the model to cluster data under domain shift (Rozner et al., 2023).
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A RESULTS

Table 6: Clustering evaluation using ten datasets. Our model (COPER) is compared against four
recent end-to-end MVC models (DSMVC (Tang & Liu, 2022), CVCL (Chen et al., 2023), ICMVC
(Chao et al., 2024), RMCNC (Sun et al., 2024), OPMC (Liu et al., 2021), MVCAN (Xu et al., 2024)),
and two two-stage schemes.

Method METABRIC Reuters Caltech101-20 VOC Caltech5V-7 RBGD MNIST-USPS CCV MSRVC1 Scene15
ACC

DSMVC 40.60±3.8 46.37±4.4 39.33±2.4 57.82±5.0 79.24±9.5 39.77±3.6 70.06±10.3 17.90±1.2 60.71±15.2 34.30±2.9
CVCL 42.66±6.2 45.06±8.0 33.50±1.4 36.88±3.1 78.58±5.0 31.04±1.8 99.38±0.1 26.23±1.9 77.90±12.3 40.16±1.8

ICMVC 32.12±1.16 38.18±0.78 26.54±0.52 36.94±1.29 60.97±2.37 32.97±1.23 99.29±0.08 20.88±1.21 66.28±6.11 41.26±0.89
RMCNC 32.55±1.30 37.61±1.50 36.73±1.38 39.66±1.48 56.77±2.98 33.22±1.85 76.37±4.13 21.46±0.69 32.38±1.35 40.03±0.98
OPMC 41.25±0.40 47.50±0.65 48.25±1.95 62.86±1.78 88.51±0.57 41.96±1.40 72.31±0.24 26.91±0.44 88.00±1.10 40.97±1.69

MVCAN 48.32±1.28 45.44±2.81 45.56±1.67 17.85±0.35 75.63±0.14 21.93±0.49 85.57±1.14 19.29±0.80 42.95±1.14 38.51±1.85
AE 38.92±2.5 43.35±4.0 40.39±2.3 36.66±2.69 54.48±3.2 32.16±1.6 33.83±3.6 15.58±0.6 56.76±3.8 33.59±2.3

DCCA-AE 45.39±2.8 43.18±2.8 48.18±3.4 46.53±2.7 58.37±3.9 32.59±1.3 92.19±2.4 18.28±0.9 59.62±1.1 33.70±2.0
ℓ0-DCCA 41.64±2.8 34.44±3.69 39.24±2.04 44.46±1.18 47.46±2.38 28.10±1.74 99.54±0.09 25.41±0.83 42.57±2.60 38.67±1.88
COPER 49.13±3.2 53.15±3.3 54.83±3.9 64.65±2.6 82.81±5.1 49.80±0.8 99.88±0.0 28.06±1.1 92.57±0.8 40.68±1.6

ARI
DSMVC 18.24±2.4 23.41±5.0 31.21±2.4 50.78±4.6 69.06±9.4 23.74±2.6 56.87±13.4 5.97±0.5 42.63±19.0 18.85±2.5
CVCL 22.69±4.3 22.39±8.8 24.85±0.9 22.49±2.7 63.25±6.3 16.16±1.3 98.63±0.2 12.72±1.3 64.27±13.8 24.01±1.7

ICMVC 10.46±1.21 16.03±0.52 18.00±0.50 25.47±0.79 41.57±2.51 15.63±0.92 98.42±0.18 5.94±0.32 45.73±7.23 25.68±0.72
RMCNC 8.94±2.39 10.25±0.95 27.18±1.47 18.93±1.15 37.33±2.47 15.47±0.71 61.66±3.24 8.16±0.56 8.79±0.97 24.50±0.72
OPMC 22.69 ± 0.38 22.36 ± 0.44 39.78 ± 2.76 51.81 ± 2.82 77.88 ± 0.94 22.91 ± 0.89 66.30 ± 0.28 10.70 ± 0.30 75.28 ± 1.45 23.89 ± 0.72

MVCAN 27.60 ± 0.59 23.25 ± 2.18 37.94 ± 1.36 6.43 ± 0.30 61.45 ± 0.66 8.69 ± 0.31 79.19 ± 1.93 7.68 ± 0.53 17.57 ± 0.75 25.51 ± 1.07
AE 19.71±3.0 10.36±4.3 31.27±4.1 18.86±2.7 30.73±4.8 15.26±1.6 13.93±2.0 3.56±0.3 33.43±4.8 17.00±1.7

DCCA-AE 21.70±2.8 7.63±4.0 37.19±3.2 32.77±3.4 34.63±4.1 15.00±2.0 84.04±4.4 5.0±0.4 38.41±2.5 17.12±1.6
ℓ0-DCCA 21.74 ± 1.94 0.65 ± 2.09 27.37 ± 1.93 30.18 ± 1.92 29.65 ± 0.45 8.26 ± 0.70 98.99 ± 0.21 11.46 ± 0.96 17.56 ± 2.64 22.57 ± 0.56
COPER 26.77±2.4 22.80±4.3 49.55±5.3 53.26±4.0 69.53±6.7 34.17±1.4 99.73±0.0 12.27±0.4 84.57±1.4 25.00±1.1

NMI
DSMVC 25.51±1.9 29.48±4.8 60.72±1.4 65.13±3.2 75.08±6.8 37.60±2.5 67.80±11.5 16.70±0.9 57.77±13.0 36.55±3.3
CVCL 32.3±4.5 29.41±11.1 56.13±1.0 32.95±1.3 69.56±4.8 26.60±1.6 98.21±0.3 26.25±0.9 72.66±8.9 41.13±1.7

ICMVC 18.90±1.02 20.52±0.26 42.90±0.59 42.72±0.53 50.82±2.10 26.87±0.87 97.93±0.22 15.13±0.56 56.44±4.37 43.97±0.47
RMCNC 14.00±2.00 17.15±1.66 39.21±0.64 23.17±0.63 46.24±1.58 28.61±0.92 64.49±2.30 16.65±0.55 18.81±0.96 41.22±0.48
OPMC 29.12 ± 0.28 33.49 ± 0.54 66.16 ± 1.14 62.06 ± 0.58 80.39 ± 0.73 37.00 ± 0.43 77.38 ± 0.22 22.94 ± 0.40 79.08 ± 0.88 41.50 ± 0.57

MVCAN 34.49 ± 1.01 30.25 ± 1.73 62.52 ± 0.31 11.96 ± 0.24 70.46 ± 0.62 17.81 ± 0.46 86.58 ± 1.42 19.46 ± 1.15 32.74 ± 1.04 42.46 ± 1.16
AE 27.34±2.6 18.61±3.2 50.15±2.4 30.46±2.0 38.97±5.2 28.85±1.4 22.83±2.5 10.68±1.0 48.31±4.0 33.18±2.6

DCCA-AE 30.95±2.8 23.04±3.1 54.46±2.4 47.29±4.0 43.38±3.9 27.54±3.5 85.32±3.3 16.39±1.0 52.43±4.1 33.65±2.0
ℓ0-DCCA 33.91 ± 1.38 18.51 ± 4.30 45.81 ± 1.05 43.75 ± 1.58 46.44 ± 1.01 14.91 ± 0.67 98.73 ± 0.26 29.57 ± 1.20 34.73 ± 2.48 42.04 ± 0.54
COPER 34.07±2.6 31.10±4.1 49.25±6.2 58.54±2.2 74.03±4.6 38.13±0.9 99.64±0.1 26.32±0.7 86.91±1.3 41.98±1.2

Table 7: Clustering evaluation on linear embedding schemes. We applied K-means to the Raw
dataset, PCA or CCA-transformed, and CCA-transformed with permutations (CCA w perm).

Method METABRIC Reuters Caltech101-20 VOC Caltech5V-7 RBGD MNIST-USPS CCV MSRVC1 Scene15
ACC

Raw 35.18±2.9 37.16±5.9 42.98±3.1 52.41±7.3 73.54±6.3 43.15±1.8 69.78±6.3 16.25±0.7 74.00±7.3 37.91±0.9
PCA 37.72±1.4 42.56±2.9 41.47±3.4 43.66±4.9 74.26±6.3 42.64±1.9 68.14±3.9 16.17±0.5 74.14±6.1 37.53±1.2
CCA 40.05±2.1 42.85±2.5 42.34±3.1 53.1±4.1 75.96±5.2 41.47±2.2 80.15±5.0 16.16±0.7 73.29±7.3 37.59±1.3

CCA w perm 40.6±1.6 43.16±1.7 43.08±3.8 53.52±4.4 77.44±5.6 44.29±2.1 84.99±6.3 16.39±0.6 75.00±4.1 38.25±1.2
ARI

Raw 18.64±1.2 7.49±7.7 34.58±4 29.51±7.4 57.19±5.9 24.13±1.2 58.88±4.8 5.45±0.3 58.53±5.8 22.31±0.4
PCA 19.05±1.5 19.88±1.4 31.75±3.5 21.44±5.1 57.91±4.7 23.78±1.4 54.55±2.8 5.45±0.2 58.39±5.9 22.0±0.4
CCA 19.84±1.7 18.76±1.7 32.68±3.8 34.69±5.4 60.01±1.9 24.59±1.7 71.09±4.5 5.32±0.3 56.97±7.2 22.57±0.5

CCA w perm 20.46±1.5 17.58±1.7 32.89±4.3 34.44±6.3 61.65±4.3 25.04±1.2 76.02±5.9 5.39±0.3 57.91±3.7 22.63±0.4
NMI

Raw 24.13±1.4 15.38±9.0 61.77±2.0 53.89±5.5 64.34±3.9 38.83±0.8 70.43±2.4 15.07±0.5 66.89±3.8 40.74±0.4
PCA 25.44±1.7 27.92±1.2 60.50±1.4 44.29±3.9 63.79±2.5 37.43±1.0 65.27±1.1 15.17±0.3 67.37±4.0 40.33±0.5
CCA 26.85±2.0 27.16±1.0 61.13±2.0 53.01±3.6 65.72±1.9 38.79±1.0 77.58±2.2 14.38±0.4 65.52±5.2 40.75±0.5

CCA w perm 27.82±1.6 26.96±0.6 61.08±2.2 54.54±3.3 66.89±2 39.32±0.8 79.94±2.7 14.16±0.4 65.89±3.1 41.02±0.5

B DATASETS DESCRIPTION

• METABRIC Curtis et al. (2012): Consists of 1, 440 samples from breast cancer patients,
which are annotated by 8 subtypes based on InClust Dawson et al. (2013). We observe two
modalities, namely the RNA gene expression data and Copy Number Alteration (CNA) data.
The dimensions of these modalities are 15, 709 and 47, 127, respectively.

• Reuters Amini et al. (2009): Consists of 18, 758 documents from 6 different classes.
Documents are represented as a bag of words using a TFIDF-based weighting scheme.
This dataset is a subset of the Reuters database, comprising the English version as well as
translations in four distinct languages: French, German, Spanish, and Italian. Each language
is treated as a different view. To further reduce the input dimensions, we preprocess the data
with a truncated version of SV D, turning all input dimensions to 3, 000.

• Caltech101-20 Zhao et al. (2017): Consists of 2, 386 images of 20 classes. This dataset
is a subset of Caltech101. Each view is an extracted handcrafted feature, including the
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Gabor feature, Wavelet Moments, CENTRIST feature, HOG feature, GIST feature, and
LBP feature. 4.

• VOC Everingham et al. (2010): Consists of 9, 963 image and text pairs from 20 different
classes. Following the conventions by Trosten et al. (2021a); Van der Maaten & Hinton
(2008), 5, 649 instances are selected to construct a two-view dataset, where the first and the
second view is 512 Gist features and 399 word frequency count of the instance, respectively.

• Caltech-5V-7 Dueck & Frey (2007): Consists of 1, 400 images of 7 classes. Same as
Caltech101-20, this dataset is also a subset of Caltech101 and is comprised of the same
views apart from the Gabor feature. 4.

• RBGD Kong et al. (2014): Consists of 1, 449 samples of indoor scenes image-text of 13
classes. We follow the version provided in Trosten et al. (2021a); Zhou & Shen (2020),
where image features are extracted from a ResNet50 model pre-trained on the ImageNet
dataset and text features from a doc2vec model pre-trained on the Wikipedia dataset.

• MNIST-USPS Asuncion & Newman (2007): Consists of 5, 000 digits from 10 different
classes (digits). MNIST and USPS are both handwritten digital datasets and are treated as
two different views.

• CCV Jiang et al. (2011b): Consists of 6, 773 samples of indoor scenes image-text of 20
classes. Following the convention in Li et al. (2019b) we use the subset of the original CCV
data. The views comprise of three hand-crafted features: STIP features with 5, 000 dimen-
sional Bag-of-Words (BoWs) representation, SIFT features extracted every two seconds
with 5, 000 dimensional BoWs representation, and MFCC features with 4, 000 dimensional
BoWs.

• MSRCv1 Consists of 210 scene recognition images belonging to 7 categories Zhao et al.
(2020). Each image is described by five different types of features.

• Scene15 Consists of 4,485 scene images belonging to 15 classes Fei-Fei & Perona (2005).
• 300K-MNIST-CIFAR10 Loosli et al. (2007); Krizhevsky (2009): Consists of 300, 000

samples generated from the infinite MNIST dataset. Two different views are created:
one with random background noise and the other with random background images from
CIFAR10. This dataset is used to assess the scalability and robustness of clustering methods
under noisy and large-scale conditions. Deep learning-based models such as DSMVC
Chao et al. (2024) and RMCNC Sun et al. (2024) demonstrate improved performance over
traditional approaches on this dataset.

Table 8: Datasets used in our experiments.
Dataset # Samples # Classes (K) # Views Dimensions Ref
METABRIC 1440 8 2 [15709, 47127] Curtis et al. (2012)
Reuters 18758 6 5 [21531, 24892, 34251, 15506, 11547] Amini et al. (2009)
Caltech101-20 2386 20 6 [48, 40, 254, 1984, 512, 928] Zhao et al. (2017)
VOC 5649 20 2 [512, 399] Everingham et al. (2010)
Caltech-5V-7 1400 7 5 [40, 254, 1984, 512, 928] Dueck & Frey (2007)
RBGD 1449 13 2 [2048, 300] Kong et al. (2014)
MNIST-USPS 5000 10 2 [784, 784] Asuncion & Newman (2007)
CCV 6773 20 3 [4000, 5000, 5000] Jiang et al. (2011b)
MSRVC1 210 7 5 [24, 576, 512, 256, 254] Zhao et al. (2020)
Scene15 4485 15 3 [20, 59, 40] Fei-Fei & Perona (2005)

C COMPLEXITY ANALYSIS

Let Nmb represent the number of samples in a mini batch and N the total number of samples in the
dataset, L denote the maximum number of neurons in the model’s hidden layers across all views, and
l indicates the dimension of the low-dimensional embedding space. Additionally, L′ stands for the
number of neurons in the cluster head, and the number of clusters is denoted as K. For reliable labels,
we denote Ñmb as the number of samples in the permuted mini batch.

The time complexity of training each autoencoder is O(L ·Nmb · ⌈ N
Nmb

⌉). With M views, the total
complexity for the pretraining phase is O(M · L ·N · ⌈ N

Nmb
⌉). Calculating the CCA loss for each

4 The creation of both Caltech101-20 and Caltech-5V-7 is due to the unbalanced classes in Caltech-101.
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pair of views has a complexity of O(N2
mb · ⌈ N

Nmb
⌉) for each pair. Since there are

(
M
2

)
possible pairs,

the total complexity for the CCA loss is O(M2 ·N2
mb · ⌈ N

Nmb
⌉).

The time complexity for training the cluster head is O(L′ ·Nmb · ⌈ N
Nmb

⌉). Computing reliable labels
for each view and each cluster also involves a complexity of O(M ·Nmb · ⌈ N

Nmb
⌉ ·K). Therefore,

the total complexity for the multi-view reliable labels tuning phase is O(M · L′ ·Nmb · ⌈ N
Nmb

⌉ ·K).

Computing CCA loss for reliable labels involves a complexity of O(Ñ2
mb · ⌈ N

Ñmb
⌉). The overall time

complexity of our multi-view CCC model is the sum of the complexities of the individual phases.
Therefore, the total time complexity is:

O(M · L ·Nmb · ⌈
N

Nmb
⌉+M2 ·N2

mb · ⌈
N

Nmb
⌉+M · L′ ·Nmb · ⌈

N

Nmb
⌉ ·K + Ñ2

mb · ⌈
N

Ñmb

⌉).

Where the dominant factor is:

O(M2 ·N2
mb · ⌈

N

Nmb
⌉).

D MULTI-VIEW PSEUDO-LABELING

D.1 DETAILED STEPS

Labels prediction Our cluster head G accepts a fusion of latent embeddings. The fusion is a
weighted sum

∑
v wvH

(v) where {wv}nv
1 are learnable weights. For all samples, G predicts clusters

probabilities G(
∑

v wvH
(v)) = P ∈ RN×K where each row is a probability vector pi for samples

x
(v)
i , for all v ∈ 1, .., nv (as P is shared between all views). Each cluster is represented by column

index k in P , and by selecting the top B probabilities, which are the most confident samples for
each k we form Tk = {i|i ∈ argtopk(P :,k, B),∀i = 1, 2, ..., N}. We denote T = ∪kTk as the set of
samples that were assigned with at least one label. At this stage, we note that (a) samples that are
assigned to the same cluster based on T can have embedding vectors that have different geometric
relations to cluster centers in different views, and (b) some samples may be assigned to more than one
cluster. Therefore, we present the following steps that refine the list of pseudo-labels identified in T .

Labels refinement To deal with (a), we refine the clusters separately for each view . We start by
computing the view specific cluster centers in the embedded space h̄

(v)
k = 1/B

∑
i∈Tk

h
(v)
i , and the

semantic similarity between them and all other embedded samples h(v)
i , ∀i ∈ Tk. Semantic similarity

is expressed by cosine similarity si,k = h
(v)
i · h̄(v)

k /∥h(v)
i ∥∥h̄(v)

k ∥. For each cluster, we preserve
samples that share a similarity greater than a predefined threshold λ. Next, for each remaining
sample, we construct a corresponding pseudo-label vector ŷ(v)

i . If a sample is assigned to a single
pseudo-label then ŷ

(v)
i is a one hot vector, otherwise ŷ(v)

i is a multi pseudo-label vector where values
for the assigned pseudo-labels are si,k if si,k ≥ λ and 0 otherwise. Multi pseudo-label vectors are
then normalized to obtain probability vectors. Due to label filtering and issue (b), different viewpoints
may now disagree on cluster assignments.

Multi-view agreements We now establish an agreement between views for cluster assignments.
For each i ∈ T , if a sample is assigned to at least one pseudo-label in more than one view, it will be
kept only if the views form agreement expressed by argmax(p(v)

i ) = argmax(p(w)
i ), and otherwise

discarded. If a sample is assigned in one view only, it will be retained for training since the cluster
head optimization is performed for each view separately, as described below.
View specific probabilities Since our optimization is performed on each view, we compute view-
specific probabilities matrices P (v) by feeding H(v) to G.

The probabilities for remaining samples in T , p(v)
i and their corresponding pseudo-labels ŷ(v)

i , are
used to train the model. We denote X (v) = {(xi, ŷ

(v)
i )}i∈T as the set of samples with corresponding

pseudo-labels in view v.
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D.2 EXAMPLE

Figure 5: Illustration of our pseudo-labeling scheme.

Figure 5 illustrates our pseudo-labeling scheme. As shown in part (a), the embeddings H(v) and H(w)

are first fused and fed into the clustering head G to predict clusters probabilities G(
∑

v wvH
(v)) =

P . Next, (b), the top B (in this case, 4) probabilities are selected for each of the two clusters:
Tk = {i|i ∈ argtopk(P :,k, B), where T = ∪kTk, and the centers of the clusters are calculated by:
h̄
(v)
k = 1/B

∑
i∈Tk

h
(v)
i . Note that the samples hv

3,h
w
3 and hv

4,h
w
4 have been assigned to more than

one pseudo-label. In the next step, see part (c), we filter samples if their cosine similarity from the
cluster center si,k = h

(v)
i · h̄(v)

k /∥h(v)
i ∥∥h̄(v)

k ∥ does not surpass a predefined threshold λ. Here for
view v (left) sample hv

6 was filtered from the blue cluster and samples hv
3,h

v
4 were filtered only from

the red cluster. For view w (right) sample hv
1 was filtered from the red cluster and sample hv

3 was
filtered, but only from the blue cluster. Next, we achieve multi-view agreement by filtering out hv

3 and
hw
3 since they have different labels. Despite that hv

6,h
w
6 and hv

1,h
w
1 do not have an agreement, hw

6
and hv

1 are retained since the cross-entropy optimization is performed on each view separately. They
will later be retained for within-cluster permutation only if the pseudo-label agrees with argmax(p6)
and argmax(p1).

E EXPERIMENTS

E.1 IMPLEMENTATION DETAILS

We implement our model using PyTorch, and the code is available for public use 5. All experiments
were conducted using an Nvidia A100 GPU server with Intel(R) Xeon(R) Gold 6338 CPU @
2.00GHz. The training is done with Adam optimizer with learning rate 10−4 and its additional default
parameters in Pytorch.

To improve convergence stability, we add decoder modules defined for each view that reconstruct
the original samples and are optimized jointly with the main model by adding mean squared error
objective in addition to Lcorr.

E.2 HYPERPARAMETERS TUNING

To tune the parameters for each dataset, we utilize the Silhouette Coefficient Rousseeuw (1987)
as an unsupervised metric for cluster separability. The Silhouette Coefficient is calculated using
each sample’s mean within-cluster distance and the mean nearest-cluster distance. The distances
are calculated on the fusion of the learned representations 1

nv

∑
v H

(v). We calculate the Silhouette
Coefficient after each epoch and pick the configuration that produces the maximal average Silhouette

5The code will be released at Github.
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Figure 6: Box-plot for measured ACC, ARI, and NMI metrics on model trained with different batch
sizes on MSRCv1 dataset.

Coefficient value across a limited set of options. We present the correlation between the Silhouette
Coefficient value and clustering accuracy metrics in Table E.2 on datasets VOC and METABRIC. In
addition, we set the k for the argtopk function to be the batch size divided by a number of clusters.
In practice, we observed that for some datasets, the parameter value should be increased due to the
filtration we apply on pseudo labels. We use a fixed cosine similarity threshold for all datasets 0.5.

Table 9: Silhouette Coefficient for different batch sizes.
Batch Size ACC ARI NMI Silhouette Coefficient

VOC
256 58.77 43.24 57.19 0.063
360 62.45 52.06 59.3 0.161
500 60.4 47.33 56.06 0.138

METABRIC
128 45.5 23.7 34.1 0.0396
256 53.9 27.8 37.7 0.0163
360 49.2 23.1 35.3 0.0569
500 46.4 27.9 38.9 0.1088

E.3 λ SENSITIVITY ANALYSIS

In our experiments, we initially set the default λ = 0.5. For three datasets (Scene15, Reuters,
and CCV), we have decided to increase it after observing the convergence of cross-entropy loss.
Furthermore, we provide an analysis of our chosen λ’s sensitivity on the Caltech5V dataset in Table
E.3 below:

Table 10: Performance metrics (ACC, ARI, NMI) for different values of λ.
λ ACC (STD) ARI (STD) NMI (STD)
0 80.94 ± 4.3 67.12 ± 3.9 71.63 ± 2.8

0.45 82.19 ± 2.5 69.08 ± 0.9 74.57 ± 2.9
0.5 82.81 ± 5.1 69.53 ± 6.7 74.03 ± 4.6

0.55 82.81 ± 5.1 69.53 ± 6.7 74.03 ± 4.6
0.85 76.56 ± 5.6 60.16 ± 6.7 66.64 ± 5.6

This analysis shows that thresholding the pseudo-labels could have a positive impact up to some
value, although a too high threshold may have a negative impact.

In addition, we provide a sensitivity analysis of the batch size hyperparameter. We train our model
with batch sizes [128, 256, 512, 1024] on the MSRCv1 dataset, 5 times for each batch size with
different random initialization seeds. We present the box plot in Figure E.3.
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E.4 GRADUAL TRAINING

We train the model by gradually introducing additional loss terms during the training. We allow
training the model with additional decoders and reconstruction loss that could enhance model
stability between different random initialization seeds. We start with Lcorr loss and optionally with
reconstruction loss Lmse. Next, after a few epochs, we add cross entropy loss Lce being minimized
with predicted with pseudo labels. Finally, we introduce the within-cluster permutations, and the
model is optimized with all loss terms during the next epochs. In order to tune the number of epochs
for each step, we start with 100 epochs for the first step, 50 epochs for the second step, and a total of
1000 epochs for training in total. During the experiments, we found that some of the datasets could
be trained with fewer epochs by analyzing the training loss dynamics.

E.5 NEURAL NETWORKS ARCHITECTURES

We present in Table E.5 the dimensions of the fully connected non-linear neural networks for each
dataset. In case the decoder is applied, its architecture is a mirrored version of the encoder. The
clustering head accepts the same dimension as the last encoder dimension, and we present only the
single hidden dimension we use for each dataset.

Table 11: Model architecture for different datasets used in our experiments.
Dataset F Hidden Dimensions G Hidden Dimensions
METABRIC [512, 2048, 128] [2048]
Reuters [512, 512, 1024, 10] [1024]
Caltech101-20 [512, 512, 1024, 20] [1024]
VOC [512, 512, 2048, 20] [1024]
Caltech-5V-7 [512, 256, 128] [1024]
RBGD [512, 2048, 128] [1024]
MNIST-USPS [1024, 512, 128] [1024]
CCV [1024, 2048, 128] [2048]
MSRVC1 [256, 512, 128] [1024]
Scene15 [256, 512, 1024, 2048, 128] [1024]

F CASE STUDY USING FASHION MNIST

We conduct a controlled experiment using F-MNIST (Xiao et al., 2017). First, we create two coupled
views by horizontally splitting the images. CCA is subsequently performed on the multi-view dataset,
with different versions of within-cluster sample permutations.

We only permute samples with the same label. In Fig. 7, we confirmed our hypothesis that these
permutations decrease the mean within-class correlation across views (please refer to the second
paragraph in Section 4.3 for more details).

Figure 7: Permutations decrease the mean within-class correlation across views.
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G RELATION BETWEEN COPER AND LDA

G.1 REMINDER: LINEAR DISCRIMINANT ANALYSIS (LDA)

For a dataset X ∈ RN×D and it’s covariance matrix C, we denote the within-class covariance matrix
as Ce and the between-cluster covariance matrix as Ca:

Ce =
1

N

K∑
k=1

Nk∑
i=1

(xk
i − µk)(x

k
i − µk)

T .

Where Nk are the samples from class k, xk
i is the i’th sample, and µk is the mean. The between-class

covariance is:

Ca =

K∑
k=1

Nk

N
µkµk

T ,

and C = Ce +Ca. The optimization for LDA can be formulated as:

max
h̸=0

hTCah

hTCeh
.

This could be solved using a generalized eigenproblem:

Cah = λCeh, C−1
e Cah = λh.

G.2 FROM COPER TO LDA

θ is treated as two different views θ1 and θ2 where each view is comprised of the same samples from
θ but different, within-class permutations.

To create the views, different permutations Πl of θ for l = 0, 1, 2 . . . ,∞ are stacked, where the order
of stacked permutations is different for the two different views.

Lemma G.1 Applying CCA on θ1 and θ2 produces the same projection as applying LDA on θ with
the (unknown) labels.

Since both θ1 and θ2 are comprised of the same samples, it follows:

Cθ = Cθ1 = Cθ2 , (4)

and
Cθ1θ2 = Cθa , (5)

we can use equations in 2.1 to find to solution for CCA:

C−1
θ CθaC

−1
θ CθahCCA = λCCAhCCA, (6)

while from equation 2 we know that the solution for LDA is:

CahLDA = λLDACehLDA.

We can further plug equation 2 and get:

CahLDA = λLDA(C −Ca)hLDA

λLDA(C −Ca)hLDA = λLDAChLDA − λLDACahLDA

(1 + λLDA)CahLDA = λLDAChLDA

CahLDA =
λLDA

1 + λLDA
ChLDA

C−1CahLDA =
λLDA

1 + λLDA
hLDA,

Next, if we substitute C−1Ca = A and λLDA

1+λLDA
= λ∗ in G.2 we get :

AhLDA = λ∗hLDA, (7)
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In addition if we substitute this in 6 we get:

C−1
θ CθaC

−1
θ CθahCCA = AAhCCA

AAhCCA = A(AhCCA)

A(AhCCA) = A(λ∗hLDA)

A(λ∗hLDA) = λ∗(AhLDA)

λ∗(AhLDA) = λ∗(λ∗hLDA)

λ∗(λ∗hLDA) = λCCAhCCA,

Since the canonical correlation coefficients are the square root of the eigenvalue obtained from the
generalized eigenvalue problem, it follows that hLDA = hCCA.

G.3 LDA APPROXIMATION

First, to simplify notation, we denoted h and ĥ the LDA representation and our representation, which
is based on pseudo-labels that are potentially incorrect. In the previous sections we saw that Ĉ

−1

θ

and Ĉθa are used compute h in equation 2. Hence, to assess this equivalence, we draw attention to
potential errors in estimating Ĉθ from equation 4, where Ĉθ = Ĉθe + Ĉθa .

Let N̂k be the estimated samples for each class k, and µ̂k it’s estimated mean. N̄k are the indices
of samples from class k not included in N̂k. Ñk are samples not in class k, which are incorrectly
included in N̂k, and N̈k are samples in N̂k which are correctly included, the corresponding class for
samples in N̈k are assumed to be known for this analysis.

For Ĉθe = 1
Nmb

∑K
k=1(x

k
i − µ̂k)(x

k
i − µ̂k)

T , Incomplete inclusion of all between-class samples
may cause error. As this depends on the batch size and the pseudo-labels batch size. We denote this
type of error as:

E1 = − 1∑K
k=1 |N̄k|

K∑
k=1

∑
i∈N̄k

(xk
i − µ̂k)(x

k
i − µ̂k)

T .

In addition, false pseudo-labels cause samples from different classes to be permuted together. We
denote this type of error as:

E2 =
1∑K

k=1 |Ñk||N̈k|

K∑
k=1

∑
i∈N̈k

∑
j∈Ñk

(xk
i − µ̂k)(x

q
j − µ̂q)

T .

where q is the true class of samples j.

For Ĉθa = N̂k

Nmb

∑K
k=1 µ̂k(µ̂k)

T . Errors in estimating µ̂k, denoted by ∆µk = µk − µ̂k can be
further propagated to the third type of error, denoted as:

E3 = − N̂k

Nmb
∆µk(∆µk)

T .

Together all three types of errors can be expressed as E := E1 +E2 +E3:

Taking these errors into account, we can now treat them as a perturbation. Formally:

Ĉθa = Cθa +E3,

Ĉθe = Cθe +E1 +E2,

Ĉθ = Cθ +E.

Since the latent dimension is significantly smaller than the input dimension, it is plausible to assume
that Ĉθ is invertible. In addition, we express the first order approximation of the inverse as:

Ĉ−1
θ = (Cθ +E)−1 = C−1

θ −C−1
θ EC−1

θ .
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This is accurate in terms of order ||E||2 Stewart & Sun (1990).

This means that the estimated matrix A from Eq. 7, Â can be written as:

Â = Ĉ−1
θ Ĉθa

Ĉ−1
θ Ĉθa = (C−1

θ −C−1
θ EC−1

θ )(Cθa +E3)

(C−1
θ −C−1

θ EC−1
θ )(Cθa +E3) = (C−1

θ −C−1
θ EC−1

θ )(Cθ −Cθe +E3)

(C−1
θ −C−1

θ EC−1
θ )(Cθ −Cθe +E3) = C−1

θ Cθ −C−1
θ EC−1

θ Cθ−
C−1

θ Cθe +C−1
θ EC−1

θ Cθe +C−1
θ E3 −C−1

θ EC−1
θ E3

C−1
θ Cθ −C−1

θ EC−1
θ Cθ −C−1

θ Cθe+

C−1
θ EC−1

θ Cθe +C−1
θ E3 −C−1

θ EC−1
θ E3 =

I −C−1
θ EI −C−1

θ Cθe +C−1
θ EC−1

θ Cθe +C−1
θ E3 −C−1

θ EC−1
θ E3,

and A can be expressed as:

A = C−1
θ Cθa ,

C−1
θ Cθa = C−1

θ (Cθ −Cθe),

C−1
θ (Cθ −Cθe) = C−1

θ Cθ −C−1
θ Cθe ,

C−1
θ Cθ −C−1

θ Cθe = I −C−1
θ Cθe .

Now we can estimate the perturbation from A, denoted as D:

D = A− Â,

A− Â =

= (I −C−1
θ Cθe)− (I −C−1

θ EI −C−1
θ Cθe +C−1

θ EC−1
θ Cθe +C−1

θ E3 −C−1
θ EC−1

θ E3),

(I −C−1
θ Cθe)− (I −C−1

θ EI −C−1
θ Cθe +C−1

θ EC−1
θ Cθe +C−1

θ E3 −C−1
θ EC−1

θ E3) =

C−1
θ E −C−1

θ EC−1
θ Cθe −C−1

θ E3 +C−1
θ EC−1

θ E3.

This perturbation can be used as a bound for the approximated eigenvalues according to Stewart &
Sun (1990):

|λ̂i − λi| ≤ ||D||2, i = 1 . . . n. (8)

H COMPARING THE BEST RESULTS

In the Table H, we provide the results obtained by our model in the same setup as in previous works
where the best accuracy values are selected from multiple runs with random initialization.

Table 12: Best clustering results. Our model (COPER) is compared against two recent deep MVC
models.

Method/Dataset METABRIC Reuters Caltech101-20 VOC Caltech5V-7 RBGD MNIST-USPS CCV MSRVC1 Scene15
ACC

DSMVC 47.78 51.22 41.58 66.86 92.71 44.93 84.20 19.70 80.48 39.26
CVCL 52.48 55.41 35.43 39.82 89.14 33.21 99.68 26.27 93.33 42.72

ICMVC 33.96 39.18 27.41 38.80 64.36 34.92 99.42 22.04 77.14 42.36
RMCNC 34.58 44.63 43.17 42.49 58.36 34.37 83.00 23.90 35.24 41.32
COPER 55.28 58.96 58.26 67.76 88.36 53.21 99.94 29.13 93.81 44.68

ARI
DSMVC 22.88 26.72 35.51 58.94 85.10 29.01 76.86 6.59 64.05 23.48
CVCL 53. 92 38.83 25.96 27.03 77.33 17.59 99.68 29.68 84.99 26.10

ICMVC 12.24 16.65 18.00 26.12 44.42 17.37 98.72 6.23 55.88 26.47
RMCNC 11.90 14.06 30.85 21.61 39.89 16.46 66.41 9.98 12.62 25.46
COPER 33.01 30.59 51.55 58.28 76.26 36.68 99.87 12.88 86.74 26.40

NMI
DSMVC 30.07 33.55 62.34 69.10 87.11 41.63 83.54 17.43 68.43 41.93
CVCL 39.16 42.22 56.95 33.29 79.76 27.68 99.05 22.52 86.38 42.64

ICMVC 19.11 20.73 42.64 43.22 44.42 28.46 98.28 15.75 62.36 44.18
RMCNC 16.99 19.24 40.55 25.09 49.74 29.21 67.27 17.65 21.26 41.96
COPER 40.54 37.42 56.15 60.82 79.17 37.78 99.81 26.93 88.71 40.53
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I BROADER IMPACT

Our work presents a new deep learning-based solution for multi-view clustering, along with a
theoretical foundation for its performance. This research can positively impact various domains by
providing researchers and practitioners with a versatile data analysis tool for use across heterogeneous
datasets, thereby facilitating advancements in knowledge discovery and decision-making processes.
However, the proposed method has ethical implications and potential societal consequences that must
be considered. It is crucial to pay attention to bias and fairness to prevent the amplification of biases
across modalities. Transparency and explainability are essential to ensure user understanding and
mitigate the perceived black-box nature of deep learning models.

J COPER ALGORITHM

The COPER Algorithm processes multi-view data using deep canonically correlated encoders and
clusters the data. It iterates through several epochs, performing different tasks based on the current
epoch. The following is a detailed explanation of the algorithm:

Algorithm COPER
Inputs: Multi-View Data: X = {X(v) ∈ Rdv×N}nv

v=1, Deep Canonically Correlated Encoders: {F (v)}nv
v=1,

Cluster Head: G, Number of clusters K, Number of Epochs Nepochs, Epoch to Start Pseudo-Labeling and
Permutations Nstart.

Outputs: Cluster Assignments Y for each instance tuple (x
(1)
i ,x

(2)
i , ...,x

(nv)
i ), i = 1, ..., N

1: for epoch in 1 to Nepochs do
2: for each pair of views v, w do
3: Train encoders F (v) and F (w) with data X(v) and X(w) by minimizing Lcorr

4: end for
5: if epoch > Nstart then
6: Predict cluster probabilities G(

∑
v wvH

(v)) = P
7: Select top B samples per cluster Tk = {i | i ∈ argtopk(P :,k, B)}
8: Filter samples in Tk using cosine similarity λ and multi-view agreement
9: Create view specific pseudo-labels X (v) = {(xi, ŷ

(v)
i )}i∈T

10: for each view v do
11: Minimize Lce with pseudo-labels for view v
12: end for
13: Create permuted multi-view data X̃ = {X̃ (v)}nv

v=1

14: for each pair of views v, w do
15: Train encoders F (v) and F (w) with data X̃

(v)
and X̃

(w)
by minimizing Lcorr

16: end for
17: end if
18: end for
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