
Beyond 1-WL with Local Ego-Network Encodings

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Identifying similar network structures is key to capture graph isomorphisms and2

learn representations that exploit structural information encoded in graph data.3

This work shows that ego-networks can produce a structural encoding scheme4

for arbitrary graphs with greater expressivity than the Weisfeiler-Lehman (1-WL)5

test. We introduce IGEL, a preprocessing step to produce features that augment6

node representations by encoding ego-networks into sparse vectors that enrich7

Message Passing (MP) Graph Neural Networks (GNNs) beyond 1-WL expressivity.8

We describe formally the relation between IGEL and 1-WL, and characterize9

its expressive power and limitations. Experiments show that IGEL matches the10

empirical expressivity of state-of-the-art methods on isomorphism detection while11

improving performance on seven GNN architectures.12

1 Introduction13

Novel approaches for representation learning on graph structured data have appeared in recent14

years [1]. Graph neural networks can efficiently learn representations that depend both on the graph15

structure and node and edge features from large-scale graph datasets. The most popular choice of16

architecture is the Message Passing Graph Neural Network (MP-GNN). In MP-GNNs, a node is17

represented by iteratively aggregating local feature ‘messages’ from its neighbors.18

Despite being succesfully applied in a wide variety of domains [2–6], there is a limit on the representa-19

tional power of MP-GNNs provided by the computationally efficient Weisfeiler-Lehman (1-WL) test20

for checking graph isomorphism [7, 8]. Establishing this connection has lead to a better theoretical21

understanding of the performance of MP-GNNs and many possible generalizations [9–13].22

To improve the expressivity of MP-GNNs, recent methods have extended the vanilla message-23

passing mechanism is various ways. For example, using higher order k-vertex tuples [8] leading24

to k-WL generalizations, introducing relative positioning information for network vertices [14],25

propagating messages beyond direct neighborhoods [15], using concepts from algebraic topology [16],26

or combining sub-graph information in different ways [17–25]. All aforementioned approaches27

(which we review in more detail in Appendix A) improve expressivity by extending MP-GNNs28

architectures, often evaluating on standarized benchmarks [26–29]. However, identifying the optimal29

approach on novel domains remains unclear and requires costly architecture search.30

In this work, we show that incorporating simple ego-network encodings already boosts the expressive31

power of MP-GNNs beyond the 1-WL test, while keeping the benefits of efficiency and simplicity.32

We present IGEL, an Inductive Graph Encoding of Local information, which in its basic form extends33

node attributes with histograms of node degrees at different distances. The IGEL encodings can be34

computed as a pre-processing step irrespective of model architecture.35

Theoretically, we formally prove that the IGEL encoding is no less expressive than the 1-WL test,36

and provide examples that show that it is more expressive than 1-WL. We also identify expressivity37

upper-bounds for graphs that are indistinguishable using state of the art methods. Experimentally, we38

asses the performance of seven model architectures enriched with IGEL encodings on five tasks and39

ten graph data sets, and find that it consistently improves downstream model performance.40
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2 IGEL: Ego-Networks As Sparse Inductive Representations41

Given a graph G = (V,E), we define n = |V | and m = |E|, dG(v) is the degree of a node v in G42

and dmax is the maximum degree. For u, v ∈ V , lG(u, v) is their shortest distance, and diam(G) =43

max(lG(u, v)|u, v ∈ V ) is the diameter of G. Double brackets {{·}} denote a lexicographically-44

ordered multi-set, Eα
v ⊆ G is the α-depth ego-network centered on v, and Nα

G(v) is the set of45

neighbors of v in G up to distance α, i.e., Nα
G(v) = {u | u ∈ V ∧ lG(u, v) ≤ α}.46

Algorithm 1 shows the 1-WL test, where hash maps a multi-set to an equivalence class shared47

by all nodes with matching multi-set encodings after a 1-WL iteration. The output of 1-WL is48

Nn—mapping each node to a color, bounded by n distinct colors if each node is uniquely colored.49

k-higher order variants of the WL test (denoted k-WL) operate on k-tuples of vertices, such that50

colors are assigned to k-vertex tuples. If two graphs G1, G2 are not distinguishable by the k-WL51

test (that is, their coloring histograms match), they are k-WL equivalent—denoted G1 ≡k−WL G2.52

Due to the hashing step, 1-WL does not preserve distance information in the encoding, and minor53

changes in the structure of the network (removing one edge) may dramatically change node-level54

representations. IGEL addresses both limitations, improving expressivity in the process.55

2.1 The IGEL Algorithm56

Intuitively, IGEL encodes a vertex v with the multi-set of ordered degree sequences at each distance57

within Eα
v . As such, IGEL is a variant of the 1-WL algorithm shown in Algorithm 1, executed for58

α steps with two modifications. First, the hashing step is removed and replaced by computing the59

union of multi-sets across steps (∪); second, the iteration number is explicitly introduced in the60

representation—with the output multi-set eαv shown in Algorithm 2.61
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Figure 1: IGEL encoding of the green vertex.
Dashed region denotes Eα

v (α = 2). The green
vertex is at distance 0, blue vertices at 1 and red
vertices at 2. Labels show degrees in Eα

v . The
frequency of (λ, δ) tuples forming IGELα

vec(v) is:
{(0, 2) : 1, (1, 2) : 1, (1, 4) : 1, (2, 3) : 2, (2, 4) : 1}.

To be used as vertex features, the multi-set can be62

represented as a sparse vector IGELα
vec(v), where63

the frequency of a pair of distance λ and degree64

δ is contained on index i = λ · (dmax + 1) + δ.65

Degrees greater than dmax are capped to dmax, with66

the resulting vector shown in Figure 1:67

IGELα
vec(v)i =

∣∣∣{{(λ, δ) ∈ eαv }}
∣∣∣,

for λ · (dmax + 1) + δ = i.

G1 = (V1, E1) and G2 = (V1, E1) are IGEL-68

equivalent for α if the sorted multi-set containing69

node representations is the same for G1 and G2:70

G1 ≡α
IGEL G2 ⇐⇒

{{eαv1 : ∀v1 ∈ V1}} = {{eαv2 : ∀v2 ∈ V2}}.

Algorithm 1 1-WL (Color refinement).

Input: G = (V,E)
1: c0v := hash({{dG(v)}}) ∀ v ∈ V
2: do
3: ci+1

v := hash({{ciu : ∀
u̸=v

u ∈ N 1
G(v)}})

4: while civ ̸= ci−1
v

Output: civ : V → N

Algorithm 2 IGEL Encoding.

Input: G = (V,E), α : N
1: e0v := {{(0, dG(v))}} ∀ v ∈ V
2: for i := 1; i += 1 until i = α do
3: eiv :=

⋃
(ei−1

v ,
4: {{(i, dEα

G(v)(u))

5: ∀u ∈ Nα
G(v) | lG(u, v) = i}})

6: end for
Output: eαv : V → {{(N,N)}}

71

Space complexity. IGEL’s worst case space complexity is O(α · n · dmax), conservatively assuming72

that every node will require dmax parameters at every α depth from the center of the ego-network.73

Time complexity. For IGEL, each vertex has dmax neighbors where the α iterations imply traversing74

through geometrically larger ego-networks with (dmax)
α vertices, upper bounded by m. Thus75

IGEL’s time complexity follows O(n ·min(m, (dmax)
α)), with O(n ·m) when α ≥ diam(G), when76

implemented as BFS, for which we provide further details in Appendix F.77
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3 Theoretical and Experimental Findings78

First, we analyze IGEL’s expressive power with respect to 1-WL and recent improvements. Second,79

we measure the impact of IGEL as an additional input to enrich existing MP-GNN architectures.80

3.1 Expressivity: Which Graphs are IGEL-Distinguishable?81

In this section, we discuss the increased expressivity of IGEL with respect to 1-WL, and identify82

expressivity upper-bounds for graphs that are indistinguishable under MATLANG and the 3-WL test.83
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Figure 2: IGEL encodings for two Cospectral 4-
regular graphs from [30]. IGEL distinguishes 4
kinds of structures within the graphs (associated
with every node as a, b, c, and d). The two graphs
can be distinguished since the encoded structures
and their frequencies do not match.

— Relationship to 1-WL. IGEL is more pow-84

erful than 1-WL following Lemma 1 (as shown85

in Appendix C) and Lemma 2 (as shown below):86

Lemma 1. IGEL is at least as expressive than 1-87

WL. That is, for any pair of graphs G1, G2 such88

that G1 ̸≡1−WL G2 are distinguished by 1-WL89

in k iterations, G1 ̸≡α
IGEL G2 for α = k + 1.90

Lemma 2. There exist graphs that IGEL can dis-91

tinguish but that 1-WL cannot distinguish.92

Proof. For example, any two d-regular graphs93

with equal cardinality are indistinguishable by94

1-WL (as shown in Appendix B), but IGEL can95

distinguish some of them. A graph is d-regular96

if all nodes have degree d. Figure 2 shows two97

d-regular graphs where 1-WL (Algorithm 1) as-98

signs the same color for all nodes, stabilizing99

after one iteration. In contrast, IGEL(α = 1)100

counts different frequencies for four structures,101

hence distinguishing between both graphs.102

— Expressivity upper bounds. We identify an103

expressivity upper bound for IGEL, which fails to104

distinguish Strongly Regular Graphs with equal parameters (Theorem 1, see Appendix E for details):105

Definition 1. A n-vertex d-regular graph is strongly regular—denoted SRG(n, d, β, γ)—if adjacent106

vertices have β vertices in common, and non-adjacent vertices have γ vertices in common.107

Theorem 1. IGEL cannot distinguish SRGs when n, d, and β are the same, and between any value of108

γ (same or otherwise). IGEL when α = 1 can only distinguish SRGs with different values of n, d,109

and β, while IGEL when α = 2 can only distinguish SRGs with different values of n and d.110

Our findings show that IGEL is a powerful permutation-equivariant representation (see Lemma 3),111

capable of distinguishing 1-WL equivalent graphs as shown in Figure 2—which as cospectral graphs,112

are known to be distinguishable in strictly more powerful MATLANG sub-languages than 1-WL [12].113

Additionally, the upper bound on SRGs is a hard ceiling on expressivity since SRGs are known to114

be indistinguishable by 3-WL [31]. IGEL shares the experimental upper-bound of expressivity of115

methods like GNNML3 [20]. Furthermore, IGEL can provably reach comparable expressivity on116

SRGs with respect to sub-graph methods implemented within MP-GNN architectures (see Appendix E,117

subsection E.1), such as Nested GNNs [19] and GNN-AK [23], which are known to be not less118

powerful than 3-WL, and ESAN when using ego-networks with root-node flags as subgraph sampling119

policy (EGO+) [24], which is as powerful as the 3-WL test on SRGs (see [24], Prop. 3).120

3.2 Experimental Evaluation121

We evaluate IGELα
vec(v) to produce architecture-agnostic vertex features on five tasks: graph classifi-122

cation, isomorphism detection, graphlet counting, link prediction, and node classification.123

Experimental Setup. We introduce IGEL on graph classification, isomorphism and graphlet counting,124

comparing the performance of adding/removing IGEL on six GNN architectures following [20]. We125

also evaluate IGEL on link prediction against transductive baselines, and on node classification as126

additional feature in MLPs without message-passing. Appendix G describes experimentation details.127

Notation. The following formatting denotes significant (as per paired t-tests) positive, negative, and128

insignificant differences after introducing IGEL, with the best results per task / dataset underlined.129
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Table 1: Per-model graph classification accuracy met-
rics on TU data sets. Each cell shows the average
accuracy of the model and data set in that row and
column, with IGEL (left) and without IGEL (right).

Model Enzymes Mutag Proteins PTC

MLP 41.10>26.18⋄ 87.61>84.61⋄ 75.43~75.01 64.59>62.79⋄

GCN 54.48>48.60⋄ 89.61>85.42⋄ 75.67>74.50* 65.76~65.21
GAT 54.88~54.95 90.00>86.14⋄ 73.44>70.51⋄ 66.29~66.29
GIN 54.77>53.44* 89.56~88.33 73.32>72.05⋄ 61.44~60.21
Chebnet 61.88~62.23 91.44>88.33⋄ 74.30>66.94⋄ 64.79~63.87
GNNML3 61.42<62.79⋄ 92.50>91.47* 75.54>62.32⋄ 64.26<66.10⋄

∗ p < 0.01, ⋄ p < 0.0001

Table 2: Mean ± stddev of best IGEL
configuration and state-of-the-art results re-
ported on [15, 18, 19, 21, 23, 24] with
best performing baselines underlined.

Model Mutag Proteins PTC

IGEL (ours) 92.5 ± 1.2 75.7 ± 0.3 66.3 ± 1.3

k-hop [15]† 87.9 ± 1.2⋄ 75.3 ± 0.4 —
GSN [18]† 92.2 ± 7.5 76.6 ± 5.0 68.2 ± 7.2

NGNN [19]† 87.9 ± 8.2 74.2 ± 3.7 —
ID-GNN [21]† 93.0 ± 5.6 77.9 ± 2.4* 62.5 ± 5.3

GNN-AK [23]† 91.7 ± 7.0 77.1 ± 5.7 67.7 ± 8.8

ESAN [24]† 91.1 ± 7.0 76.7 ± 4.1 69.2 ± 6.5

†: Results as reported by [15, 18, 19, 21, 23, 24].

— Graph Classification. Table 1 shows graph classification results on the TU molecule data sets [27].130

We evaluate differences in mean accuracy between 10 runs with (left) / without (right) IGEL. We do131

not tune network hyper-parameters and establish statistical significance through paired t-tests, with132

p < 0.01 (*) and p < 0.0001 (⋄). Our results show that IGEL in the Mutag and Proteins data sets133

improves the performance of all MP-GNN models, including GNNML3. On the Enzymes and PTC134

data sets, results are mixed: excluding GNNML3, IGEL either significantly improves accuracy (on135

MLPNet, GCN, and GIN on Enzymes), or does not have a negative impact on performance.136

Table 2 compares IGEL results from Table 1 with reported results for state-of-the-art 1-WL expressive137

MP-GNNs. Results are comparable to IGEL except where highlighted in color. Overall, when138

comparing IGEL and best performing baselines, only differences with ID-GNN on Proteins are139

statistically significant (using p-value threshold p < 0.01, where ID-GNN shows p = 0.009).140

— Isomorphism Detection & Graphlet Counting. Adding IGEL to the sixmodels in Table 1 on the141

EXP [32] isomorphism detection yields significant improvements: all GNN models distinguish all142

non-isomorphic yet 1-WL equivalent EXP graph pairs with IGEL vs. 50% accuracy without IGEL (i.e.143

random guessing). Additionally, IGEL significantly improves GNN graphlet-counting performance144

on three graphlet types in the RandomGraph data set [33]. We provide further details in Appendix H.145

— Link Prediction & Node Classification. We test IGEL on edge / node level tasks to assess its use146

as a baseline in non-GNN settings. On a transductive link prediction task, we train DeepWalk [34]147

style embeddings of IGEL encodings rather than node identities on the Facebook and CA-AstroPh148

graphs [35]. IGEL-derived embeddings outperform transductive baselines on link prediction as an149

edge-level binary classification task, measuring 0.976 vs. 0.968 (Facebook) and 0.984 vs. 0.937 (CA-150

AstroPh) AUC comparing IGEL vs. node2vec [36]. On multi-label node classification on PPI [37],151

we train an MLP (e.g. no message passing) with node features and IGEL encodings. Our MLP shows152

better micro-F1 (0.850) when α = 1 than MP-GNN architectures such as GraphSAGE (0.768, as153

reported in [38]), but underperforms compared to a 3-layer GAT (0.973 micro-F1 from [38]).154

— Experimental Summary. Introducing IGEL yields comparable performance to state-of-the-art155

methods without architectural modifications—including when compared to strong baseline models156

focused on WL expressivity such as GNNML3, GSN, Nested GNNs, ID-GNN, GNN-AK or ESAN.157

Furthermore, IGEL achieves this at a lower computational cost, in comparison for instance with158

GNNML3, which requires a O(n3) eigen-decomposition step to introduce spectral channels. Finally,159

IGEL can also be used in transductive settings (link prediction) as well as node-level tasks (node160

classification) and outperform strong transductive baselines or enhance models without message-161

passing, such as MLPs. As such, we believe IGEL is an attractive baseline with a clear relationship to162

the 1-WL test that improves MP-GNN expressivity without the need for costly architecture search.163

4 Conclusions164

We presented IGEL, a novel vertex representation algorithm on unattributed graphs allowing MP-165

GNN architectures to go beyond 1-WL expressivity. We showed that IGEL is related and more166

expressive than the 1-WL test, and formally proved an expressivity upper bound on certain families167

of Strongly Regular Graphs. Finally, our experimental results indicate that introducing IGEL in168

existing MP-GNN architectures yield comparable performance to state-of-the-art methods, without169

architectural modifications and at lower computational costs than other approaches.170
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A Relation with Previous Works276

In the past few years, many different approaches have been developed for improving the expressivity277

of MP-GNNs. Here we review the works that are more related to IGEL. For a more detailed overview278

augmented message-passing methods for graph representation learning, see [39].279

In k-hop MP-GNNs (k-hop) [15] the authors propose to propagate messages beyond immediate280

vertex neighbors, effectively using ego-network information in the vertex representation. Their281

proposed algorithm requires to extract neighborhood sub-graphs and to perform message-passing on282

each sub-graph, which has an exponential cost on the number of hops k both at pre-processing and at283

each iteration (epoch). In contrast, IGEL only requires a single pre-processing step that can cached284

once computed.285

Distance Encoding GNNs (DE-GNN) [25] also propose to improve MP-GNN by using extra node286

features by encoding distances to a subset of p nodes. The features obtained by DE-GNN are similar287

to IGEL when conditioning the subset to size p = 1 and using a distance encoding function with288

k = α. However, these features are not strictly equivalent to the IGEL features, since within the289

ego-network the node degrees can be smaller than the actual degrees, and they are more expensive to290

compute. DE-GNN needs to compute power iterations of the entire adjacency matrix, which is more291

expensive and does not exploit network sparsity.292

Graph Substructure Networks (GSNs) [18] incorporate hand-crafted topological features by counting293

local substructures (such as the presence of cliques or cycles). GSNs require expert knowledge on294

what features are relevant for a given task and depart from the original MP-GNN in their architecture.295

We show that IGEL reaches comparable performance using a general encoding for ego-networks and296

without altering the original message-passing mechanism.297

GNNML3 [20] proposes a way to perform message passing in spectral-domain with a custom298

frequency profile. While this approach achieves good performance on graph classification, it requires299

an expensive preprocessing step for computing the eigendecomposition of the graph Laplacian and300

O(k)-order tensors to achieve k-WL expressiveness, which does not scale to large graphs.301

More recently, a series of methods formulate the problem of representing vertices or graphs as302

aggregations over sub-graphs. The sub-graph information is pooled or introduced during message-303

passing at an additional cost that varies depending on each architecture. Consequently, they require304

generating the subgraphs (or effectively replicating the nodes of every subgraph of interest) and pay305

an additional overhead due to the aggregation. These approaches include Ego-GNNs [22], Nested306

GNNs (NGNNs) [19], GNN-as-Kernel (GNN-AK) [23], Identity-aware GNNs (ID-GNNs) [21].307

Ego-GNNs perform message-passing over the ego-graphs of all the nodes in a graph, and subsequently308

perform aggregation. They provide empirical evidence of a superior expressive power than the309

classical 1-WL. ID-GNNs embed each node incorporating identity information in the GNN and310

apply rounds of heterogeneous message passing; NGNNs perform a two-level GNN using rooted311

sub-graphs and consider a graph as a bag of sub-graphs; GNN-AK uses a very similar idea, but as312

the authors describe, it sets the number of layers to the number of iterations of 1-WL; Compared to313

all these methods IGEL only relies on an initial pre-processing step based on distances and degrees314

without having to run additional message passing iterations. Despite its simplicity, IGEL performs315

competitively, as we show in Table 2.316

Equivariant Subgraph Aggregation Networks (ESAN) [24] also propose to encode bags of subgraphs317

and show that such an encoding can lead to a better expressive power. In the case of the ego-318

networks policy (EGO), ESAN is strongly related with IGEL. Interestingly, as described in concurrent319

work [40], the implicit encoding of the pairwise distance between nodes, plus the degree information320

which can be extracted via aggregation are fundamental to provide a theoretical justification of ESAN.321

In this work, we directly consider distances and degrees in the ego-network, explicitly providing322

the structural information encoded by more expressive GNN architectures. These similarities may323

explain why the performance of both methods is comparable, as shown in Table 2.324

B 1-WL Expressivity and Regular Graphs325

Remark 1 shows that 1-WL, as defined in Algorithm 1, is unable of distinguishing d-regular graphs:326

Remark 1. Let G1 and G2 be two d-regular graphs such that |V1| = |V2|. Tracing Algorithm 1, all327

vertices in V1, V2 share the same initial color due to d-regularity: ∀ v ∈ V1

⋃
V2; c

0
v = hash({{d}}).328
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After the first color refinement iteration, consider the colorings of G1 and G2:329

330

— ∀ v1 ∈ V1; c
1
v1

:= hash({{c0u1
: ∀

u1 ̸=v1

u1 ∈ N 1
G1

(v1)}}),331

— ∀ v2 ∈ V2; c
1
v2

:= hash({{c0u2
: ∀

u2 ̸=v2

u2 ∈ N 1
G2

(v2)}}).332

333

Since ∀ v1 ∈ V1, v2 ∈ V2; d = |N 1
G1

(v1)| = |N 1
G2

(v2)|, substituting c1v1 , c1v2 in the next iteration334

step yields {{hash(c1v1) : ∀ v1 ∈ V1}} = {{hash(c1v2) : ∀ v2 ∈ V2}}. Thus, on any pair of d-regular335

graphs with equal cardinality, 1-WL stabilizes after one iteration produces equal colorings for all336

nodes on both graphs—regardless of whether G1 and G2 are isomorphic, as Figure 2 shows.337

C IGEL is At Least As Powerful as 1-WL338

In this section we formally prove Lemma 1, i.e. that IGEL is at least as expressive as 1-WL. For this,339

we consider a variant of 1-WL which removes the hashing step. This modification can only increase340

the expressive power of 1-WL but makes it possible to directly compare with the encodings generated341

by IGEL. Intuitively, after k color refinement iterations, 1-WL considers nodes at k hops from each342

node, which is equivalent to running IGEL with α = k + 1, so that the ego-networks include the343

information of all nodes that 1-WL would visit.344

Lemma 1. IGEL is at least as expressive than 1-WL. That is, for any pair of graphs G1, G2 such345

that G1 ̸≡1−WL G2 are distinguished by 1-WL in k iterations, G1 ̸≡α
IGEL G2 for α = k + 1.346

Proof. For convenience, let ci+1
v = {{civ; civ ∀

u ̸=v
u ∈ N 1

G(v)}} be a recursive definition of Algorithm 1347

where hashing is removed and c0v = {{dG(v)}}. Since the hash is no longer computed, the nested348

multi-sets contain strictly the same or more information as in the traditional 1-WL algorithm.349

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2). Let k be the minimum number of color350

refinement iterations such that ∃ v1 ∈ V1 s.t. ∀ v2 ∈ V2, c
k
v1 ̸= ckv2 . For IGEL to be less expressive351

as 1-WL, it must hold that G1 ̸≡1−WL G2 ⇔ G1 ≡α
IGEL G2. Thus, for any colors distinguished352

between the two graphs ckv1 ̸= ckv2 , ∀α such that eαv1 = eαv2 . By construction of the 1-WL test,353

ckv1 = {{{{...{{dG(v1)}}, {{dG(u)∀u ∈ N 1
G1

(v1)}}...}}. For convenience, the multi-set of nested354

degree multi-sets can be rewritten as the union of degree multi-sets by introducing an indicator355

variable for the iteration number where a given degree is found:356

ckv1 =

{{
(dG(v1), 0)

}}⋃
{{
(dG(v1), 1); (dG(u), 1) ∀ u ∈ N 1

G(v)

}}⋃
{{
(dG(v1), 2); (dG(u), 2) ∀ u ∈ N 1

G(v); (dG(w), 2) ∀ w ∈ N 2
G(u)

}}⋃
...

At each step i, we introduce information about nodes up to distance i of v1. Furthermore, by357

construction, nodes will be visited on every subsequent iteration—i.e. for c2v1 , we will observe358

(dG(v1), 2) exactly dG(v1) + 1 times, as its dG(v1) neighbors u ∈ N 1
G(v) its degree in c1u. This359

notation is equivalent or more expressive than 1-WL, as it keeps track of the refinement iteration at360

which a given degree is found.361

Now consider the case in which ckv1 ̸= ckv2 , and let α = k+1 so that IGEL considers degrees counting362

edges at k to k + 1 hops of v1 and v2. We know that the color refinement algorithm has introduced363

information about nodes at a maximum distance k of v1 and v2. Assume that G1 ≡α
IGEL G2. By364

construction, this means that {{eαv1 : ∀v1 ∈ V1}} = {{eαv2
: ∀v2 ∈ V2}}. This presents a contradiction,365

as by construction all degrees and iteration counts (as per the distance) match, so ckv1 = ckv2 , and thus366

G1 ≡1−WL G2. Thus, G1 ̸≡1−WL G2 ⇔ G1 ̸≡α
IGEL G2 for α = k + 1.367

8



Beyond 1-WL with Local Ego-Network Encodings

D IGEL is Permutation Equivariant368

Lemma 3. Given any v ∈ V for G = (V,E) and given a permuted graph G′ = (V ′, E′) of369

G produced by a permutation of node labels π : V → V ′ such that ∀v ∈ V ⇔ π(v) ∈ V ′,370

∀(u, v) ∈ E ⇔ (π(u), π(v)) ∈ E′.371

The IGEL representation is permutation equivariant at the graph level

π({{eαv1
, . . . , eαvn}}) = {{eαπ(v1)

, . . . , eαπ(vn)}}.
The IGEL representation is permutation invariant at the node level

eαv = eαπ(v),∀v ∈ G.

Proof. Note that eαv in Algorithm 2 can be expressed recursively as:372

eαv =

{{(
lEα

v
(u, v), dEα

v
(u)

)∣∣∣ ∀ u ∈ Nα
G(v)

}}
.

Since IGEL only relies on node distances lG(·, ·) and degree nodes dG(·), and both lG(·, ·) and dG(·)373

are permutation invariant (and the node level) and equivariant (at the graph level) functions, the IGEL374

representation is permutation equivariant at the graph level, and permutation invariant at the node375

level.376

E Proof of Theorem 1377

In this appendix, we provide proof for Theorem 1, showing that IGEL cannot distinguish certain378

pairs of SRGs with equal parameters of n (cardinality), d (degree), β (shared edges between adjacent379

nodes), and γ (shared edges between non-adjacent nodes). Let {{·}}d denote a repeated multi-set with380

d-times the cardinality of the items in the multi-set, and let eαG = {{eαv : ∀ v ∈ V }} be short-hand381

notation for the IGEL encoding of G, defined as the sorted multi-set containing IGEL encodings of all382

nodes in G.383

Lemma 4. For any G = SRG(n, d, β, γ), diam(G) ≤ 2.384

Note that by definition of SRGs, n affects cardinality while d and β control adjacent vertex connectivity385

at 1-hop. For γ, we have to consider two cases: when γ ≥ 1 and when γ = 0:386

— Let γ ≥ 1: by definition, ∀ u, v ∈ V s.t.(u, v) /∈ E,∃ w ∈ V s.t.(u,w) ∈ E ∧ (v, w) ∈ E. Thus,387

∀ (u, v) ∈ E, lG(u, v) = 1 and ∀ (u, v) /∈ E, lG(u, v) = 2.388

— Let γ = 0: ∀ u, v ∈ V , if (u, v) /∈ E then ∄ w ∈ V s.t.(u,w) ∈ E ∧ (v, w) ∈ E as w is in389

common between u and v. Then, ∀ u, v, w ∈ V s.t.(u, v) ∈ E, (u,w) ∈ E ⇔ (v, w) ∈ E—hence,390

only nodes and their neighbors can be in common. Thus: ∀ u, v ∈ V s.t.u ̸= v, lG(u, v) = 1.391

Given both scenarios, we can conclude that for any γ ∈ N, ∀ u, v ∈ V, lG(u, v) ≤ 2 and thus392

diam(G) ≤ 2.393

394

Lemma 5. For any finite graph G, there is a finite range of α ∈ N where IGEL encodings distinguish395

between different values of α. For values of α larger than the diameter of the graph (that is,396

α ≥ diam(G)), it holds that eαv = eα+1
v as Eα

v = Eα+1
v = G.397

Proof. Per Lemma 4 and Lemma 5, SRGs have a maximum diameter of two, and IGEL encodings398

are equal for all α ≥ diam(G). Thus, given G = SRG(n, d, β, γ), only α ∈ {1, 2} produce different399

encodings of G. It can be shown that eαv can only distinguish different values of n, d and β, and400

IGEL2
enc can only distinguish values of n and d:401

— Let α = 1: ∀ v ∈ V, E1
v = (V ′, E′) s.t. V ′ = N 1

G(v). Since G is d-regular, v is the center of E1
v ,402

and has d-neighbors. By SRG’s definition, the d neighbors of v have β shared neighbors with v each,403

plus an edge with v. Thus, for any SRGs G1, G2 where n1 = n2, d1 = d2, and β1 = β2, e1G1
= e1G2

404

produce equal encodings by expanding e1v in Algorithm 2:405

e1v =

{{(
0, d

)}}⋃ {{(
1, β + 1

)}}d
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— Let α = 2: ∀ v ∈ V, E2
v = G as ∀ u ∈ V, u ∈ N 2

G(v) when diam(G) ≤ 2. G is d-regular, so406

∀ v ∈ V, d = dE2
v
(v) = dG(v). Thus, for any SRGs G1, G2 s.t. n1 = n2 and d1 = d2, e2G1

= e2G1
,407

containing n equal e2v encodings by expanding Algorithm 2:408

e2v =

{{(
0, d

)}}⋃ {{(
1, d

)}}d⋃ {{(
2, d

)}}n−d−1

Thus, IGEL cannot distinguish pairs of SRGs when n, d, and β are the same, and between any value409

of γ (equal or different between the pair). IGEL when α = 1 can only distinguish SRGs with different410

values of n, d, and β, while IGEL when α = 2 can only distinguish SRGs with different values of n411

and d.412

We note that it is straightforward to extend IGEL so that different values of γ can be distinguished.413

We explore one possible extension in subsection E.1.414

E.1 Improving Expressivity on the γ Parameter415

IGEL as presented is unable to distinguish between any values of γ in SRGs. However, IGEL can be416

trivially extended to distinguish between pairs of SRGs, bringing parity with methods such as the417

EGO+ policy in ESAN, NGNNs and GNN-AK.418

Intuitively, IGEL is unable to distinguish γ because its (λ, δ) tuples are unable to represent relation-419

ships between vertices at different distances (i.e. the γ parameter). The structural feature definition420

may be extended to compute the degree between ‘distance layers’ in the sub-graphs, addressing this421

pitfall. This means modifying eiv in Algorithm 2:422

eiv = ei−1
v ∪

{{
ρ(u, v) : ∀u ∈ Nα

G(v)
∣∣∣ lG(u, v) ∈ {i, i+ 1}

}}
where:423

ρ(u, v) =
(
lEα

v
(u, v), d0Eα

v
(u, v), d1Eα

v
(u, v)

)
and dpG(u, v) generalizes dG(u) to count edges of u at a relative distance p of v in G = (V,E):424

dpG(u, v) =
∣∣∣(u,w) ∈ E ∀ w ∈ V s.t. lG(u,w) = lG(u, v) + p

∣∣∣.
It can be shown that this definition of eiv is strictly more powerful distinguishing at SRGs following an425

expansion of Algorithm 2 with α = 2:426

e2v =

{{(
0, 0, d

)}}⋃ {{(
1, β, γ

)}}d ⋃ {{(
2, d− γ, 0

)}}n−d−1

Proof. For any G = SRG(n, d, β, γ), ∀ v ∈ V , lE2
v
(v, v) = 0 and there are d edges towards its427

neighbors—thus the root is encoded as (0, 0, d). Each neighbor is at lE2
v
(u, v) = 1, with β edges428

among each other, and γ with vertices not adjacent to v—thus (1, β, γ), where d = 1 + β + γ.429

By definition, every vertex w ∈ V s.t.(u,w) /∈ E has γ neighbors shared with v, and d neighbors430

overall. Per Lemma 4, the maximum diameter of G is two, hence lE2
v
(v, w) = 2 and for any w, the431

representation is (2, d− γ, 0).432

F Implementing IGEL through Breadth-First Search433

The idea behind the IGEL encoding is to represent each vertex v by compactly encoding its cor-434

responding ego-network Eα
v at depth α. The choice of encoding consists of a histogram of vertex435

degrees at distance d ≤ α, for each vertex in Eα
v . Essentially, IGEL runs a Breadth-First Traversal up436

to depth α, counting the number of times the same degree appears at distance d ≤ α.437

The algorithm shown in Algorithm 2 showcases IGEL and its relationship to the 1-WL test. However,438

in a practical setting, it might be preferable to implement IGEL through Breadth-First Search (BFS).439

In Algorithm 3, we show one such implementation that fits the time and space complexity described440

in section 2:441
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Algorithm 3 IGEL Encoding (BFS).

Input: v ∈ V, α ∈ N
1: toVisit := [ ] ▷ Queue of nodes to visit.
2: degrees := { } ▷ Mapping of nodes to their degrees.
3: distances := {v : 0} ▷ Mapping of nodes to their distance to v
4: while toVisit ̸= ∅ do
5: u := toVisit.dequeue()
6: currentDistance := distances[u]
7: currentDegree := 0
8: for w ∈ u.neighbors() do
9: if w /∈ distances then

10: distances[w] := currentDistance+ 1 ▷ w is a new node 1-hop further from v.
11: end if
12: if distances[w] ≤ α then
13: currentDegree := currentDegree+ 1 ▷ Count edges only within α-hops.
14: if w /∈ degrees then ▷ Enqueue if w has not been visited.
15: toVisit.append(w)
16: end if
17: end if
18: end for
19: degrees[u] := currentDegree ▷ u is now visited: we know its degree and distance to v.
20: end while
21: eαv = {{(distances[u], degrees[u]) ∀ u ∈ degrees.keys()}}

▷ Produce the multi-set of (distance, degree) pairs for all visited nodes.
Output: eαv : (N,N) → N

Due to how we structure BFS to count degrees and distances in a single pass, each edge is processed442

twice—once for each node at end of the edge. It must be noted that when processing every v ∈ V , the443

time complexity is O(n ·min(m, (dmax)
α)). However, the BFS implementation is also embarrassingly444

parallel, which means that it can be distributed over p processors with O(n ·min(m, (dmax)
α)/p)445

time complexity.446

G Experimental Settings And Procedures447

In this section, we provide additional details of our experimental setting. We summarize our datasets448

and tasks in Table 6.449

On graph-level tasks, we introduce IGEL encodings concatenated to existing vertex features into the450

best performing model configurations found by [20] without any hyper-parameter tuning (e.g. number451

of layers, hidden units, choice pooling and activation functions). We evaluate performance differences452

with and without IGEL on each task, data set and model on 10 independent runs, measuring statistical453

significance of the differences through paired t-tests.454

On vertex and edge-level tasks, we report best performing configurations after hyper-parameter455

search. Each configuration is evaluated on 5 independent runs. We provide a breakdown of the best456

performing hyper-parameters in the section below.457

G.1 Hyper-parameters and Experiment Details458

Graph Level Experiments459

We reproduce the benchmark of [20] without modifying model hyper-parameters for the tasks of460

Graph Classification, Graph Isomorphism Detection, and Graphlet Counting. For classification tasks,461

the 6 models in Table 2 are trained on binary / categorical cross-entropy objectives depending on the462

task. For Graph Isomorphism Detection, we train GNNs as binary classification models on the binary463

classification task on EXP [32], and identify isomorphisms by counting the number of graph pairs464
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Table 3: Values of α used when introducing IGEL in the best reported configuration for graphlet
counting and graph classification tasks. The table is broken down by graphlet types (upper section)
and graph classification tasks on the TU Datasets (bottom section).

Chebnet GAT GCN GIN GNNML3 Linear MLP
Star 2 1 2 1 1 2 1

Tailed Triangle 1 1 1 1 2 1 1
Triangle 1 1 1 1 1 1 1
4-Cycle 2 1 1 1 1 1 1

Custom Graphlet 2 1 1 1 2 2 2

Enzymes 1 2 2 1 2 2 2
Mutag 1 1 1 1 1 1 2

Proteins 2 2 2 1 2 1 1
PTC 1 1 2 1 1 2 2

for which randomly initialized MP-GNN models produce equivalent outputs on Graph8c12. For the465

graphlet counting regression task on the RandomGraph data set [33], we train models to minimize466

Mean Squared Error (MSE) on the normalized graphlet counts3 for five types of graphlets.467

On all tasks, we experiment with α ∈ {1, 2} and optionally introduce a preliminary linear transfor-468

mation layer to reduce the dimensionality of IGEL encodings. For every setup, we execute the same469

configuration 10 times with different seeds and compare runs introducing IGEL or not by measuring470

whether differences on the target metric (e.g. accuracy or MSE) are statistically significant as shown471

in Table 1 and Table 2. In Table 3, we provide the value of α that was used in our experimental472

results. Our results show that the choice of α depends on both the task and model type. We believe473

these results may be applicable to subgraph-based MP-GNNs, and will explore how different settings,474

graph sizes, and downstream models interact with α in future work.475

Reproducibility– We will provide an additional repository with our changes to the original benchmark,476

including our modelling scripts, metadata, and experimental results.477

Vertex and Edge-level Experiments478

In this section we break down the best performing hyper-parameters on the Edge (link prediction)479

and Vertex-level (node classification) experiments.480

Link Prediction– The best performing hyperparameter configuration on the Facebook graph including481

α = 2, learning t = 256 component vectors with e = 10 walks per node, each of length s = 150 and482

p = 8 negative samples per positive for the self-supervised negative sampling. Respectively on the483

arXiv citation graph, we find the best configuration at α = 2, t = 256, e = 2, s = 100 and p = 9.484

Node Classification– In the node classification experiment, we analyze both encoding distances485

α ∈ {1, 2}. Other IGEL hyper-parameters are fixed after a small greedy search based on the best486

configurations in the link prediction experiments. For the MLP model, we perform greedy architecture487

search, including number of hidden units, activation functions and depth. Our results show scores488

averaged over five different seeded runs with the same configuration obtained from hyperparameter489

search.490

The best performing hyperparameter configuration on the node classification is found with α = 2491

on t = 256 length embedding vectors, concatenated with node features as the input layer for 1000492

epochs in a 3-layer MLP using ELU activations with a learning rate of 0.005. Additionally, we apply493

100 epoch patience for early stopping, monitoring the F1-score on the validation set.494

Reproducibility– We will provide a replication folder in the code repository for the exact configurations495

used to run the experiments.496

1Simple 8 vertices graphs from: http://users.cecs.anu.edu.au/~bdm/data/graphs.html
2That is, models are not trained but simply initialized, following the approach of [20].
3Counts are normalized by the standard deviation counts across the data set for MSE values to be consistent

across graphlet types, in alignment with [20].
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H Extended Results on Isomorphism Detection and Graphlet Counting497

In this section we summarize additional results on isomorphism detection and graphlet counting.498

H.1 Isomorphism Detection499

We provide a detailed breakdown of isomorphism detection performance after introducing IGEL500

in Table 4, complimenting our summary on subsection 3.2.501

Table 4: Graph isomorphism detection re-
sults. The IGEL column denotes whether
IGEL is used or not in the configuration.
For Graph8c, we describe graph pairs erro-
neously detected as isomorphic. For EXP
classify, we show the accuracy of distinguish-
ing non-isomorphic graphs in a binary clas-
sification task.

Model + IGEL Graph8c EXP Classify
(#Errors) (Accuracy)

No 6.242M 50%Linear Yes 1571 97.25%

No 293K 50%MLP Yes 1487 100%

No 4196 50%GCN Yes 5 100%

No 1827 50%GAT Yes 5 100%

No 571 50%GIN Yes 5 100%

No 44 50%Chebnet Yes 1 100%

No 0 100%GNNML3 Yes 0 100%

— Graph8c. On the Graph8c dataset, introducing502

IGEL significantly reduces the amount of graph pairs503

erroneously identified as isomorphic for all MP-GNN504

models, as shown in Table 4. Furthermore, IGEL505

allows a linear baseline employing a sum readout506

function over input feature vectors, then projecting507

onto a 10-component space, to identify all but 1571508

non-isomorphic pairs compared to the erroneous pairs509

GCNs (4196 errors) or GATs (1827 errors) can identify510

without IGEL. Additionally, we find that all Graph8c511

graphs can be distinguished if the IGEL encodings for512

α = 1 and α = 2 are concatenated. We do not explore513

the expressivity of combinations of α in this work, but514

hypothesize that concatenated encodings of α may be515

more expressive.516

— Empirical Results on Strongly Regular Graphs.517

We also evaluate IGEL on SR254, which contains 15518

Strongly Regular graphs with 25 vertices, known to519

be indistinguishable by 3-WL. With SR25, we vali-520

date Theorem 1. [20] showed that no models in our521

benchmark distinguish any of the 105 non-isomorphic522

graph pairs in SR25. As expected from Theorem 1,523

IGEL does not improve distinguishability.524

H.2 Graphlet Counting525

We evaluate IGEL on a (regression) graphlet5 counting task. We minimize Mean Squared Error (MSE)526

on normalized graphlet counts6. Table 5 shows the results of introducing IGEL in 5 graphlet counting527

tasks on the RandomGraph data set [33]. Stat sig. differences (p < 0.0001) shown in bold green,528

with best (lowest MSE) per-graphlet results underlined.529

Table 5: Graphlet counting results. Cells contain mean test
set MSE error (lower is better), stat. sig highlighted.

Model + IGEL Star Triangle Tailed Tri. 4-Cycle Custom

No 1.60E-01 3.41E-01 2.82E-01 2.03E-01 5.11E-01Linear Yes 4.23E-03 4.38E-03 1.85E-02 1.36E-01 5.25E-02

No 2.66E-06 2.56E-01 1.60E-01 1.18E-01 4.54E-01MLP Yes 8.31E-05 5.69E-05 5.57E-05 7.64E-02 2.34E-04

No 4.72E-04 2.42E-01 1.35E-01 1.11E-01 1.54E-03GCN Yes 8.26E-04 1.25E-03 4.15E-03 7.32E-02 1.17E-03

No 4.15E-04 2.35E-01 1.28E-01 1.11E-01 2.85E-03GAT Yes 4.52E-04 6.22E-04 7.77E-04 7.33E-02 6.66E-04

No 3.17E-04 2.26E-01 1.22E-01 1.11E-01 2.69E-03GIN Yes 6.09E-04 1.03E-03 2.72E-03 6.98E-02 2.18E-03

No 5.79E-04 1.71E-01 1.12E-01 8.95E-02 2.06E-03Chebnet Yes 3.81E-03 7.88E-04 2.10E-03 7.90E-02 2.05E-03

No 8.90E-05 2.36E-04 2.91E-04 6.82E-04 9.86E-04GNNML3 Yes 9.29E-04 2.19E-04 4.23E-04 6.98E-04 4.17E-04

Introducing IGEL improves counting530

performance on triangles, tailed trian-531

gles and the custom 1-WL graphlets532

proposed by [20]. Star graphlets can533

be identified by all baselines, and534

IGEL only produces statistically sig-535

nificant improvements for the Linear536

baseline.537

Notably, the Linear baseline plus538

IGEL outperforms MP-GNNs without539

IGEL for star, triangle, tailed triangle540

and custom 1-WL graphlets. By intro-541

ducing IGEL on the MLP baseline, it542

outperforms all other models includ-543

ing GNNML3 on the triangle, tailed-544

triangle and custom 1-WL graphlets.545

4SRG(25, 12, 5, 6) graphs from: http://users.cecs.anu.edu.au/~bdm/data/graphs.html
53-stars, triangles, tailed triangles and 4-cycles, plus a custom 1-WL graphlet proposed in [20]
6Counts are stddev-normalized so that MSE values are comparable across graphlet types, following [20].
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Beyond 1-WL with Local Ego-Network Encodings

Since Linear and MLP baselines do not use message passing, we believe raw IGEL encodings may546

be sufficient to identify certain graph structures even with simple linear models. For all graphlets547

except 4-cycles, introducing IGEL yields performance similar to GNNML3 at lower pre-processing548

and model training/inference costs, as IGEL obviates the need for costly eigen-decomposition and549

can be used in simple models only performing graph-level readouts without message passing.550
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Beyond 1-WL with Local Ego-Network Encodings
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