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Abstract

This supplement contains additional results and
proof details related to the UAI2023 submission
‘Establishing Markov Equivalence in Cyclic Direc-
ted Graphs’. Numbering and notations follow the
main article.

1 ADDITIONAL EXPERIMENTAL
RESULTS

This section elaborates on the random cyclic graph generat-
ing process, and a result that offers some added insight into
the inner workings of the two CPAG algorithms.

1.1 GENERATING RANDOM CYCLIC GRAPHS

In contrast to the familiar acyclic graphs, in cyclic graphs
there can be two edges between each pair of nodes, corres-
ponding to a total of N(N − 1) possible directed edges for
graphs over N nodes. However, in both the Erdos-Renyi
model (all graphs with n edges equally likely) and the Gil-
bert model (all edges appear with equal probability p), as
density or size of the graph increases, the resulting graph
is overwhelmingly likely to contain just one, big strongly
connected component, with only a few other nodes on its
periphery. As a key part of the CET is about invariant edges
between components in rule (iv) (see e.g. Figure 3 in the
main article), just evaluating on arbitrary random graphs
would likely lead to an incomplete or biased perspective.
In addition, a number of challenges in finding the correct
CPAG are related to sequences of connected two-cycles (see
main, Figure 2), which in larger fully random graphs are
also exceedingly unlikely to appear.

Therefore we tweak the random graph generating process to
allow some control over the number and size of the strongly
connected components. We introduce a 3-stage process para-

meterized by size N and density d, as well as parameters
ptwo for the proportion of two-cycles, and pacy and pcyc
for the proportion of recursive resp. nonrecursive edges that
remain:

1. randomly sample the required number of two-cycles,

2. add random arcs from lower to higher numbered nodes,

3. add completely random arcs for the remaining edges.

Afterwards a random permutation of the nodes is applied to
ensure there is no implicit bias in the ordering.

With this procedure, setting [ptwo, pacy, pcyc] = [0,1,0]
would lead to a random acyclic graph, whereas setting
[0.1,0.9,0] would lead to a random acyclic graph with some
edges turned into two-cycles. Setting [0,0,1] would lead
to a fully random cyclic graph in the Erdos-Renyi model.
In practice setting e.g. [ptwo, pacy, pcyc] = [0.1,0.82,0.08]
leads to a varied number and size of the strongly connected
components for graphs of up to N = 200 nodes with density
d = 3.0. For N = 200 this leads on average to about 11 non-
trivial strongly connected components with average largest
component size of about 17 vertices.

For larger/higher density graphs the pcyc proportion should
be reduced to avoid collapsing into the ‘one big cycle’ trap.
In our experiments for d = 5.0 we used [ptwo, pacy, pcyc] =
[0.05,0.93,0.02], which, for N = 200 resulted on average
in about 5 nontrivial strongly connected components, with
an average largest size of about 70 vertices.

Additional implementation details will be published with
the accompanying source code.

1.2 RELATIVE TIME SPENT PER STAGE

To take a closer look at the relative contribution of each stage
in the two different CPAG procedures to the overall time
complexity we also timed each stage separately. Average
results are depicted below.
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Figure 5: Plots depicting the relative proportion each algorithm
spends on average in the different stages, as a function of the size
of the graph N , for two different densities d ∈ {3.0,5.0}. Stages
are ordered bottom up, i.e. first stage on the x-axis, second stage
on top of that etc.

We see that the original CPAG-from-Graph procedure
spends the vast majority of its time in the expensive d-
separation searches in stage (a) (blue) and (c) (yellow),
whereas for sparse graphs the new Graph-to-CPAG version
spends roughly equal amounts in each phase. For denser
graphs, in the latter starts the final stage (green) that aims
to orient invariant edges within and between cycles, starts
to dominate, as expected from the complexity analysis in
section 4.3.

Note that, even though it may seem that for higher densities
this final stage in the new Graph-to-CPAG procedure is
somehow less efficient, it is still about 4 times as fast as
the corresponding stage (f) (light-blue/teal) in the original
CPAG-from-Graph procedure. It is just that in the latter
stages (a) and (c) are even more expensive.

2 PROOF DETAILS

Lemma 1 For a directed graph G and corresponding CMAG
M, there is a u-strucuture ⟨X,Z,Z ′, Y ⟩ in M iff there
is an uncovered itinerary π = ⟨X,Z,U, .., U ′, Z ′, Y ⟩ in G,
possibly with Z = U ′ or U = U ′, where ⟨X,Z,U⟩ and
⟨U ′, Z ′, Y ⟩ are a pair of m.e. conductors w.r.t. the uncovered
itinerary π in G.

Proof By definition 9, a u-structure ⟨X,Z,Z ′, Y ⟩
implies the existence of an uncovered path π =
⟨X,Z,U1, .., Uk, Z

′, Y ⟩ (possibly with U1 = Uk or U1 =
Z ′, Uk = Z) between nonadjacent X and Y inM, corres-
ponding to an uncovered itinerary in G where all nodes
{Z,Z ′, U1, .., Uk} are ancestors of each other, but not of X
or Y , which implies ⟨X,Z,U1⟩ and ⟨Uk, Z

′, Y ⟩ are a pair

of m.e. conductors w.r.t. the uncovered itinerary π in G.

Conversely, if ⟨X,Z,U⟩ and ⟨U ′, Z ′, Y ⟩ are a pair
of m.e. conductors w.r.t. an uncovered itinerary
π = ⟨X,Z,U, .., U ′, Z ′, Y ⟩ in G, then π is a also an
uncovered path ⟨X,Z, .., Z ′, Y ⟩ in M, where all in-
termediate nodes are ancestor of each other, and so
{Z,U, .., U ′, Z ′} ⊂ SCC(Z), but not of X or Y , and so
XÐ→Z and Z ′←ÐY inM, which by definition 9 implies
⟨X,Z,Z ′, Y ⟩ is a u-structure.

Lemma 2 In a CMAG M, a pair of nodes ⟨X,Z⟩ is
part of a u-structure ⟨X,Z,Z ′, Y ⟩ with a node Y ∈ Y ⊆
pa(SCC(Z)) ∖ adj({X,Z}), iff X ∈ pa(Z), and X
and Y are connected in the undirected subgraph over
((SCC(Z) ∖ adj(X)) ∪ {X,Z} ∪Y.

Proof The given implies the existence of some path from
X via adjacent nodes in the undirected subgraph to some
node from Y. Let Y be the first node from Y encountered
along this path, then ⟨X,Z1, .., Zk, Y ⟩ is a path over distinct
nodes where all Zi ∈ SCC(Z) are ancestors of each other,
but not of X or Y .

If the path ⟨X,Z1, .., Zk, Y ⟩ is not uncovered, then
some subsequence ⟨X,U1, .., Um, Y ⟩ with {U1, .., Um} ⊂
{Z1, .., Zk} can be chosen so that ⟨X,U1, .., Um, Y ⟩ is an
uncovered path in the unoriented subgraph (see e.g. Lemma
B.1 in (Zhang, 2008)). Furthermore, as all nodes adjacent
to X inM are excluded from this subgraph with the excep-
tion of Z, it means that Z = U1 = Z1. We also know that
m ≥ 2, as all Y ∈Y were taken not to be adjacent to Z, so
Z ′ = Um ≠ Z.

Finally, as all Ui ∈ SCC(Z) are ancestors of each other,
but not of X or Y , it also means that each consecutive triple
along the path is a noncollider inM, and so in accordance
with definition 9 ⟨X,Z,Z ′, Y ⟩ is a u-structure.

For the proof of Theorem 1 we use two helpful results.

Corollary 1 In a CMAG M, a virtual collider triple
⟨A,B,C⟩ uniquely corresponds to either:

1. a virtual v-structure ⟨A,B,C⟩, or

2. a u-structures ⟨A,B,B′,C⟩, or

3. a u-structure ⟨A,B′,B,C⟩,

where for the latter two the complementary triple ⟨A,B′,C⟩
is also a virtual collider triple.

Proof If virtual collider triple ⟨A,B,C⟩ corresponds to a
virtual v-structure, then it cannot be part of a u-structure
⟨A,B,B′,C⟩ or ⟨A,B′,B,C⟩, as that would imply the
path from A to C via B is not uncovered, contrary
Definition 9. Similarly, if virtual collider triple ⟨A,B,C⟩
corresponds to a u-structure ⟨A,B,B′,C⟩, then it cannot



also correspond to a u-structure ⟨A,B′,B,C⟩, as the
combination would imply the presence of edges AÐ→B
and B ←Ð C in M, which again would contradict the
fact that the path ⟨A,B, ..,B′,C⟩ inM is uncovered. By
definition 10, in both cases the u-structure would imply that
the complementary ⟨A,B′,C⟩ also satisfies the definition
of a virtual collider triple.

The second is a well-known result that connects nodes that
make or break a d-separation to ancestral relations, where
we use square brackets [Z] to indicate minimal sets, i.e. sets
Z for which there is no strict subset of Z that preserves the
d-separation relation:

Lemma 4 In a directed graph G, if adding a node Z to a
conditioning set changes a d-separation relation between
two nodes X and Y relative to a set Z, then:

1. if X ⊥⊥G Y ∣Z ∪ [Z], then Z ∈ anG({X,Y } ∪Z),

2. if X ⊥⊥ÒG Y ∣Z ∪ [Z], then Z ∉ anG({X,Y } ∪Z),

with special case:

3. if X ⊥⊥G Y ∣ [Z], then Z ⊆ anG({X,Y }).

Proof This result was originally derived in (Claassen and
Heskes, 2011, Lemma 2) for acyclic graphs in the possible
presence of unobserved confounders and selection bias,
but the proof for the first two rules carries directly over
to the cyclic directed case considered here (i.e. without con-
founders and/or selection bias). The proof for the special
case, where there is no subset of Z that can d-separate X
and Y , did use acyclicity, but also follows similar to the
proof of rule 1 in the cyclic case:

By contradiction: let Z ∈ Z be a node that is not in
anG({X,Y }). Let Z′ = de(Z) ∩Z, i.e. all descendants of
Z in Z (including Z itself). Then none of the nodes in Z′

can be ancestor of X or Y , otherwise Z would be ancestor
of X or Y as well, contrary to the assumed. We now show
that X and Y are also d-separated relative to Z∗ = Z ∖Z′.
Suppose there is an unblocked path π between X and Y
relative to Z∗. Then π cannot contain any noncolliders in
Z∗, otherwise it would be blocked. But π must contain
at least one node Z ′ ∈ Z′ that is a noncollider along π,
otherwise the path could not be blocked by adding Z′.
Therefore Z ′ must have at least one outgoing arc along
π. Follow π in this direction until either a collider is
encountered or the end of π is reached. But if a collider
is reached, then there must be a node Z∗ ∈ Z∗ that is
a descendant of that collider, otherwise π could not be
unblocked. But then this node was a descendant of Z ′, and
so also a descendant of Z, which implies it was included in
Z′, and therefore not in Z∗. And if the end of the path is
reached then there is a directed path from Z ′ to X or Y , and
so also from Z to X or Y , contrary the assumed. Therefore

there can be no unblocked path in G between X and Y
relative to Z∗, which in turn implies they are d-separated by
Z∗ ⊊ Z, which implies that Z was not a minimal separating
set, contrary the assumed in rule 3. QED.

We are now ready to prove the new ancestral CET:

Theorem 1 Two CMAGs M1 and M2 corresponding to
cyclic directed graphs G1 resp. G2 are Markov equivalent iff

(i) they have the same skeleton,

(ii) they have the same v-structures,

(iii) they have the same virtual collider triples,

(iv) if ⟨A,B,C⟩ and ⟨A,D,C⟩ are virtual collider triples,
then B is an ancestor of D inM1 iff B is an ancestor
of D inM2.

Proof We show that in terms of the CPAG the first 3 rules
are equivalent to the first 4 rules in the original CET, and
that the last rule is sound and implies the last two rules in
the original CET, which means the combined set of rules is
sound and sufficient to ensure Markov equivalence.

(i) By lemma 3 (see below), two nodes in a CMAGM are
adjacent iff they are (virtually) adjacent in the underlying
cyclic graph G, and so rule (i) is equivalent between the two
CETs.

(ii)+(iii) By definitions 4 and 5 and rule (i), an unshielded
triple ⟨A,B,C⟩ in a CPAG is either a conductor, an un-
shielded perfect nonconductor, or an unshielded imperfect
nonconductor in G. Therefore (ii).a+(ii).b in the original
CET are equivalent to ‘have the same unshielded perfect
and imperfect nonconductors’ (as the remaining unshiel-
ded triples then all must correspond to conductors). A per-
fect nonconductor in G is a v-structure in the CMAGM,
and by definition 8 the subset of imperfect nonconductors
is equivalent to virtual v-structures. By corollary 1, a vir-
tual collider triple ⟨A,B,C⟩ is either a virtual v-structure,
or part of a u-structure ⟨A,B,B′,C⟩ or ⟨A,B′,B,C⟩ for
which, by definition 10, the complementary ⟨A,B′,C⟩ is
also a virtual collider triple. By lemma 1, that means that,
depending on the skeleton from rule (i), either ⟨A,B,U⟩
and ⟨U ′,B′,C⟩ are a pair of m.e. conductors w.r.t. un-
covered itinerary ⟨A,B,U, .., U ′,B′,C⟩, or ⟨A,B′, U ′⟩ and
⟨U,B,C⟩ are a pair of m.e. conductors w.r.t. uncovered it-
inerary ⟨A,B′, U ′, .., U,B,C⟩. The latter all follow from
rule (iii) in the original CET, and therefore rules (ii) + (iii)
combined are equivalent to rules (ii).a + (ii).b + (iii) in the
original CET.

(iv) Again by corollary 1, the virtual collider triples in rule
(iv) either correspond to a virtual v-structure (equivalent
to an unshielded imperfect nonconductor in G), or are part
of a u-structure (equivalent to a pair of m.e. conductors
on an uncovered itinerary in G). Therefore, for rule (iv)



we can consider three distinct cases: 1) both virtual col-
lider triples ⟨A,B,C⟩ and ⟨A,D,C⟩ correspond to virtual
v-structures, 2) one virtual collider triple corresponds to a
virtual v-structure, and the other is part of a u-structure, or
3) both ⟨A,B,C⟩ and ⟨A,D,C⟩ are part of a u-structure.
Below we will tackle each of these cases in turn:

Case (iv).1: if both ⟨A,B,C⟩ and ⟨A,D,C⟩ correspond to
virtual v-structures, then they satisfy rule (iv) of the original
CET, and so imply that B is ancestor of D inM1 iff and
only iff B is ancestor of D inM2, and v.v. by symmetry.

Case (iv).2: without loss of generality, assume ⟨A,B,C⟩ is
a virtual v-structure, and ⟨A,D,C⟩ is part of a u-structure
⟨A,D,D′,C⟩. Note this implies there cannot be an edge
between C and D, otherwise ⟨A,D,D′,C⟩ would not be a
u-structure.

Therefore, if DÐ→B inM1, then DÐ→B ←ÐC would
be a (virtual) v-structure, and already be invariant by rule
(ii)+(iii), and so also imply DÐ→B inM2. If D←ÐB in
M1, i.e. B is NOT a descendant of D inM1, then by rule
(iv) of the original CET, B is also not a descendant of D
inM2, and so imply D←ÐB inM2. The only remaining
possibility is D ÐÐ B in M1, which by symmetry then
must also apply toM2. Therefore rule (iv) is also sound for
case 2.

Case (iv).3: now both virtual collider triples ⟨A,B,C⟩ and
⟨A,D,C⟩ are part of a u-structure, but neither are vir-
tual v-structures. Then by definition 10, either A Ð→ B
or CÐ→B is inM1, so without loss of generality assume
AÐ→B. Then C cannot have an edge to B inM1, other-
wise ⟨A,B,C⟩ would be a (virtual) v-structure. Similarly,
virtual collider triple ⟨A,D,C⟩ implies either AÐ→D, or
CÐ→D, but not both (or it would be covered by case (iv).2
already).

(3a) Assume C Ð→ D. Then if B Ð→ D in M1, then
BÐ→D←ÐC would be an unshielded collider triple and
invariant by rules (ii)+(iii), implying B Ð→ D in M2 as
well. Similarly, if B←ÐD, then AÐ→B←ÐD would be
an unshielded collider triple, and so appear inM2 as well,
leaving the only other option BÐÐD inM1 as invariant
u-structure ⟨A,B,D,C⟩ and therefore BÐÐD inM2 as
well.

(3b) Assume AÐ→D (so an arc from A into both B and D,
but C not adjacent to either). Then if BÐ→D inM1, then
D is a descendant ofB, butD is not an ancestor ofB, i.e.B
and D belong to different strongly connected components.
However, then we have two nonadjacent nodes B and C in
M1 which means they can be d-separated by some minimal
set Z in the underlying G1. By lemma 4, rule 3 this means the
set Z cannot contain D (as it is not an ancestor of either B
or C), but including it in the conditioning set would unblock
a path via D (as D is descendant of both B and C), i.e.
B ⊥⊥ÒG C ∣Z ∪ [D], which by Lemma 4 rule 2 implies that

D cannot be an ancestor of B (or C). Therefore BÐ→D
is then invariant and appears inM2 as well. Same for the
case B←ÐD, but then with the roles of B and D reversed,
leading to B ←Ð D in M2 as well. That leaves the case
B ÐÐD in M1 as the only remaining option, which by
symmetry means it must appear inM2 as well.

Therefore, rule (iv) is also sound for case 3, which implies
that indeed rule (iv) in Theorem 1 is sound. As it also
covers all instances of rules (iv) and (v) in the original
CET it means that, taken together, rules (i)-(iv) of the new
CET are sound and imply all invariant features from the
original CET. Therefore, Theorem 1 suffices to establish
d-separation equivalence, which in turn, under the assumed
global directed Markov property, ensures ‘if and only if’
Markov equivalence between two CMAGs M1 and M2.
QED.

From section 4.1:

Lemma 3 In a CMAGM corresponding to directed graph
G, two variables X and Y are adjacent, iff X and Y are
(virtually) adjacent in G.

Proof Follows directly from Lemma 1 in (Richardson,
1997).

Theorem 2 For two different cyclic directed graphs G1 and
G2, let P1 and P2 be the corresponding CPAGs output by
(Graph-to-CPAG) algorithm 2. Then G1 is Markov equival-
ent to G2 iff P1 = P2.

Proof Soundness of the algorithm follows from Theorem
1, in combination with the fact that each orientation has a
direct match to an invariant feature in the CET rules and
is therefore sound. As the algorithm processes each rule
exhaustively, this guarantees the output is a valid CPAG.

Remainder of the proof strategy carries over directly from
Theorem 2 in Richardson (1996): if any of the orientations
triggers in one graph but not the other, then there must be a
difference in one or more d-separation statement(s) meaning
they are not Markov equivalent. We already showed in the
proof of Theorem 1 that CET rules (i)-(ii) were equivalent
to the original CET rules (i)-(iv), which (again by the proof
of the original Theorem 2) ensures that, for two Markov
equivalent graphs, P1 and P2 have the same skeleton, v-
structures, and virtual collider triples.

The final orientation rule (iv), corresponding to original
CET rules (iv)+(v), has a slightly stronger implication than
the original, but still cannot introduce or destroy a virtual
collider triple, and so if it triggers in one graph, then it
triggers in the other graph. Therefore, if P1 and P2 differ
after processing CET-(iv), then G1 and G2 must differ on
some invariant feature, and so are not Markov equivalent.



3 MARKOV PROPERTIES FOR
STRUCTURAL CAUSAL MODELS

We state here some of the key definitions and results in the
theory of Structural Causal Models (SCMs). These models,
also known as Structural Equation Models (SEMs), were in-
troduced a century ago by Wright (1921) and popularized in
AI by Pearl (2009). We follow here the treatment of Bongers
et al. (2021), as it deals with cycles in a mathematically rig-
orous way.

Definition 1 (SCM) A Structural Causal Model (SCM) is
a tuple M = ⟨V,W,XV,XW, f , PM ⟩ of:

1. finite disjoint index sets V,W for the endogenous and
exogenous variables in the model, respectively;

2. a product of standard measurable spaces XV =
∏v∈VXv, which define the domains of the endogen-
ous variables;

3. a product of standard measurable spaces XW =
∏w∈WXw, which define the domains of the exogen-
ous variables;

4. a measurable function f ∶ XV ×XW → XV, the causal
mechanism;

5. a product probability measure PM = ∏w∈W Pw on
XW, with each Pw a probability measure on Xw, spe-
cifying the exogenous distribution.

The causal structure of the SCM is encoded by the depend-
ences of the components of f on the variables in the model.
This is formalized by:

Definition 2 (Parent) Let M be an SCM. We call i ∈ V ∪
W a parent of k ∈ V if and only if there does not exist a
measurable function f̃k ∶ XV∖{i} ×XW∖{i} → Xk such that
for PM -almost every w ∈ XW, for all v ∈ XV,

vk = f̃k(v∖i,w∖i) ⇐⇒ vk = fk(v,w).

Intuitively, this means that the k’th component of f does
not depend on the i’th variable. This definition allows us
to define the directed mixed graph (DMG) associated to an
SCM:

Definition 3 (Graph) Let M be an SCM. The graph of M ,
denoted G(M), is defined as the directed mixed graph with
nodes V, directed edges v1 → v2 iff v1 is a parent of v2
according to M , and bidirected edges v1 ←→ v2 iff there
exists w ∈ W such that w is parent of both v1 and v2
according to M .

If G(M) is acyclic, we call the SCM M acyclic, otherwise
we call the SCM cyclic. If G(M) contains no bidirected
edges, we call the endogenous variables in the SCM M
causally sufficient (which is what we assumed in the present
work for simplicity).

SCMs provide an implicit description of their solutions.

Definition 4 (Solutions) A random variable
X = (XV,XW) is called a solution of the SCM
M if XV = (Xv)v∈V with Xv ∈ Xv for all v ∈ V,
XW = (Xw)w∈W with Xw ∈ Xw for all w ∈ W, the
distribution P(XW) is equal to the exogenous distribution
PM , and the structural equations:

Xv = fv(XV,XW) a.s.

hold for all v ∈V.

For acyclic SCMs, solutions exist and have a unique distribu-
tion that is determined by the SCM. This is not generally the
case in cyclic SCMs, as these could have no solution at all,
or could have multiple solutions with different distributions.

Definition 5 (Unique solvability) An SCMM is said to be
uniquely solvable w.r.t. O ⊆V if there exists a measurable
mapping gO ∶ XpaG(M)(O)∖O → XO such that for PM -
almost every w ∈ XW, for all v ∈ XV:

vO = gO(v(paG(M)(O)∖O)∩V,wpaG(M)(O)∩W)
⇐⇒ vO = fO(v,w).

Loosely speaking: the structural equations for O have an
essentially unique solution for vO in terms of the other
variables appearing in those equations. If M is uniquely
solvable with respect to V (in particular, this holds if M is
acyclic), then it induces a unique observational distribution
PM(XV), the push-forward of PM through gV.

One of the key aspects of SCMs—which we do not dis-
cuss here in detail because we do not make use of it in this
work—is their causal semantics, which is defined in terms
of interventions. Instead, we discuss only their probabilistic
properties. In particular, under appropriate assumptions, the
graph G(M) of an SCMM represents conditional independ-
ences that its solutions must satisfy. As shown already by
Spirtes (1994, 1995), the directed global Markov property
does not hold in general for cyclic SCMs.

Example 1 (d-separation fails) Consider the SCM M =
⟨{1,2,3,4},{5,6,7,8},R4,R4, f , PM ⟩ where PM is the
standard-normal distribution on R4, and the causal mech-
anism is given by:

f(x) = (x5, x6, x1x4 + x7, x2x3 + x8)

The graph G(M) has edges 1Ð→3, 2Ð→4, 3Ð→4, 4Ð→3.
This SCM is uniquely solvable with respect to its strongly



connected components {1}, {2}, and {3,4}. One can check
that for every solution X of M, X1 is not independent of X2

given {X3,X4}. However, the nodes 1 and 2 are d-separated
given {3,4} in G(M). Hence the global directed Markov
property does not hold for M .

For more concrete examples of cyclic SCMs, we refer the
reader to (Bongers et al., 2021). Spirtes (1994) proved a
weaker Markov property in terms of a ‘collapsed graph’,
assuming causal sufficiency and densities. Forré and Mooij
(2017) found the following formulation in terms of ‘σ-
separation’ that is immediately applicable to the graph of
the SCM itself.

Definition 6 (Blockable and unblockable noncolliders)
Let G be a directed mixed graph and π a path in G. We
call a noncollider on π unblockable if it is not an end-node
and it only has outgoing edges on π to nodes in the same
strongly connected component of G; otherwise, it is called
blockable.

If G is acyclic then all noncolliders are blockable.

Definition 7 (σ-separation) For a triple of node sets
X,Y,Z in a graph G, we say that X is σ-connected to
Y given Z iff there is an X ∈X and Y ∈Y such that there
is a path π between X and Y on which every blockable non-
collider is not in Z, and every collider on π is an ancestor
of Z; otherwise X and Y are said to be σ-separated given
Z.

Note the small difference with the definition of d-connection:
σ-connection only considers the blockable noncolliders. The
following general result was shown by Forré and Mooij
(2017).

Theorem 1 (σ-Separation Markov property) Let M be
an SCM that is uniquely solvable w.r.t. each strongly connec-
ted component of G(M). Then, the observational distribu-
tion of M exists and is unique. Furthermore, for a solution
X of M and for A,B,C ⊆V: if A is σ-separated from B
given C in G(M), then XA is conditionally independent of
XB given XC.

Proof See the proof of Theorem A.21 in Bongers et al.
(2021).

Under certain additional assumptions, one can show the
stronger d-separation criterion (also known as the global
directed Markov property).

Theorem 2 (d-Separation Markov property) Let M be
an SCM that satisfies one of the following three assump-
tions:

1. M is acyclic;

2. • all endogenous domains Xv for v ∈ V are dis-
crete, and

• M is uniquely solvable w.r.t. each ancestral sub-
set A ⊆V (that is, each subset A ⊆V such that
anG(M)(A) = A);

3. • XV = RV and XW = RW, and
• f is a linear mapping, and
• each v ∈V has at least one parent in W accord-

ing to M , and
• PM has a density w.r.t. the Lebesgue measure on
RW.

Then, the observational distribution of M exists and is
unique. Furthermore, for a solution X of M and for
A,B,C ⊆V: if A is d-separated from B given C in G(M),
then XA is conditionally independent of XB given XC.

Proof See the proof of Theorem A.7 in Bongers et al.
(2021). The acyclic case is well known. The discrete case
fixes the erroneous theorem by Pearl and Dechter (1996),
for which a counterexample was found by Neal (2000), by
adding the assumption of unique solvability with respect
to each ancestral subset, and extends it to allow for bid-
irected edges in the graph. The linear case is an extension
of existing results for the linear-Gaussian setting without
bidirected edges Spirtes (1994, 1995); Koster (1996) to a
linear (possibly non-Gaussian) setting with bidirected edges
in the graph.

For this paper, we assume that the global directed Markov
property holds with respect to a graph that contains no bid-
irected edges. From the above theorem, it follows that this
will hold if the data comes from the observational distribu-
tion of a causally sufficient SCM that falls into either the
acyclic case (1), the discrete case (2), or the linear case (3).
Note that these assumptions are sufficient, but not necessary.
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