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ABSTRACT

Text-driven diffusion models have unlocked unprecedented abilities in image gener-
ation, whereas their video counterpart lags behind due to the excessive training cost.
To avert the training burden, we propose a training-free ControlVideo to produce
high-quality videos based on the provided text prompts and motion sequences.
Specifically, ControlVideo adapts a pre-trained text-to-image model (i.e., Con-
trolNet) for controllable text-to-video generation. To generate continuous videos
without flicker effects, we propose an interleaved-frame smoother to smooth the in-
termediate frames. In particular, interleaved-frame smoother splits the whole video
with successive three-frame clips, and stabilizes each clip by updating the middle
frame with the interpolation among other two frames in latent space. Furthermore,
a fully cross-frame interaction mechanism is exploited to further enhance the frame
consistency, while a hierarchical sampler is employed to produce long videos
efficiently. Extensive experiments demonstrate that our ControlVideo outperforms
the state-of-the-arts both quantitatively and qualitatively. It is worth noting that,
thanks to the efficient designs, ControlVideo could generate both short and long
videos within several minutes using one NVIDIA 2080Ti. Code and videos are
available at this link.

1 INTRODUCTION

Large-scale diffusion models have made a tremendous breakthrough on text-to-image synthe-
sis (Nichol et al., 2021; Rombach et al., 2022; Balaji et al., 2022; Ramesh et al., 2022; Saharia
et al., 2022) and their creative applications (Gal et al., 2022; Wei et al., 2023; Ni et al., 2022; Hertz
et al., 2022). Several studies (Ho et al., 2022b;a; Singer et al., 2022; Esser et al., 2023; Hong et al.,
2022) attempt to replicate this success in the video counterpart, i.e., modeling higher-dimensional
complex video distributions in the wild world. However, training such a text-to-video model requires
massive amounts of high-quality videos and computational resources, which limits further research
and applications by relevant communities.

In this work, we study a new and efficient form to avert the excessive training requirements: control-
lable text-to-video generation with text-to-image models. As shown in Fig. 1, our method, termed
ControlVideo, takes textual description and motion sequence (e.g., depth or edge maps) as conditions
to generate videos. Instead of learning the video distribution from scratch, ControlVideo adapts
the pre-trained text-to-image models (e.g., ControlNet (Zhang & Agrawala, 2023)) for high-quality
video generation. With the structural information from motion sequence and the superior generation
capability of image models, it is feasible to produce a vivid video without additional training.

However, as shown in Fig. 1, due to the lack of temporal interaction, individually producing each
frame with ControlNet (Zhang & Agrawala, 2023) fails to ensure both (i) frame consistency and (ii)
video continuity. Frame consistency requires all frames to be generated with a coherent appearance,
while video continuity ensures smooth transitions between frames. Tune-A-Video (Wu et al., 2022b)
and Text2Video-Zero (Khachatryan et al., 2023) facilitate appearance consistency by extending
self-attention to sparser cross-frame attention. Nonetheless, such a cross-frame interaction is not
sufficient to guarantee video continuity, and visible flickers appear in their synthesized videos (as
shown in Fig. 1 and corresponding videos).
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Figure 1: Training-free controllable text-to-video generation. Left: We visualize the frames and
x-t slice (pixels in red line of original frame) of Text2Video-Zero, and observe visible discontinuity in
x-t slice. Right: ControlVideo, adapted from ControlNet, achieves more continuous x-t slice across
time, along with improved appearance consistency than Text2Video-Zero. See videos for better view.

Intuitively, a continuous video could be considered as multiple continuous three-frame clips, so the
problem of ensuring the video continuity is converted to ensuring all three-frame clips continuous.
Driven by this analysis, we propose an interleaved-frame smoother to enable continuous video
generation. Specifically, interleaved-frame smoother divides all three-frame clips into even and odd
clips based on indices of middle frames, and separately smooths out their corresponding latents at
different denoising steps. To stabilize the latent of each clip, we first convert it to predicted RGB
frames with DDIM, followed by replacing the middle frame with the interpolated frame. Note that,
the smoother is only applied at a few timesteps, and the quality and individuality of interpolated
frames can be well retained by the following denoising steps.

We further investigate the cross-frame mechanisms in terms of effectiveness and efficiency. Firstly,
we explore fully cross-frame interaction that concatenates all frames to become a “larger image”,
and first empirically demonstrate its superior consistency and quality than sparser counterparts (see
Sec. 4.4). Secondly, applying existing cross-frame mechanisms for long-video generation suffers from
either heavy computational burden or long-term inconsistency. Therefore, a hierarchical sampler is
presented to produce a long video in a top-down way. In specific, it pre-generates the key frames
with fully cross-frame attention for long-range coherence, followed by efficiently generating the short
clips conditioned on pairs of key frames.

We conduct the experiments on extensively collected motion-prompt pairs, and show that Con-
trolVideo outperforms alternative competitors qualitatively and quantitatively. Thanks to the efficient
designs, ControlVideo produces short and long videos in several minutes using one NVIDIA 2080Ti.

In summary, our contributions are presented as follows:
• We propose training-free ControlVideo with interleaved-frame smoother for consistent and contin-

uous controllable text-to-video generation.
• Interleaved-frame smoother alternately smooths out the latents of three-frame clips, effectively

stabilizing the entire video during sampling.
• We empirically demonstrate the superior consistency and quality of fully cross-frame interaction,

while presenting a hierarchical sampler for long-video generation in commodity GPUs.

2 BACKGROUND

Latent diffusion model (LDM) (Rombach et al., 2022) is an efficient variant of diffusion models (Ho
et al., 2020) by applying the diffusion process in the latent space. LDM uses an encoder to compress
an image x into latent code z = (x). It learns the distribution of image latent codes z0 ∼ pdata(z0)
in a DDPM formulation (Ho et al., 2020), including a forward and a backward process. The forward
diffusion process gradually adds gaussian noise at each timestep t to obtain zt:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)
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Figure 2: Overview of ControlVideo. For consistency in appearance, ControlVideo adapts
ControlNet to the video counterpart by adding cross-frame interaction into self-attention modules. To
further improve video continuity, interleaved-frame smoother is introduced to stabilize video latents
during denosing (see Alg. 1 for details).

where {βt}Tt=1 are the scale of noises, and T denotes the number of diffusion timesteps. The backward
denoising process reverses the above diffusion process to predict less noisy zt−1:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (2)

The µθ and Σθ are implemented with a denoising model ϵθ with learnable parameters θ. When
generating new samples, we start from zT ∼ N (0, 1) and employ DDIM sampling to predict zt−1 of
previous timestep:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(zt, t)√

αt

)
︸ ︷︷ ︸

“ predicted z0”

+
√
1− αt−1 · ϵθ(zt, t)︸ ︷︷ ︸

“direction pointing to zt”

, (3)

where αt =
∏t

i=1(1 − βi). We use zt→0 to represent “predicted z0” at timestep t for simplicity.
Note that we use Stable Diffusion (SD) ϵθ(zt, t, τ) as our base model, which is an instantiation of
text-guided LDMs pre-trained on billions of image-text pairs. τ denotes the text prompt.

ControlNet (Zhang & Agrawala, 2023) enables SD to support more controllable input conditions
during text-to-image synthesis, e.g., depth maps, poses, edges, etc. The ControlNet uses the same
U-Net (Ronneberger et al., 2015) architecture as SD and finetunes its weights to support task-
specific conditions, converting ϵθ(zt, t, τ) to ϵθ(zt, t, c, τ), where c denotes additional conditions.
To distinguish the U-Net architectures of SD and ControlNet, we denote the former as the main U-Net
while the latter as the auxiliary U-Net.

3 CONTROLVIDEO

Controllable text-to-video generation aims to produce a video of length N conditioned on motion
sequences c = {ci}N−1

i=0 and a text prompt τ . As illustrated in Fig. 2, we propose ControlVideo
with interleaved-frame smoother towards consistent and continuous video generation. ControlVideo,
adapted from ControlNet, adds cross-frame interaction to self-attention modules for frame consistency
(in Sec. 3.1). To ensure video continuity, interleaved-frame smoother divides all three-frame clips into
even and odd clips, and separately smooths out their corresponding latents at different denoising steps
(in Sec. 3.2). Finally, we further investigate the cross-frame mechanisms in terms of effectiveness
and efficiency, including fully cross-frame interaction and hierarchical sampler (in Sec. 3.3).

3.1 PRELIMINARY

The main challenge of adapting text-to-image models to the video counterpart is to ensure temporal
consistency. Leveraging the controllability of ControlNet, motion sequences could provide coarse-
level consistency in structure. Nonetheless, due to the lack of temporal interaction, individually
producing each frame with ControlNet leads to drastic inconsistency in appearance (see row 2 in
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Algorithm 1 Interleaved-frame smoother

Require: zt = {zi
t}N−1

i=0 , c = {ci}N−1
i=0 , τ , timestep t.

1: zt→0 ← zt−
√
1−αtϵθ(zt,t,c,τ)√

αt
. ▷ predict clean latents

2: xt→0 ← D(zt→0); x̃t→0 ← xt→0 ▷ convert latents to RGB space
3: if (t mod 2) = 0 then ▷ smooth all even three-frame clips (x̃2k−1

t→0 , x̃2k
t→0, x̃

2k+1
t→0 )

4: for k from 0 to N/2 do
5: x̃2k

t→0 ← Interpolate(x2k−1
t→0 ,x2k+1

t→0 )
6: else if (t mod 2) = 1 then ▷ smooth all odd three-frame clips (x̃2k

t→0, x̃
2k+1
t→0 , x̃2k+2

t→0 )
7: for k from 0 to N/2 do
8: x̃2k+1

t→0 ← Interpolate(x2k
t→0,x

2k+2
t→0 )

9: z̃t→0 ← E(x̃t→0) ▷ convert frames to latent space
10: zt−1 ←

√
αt−1z̃t→0 +

√
1− αt−1 · ϵθ(zt, t, c, τ). ▷ predict less noisy latent

11: return zt−1

Fig. 5). Similar to previous works (Wu et al., 2022b; Khachatryan et al., 2023), we also extend
original self-attention of SD U-Net to cross-frame attention, so that the video content could be
temporally shared via inter-frame interaction.

In specific, ControlVideo inflates the main U-Net from Stable Diffusion along the temporal axis,
while keeping the auxiliary U-Net from ControlNet. Analogous to (Ho et al., 2022b; Wu et al., 2022b;
Khachatryan et al., 2023), it directly converts 2D convolution layers to 3D counterpart by replacing
3× 3 kernels with 1× 3× 3 kernels. Self-attention is converted to cross-frame attention by querying
from other frames as:

Attention(Q,K,V ) = Softmax(
QKT

√
d

) · V , where Q = WQzi
t, K = WK z̃t, V = W V z̃t, (4)

where WQ, WK , and W V project zt into query, key, and value, respectively. zi
t and z̃t denote

ith latent frame and the latents of reference frames at timestep t. We will discuss the choices of
cross-frame mechanisms (i.e., reference frames) in Sec. 3.3

3.2 INTERLEAVED-FRAME SMOOTHER

Albeit cross-frame interaction promisingly keeps frame consistency in appearance, they are still visibly
flickering in structure. Discrete motion sequences only ensure coarse-level structural consistency,
not sufficient to keep the continuous inter-frame transition. Intuitively, a continuous video could
be considered as multiple continuous three-frame clips, so we simplify the problem of ensuring the
video continuity to ensuring all three-frame clips continuous.

Inspired by this, we propose an interleaved-frame smoother to enable continuous video generation.
In Alg. 1, interleaved-frame smoother divides all three-frame clips into even and odd clips based on
indices of middle frames, and individually smooths their corresponding latents at different timesteps.
To stabilize the latent of each clip, we first convert it to predicted RGB frames with DDIM, following
by replacing middle frame with the interpolated frame.

Specifically, at timestep t, we first predict the clean video latent zt→0 according to zt:

zt→0 =
zt −

√
1− αtϵθ(zt, t, c, τ)√

αt
. (5)

After projecting zt→0 into a RGB video xt→0 = D(zt→0), we convert it to a more smoothed video
x̃t→0 by replacing each middle frame with the interpolated one. Based on smoothed video latent
z̃t→0 = E(x̃t→0), we compute the less noisy latent zt−1 following DDIM denoising in Eq. 3:

zt−1 =
√
αt−1z̃t→0 +

√
1− αt−1 · ϵθ(zt, t, c, τ). (6)

We note that the above process is only performed at a few intermediate timesteps, the individuality and
quality of interpolated frames are also well retained by the following denoising steps. Additionally,
the newly computational burden can be negligible (See Table 3).
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Figure 3: Qualitative comparisons conditioned on depth maps and canny edges. Our Con-
trolVideo produces videos with better (a) appearance consistency and (b) video quality than others. In
contrast, Tune-A-Video fails to inherit structures from source videos, while Text2Video-Zero brings
visible artifacts in large motion videos. See videos at qualitative comparisons.

3.3 CROSS-FRAME MECHANISMS FOR EFFECTIVENESS AND EFFICIENCY

Fully cross-frame interaction. Previous works (Wu et al., 2022b; Khachatryan et al., 2023) usually
replace self-attention with sparser cross-frame mechanisms, e.g., taking the reference frames as first
or previous frames. Such mechanisms will increase the discrepancy between the query and key in
self-attention modules, resulting in the degradation of video quality and consistency. In contrast,
fully cross-frame interaction considers all frames as reference (i.e., becoming a “large image”), so
has a less generation gap with text-to-image models. We conduct comparison experiments on above
mechanisms in Fig. 5 and Table 3. Despite slightly more computational burden, fully cross-frame
interaction empirically shows better consistency and quality than the sparser counterparts.

Hierarchical sampler. Applying existing cross-frame mechanisms for long-video generation
suffers from either heavy computational burden or long-term inconsistency, limiting the practicability
of ControlVideo. For more efficient long-video synthesis, we introduce a hierarchical sampler to
produce a long video clip-by-clip, which is implemented with two types of cross-frame mechanisms.
At each timestep, a long video zt = {zi

t}N−1
i=0 is separated into multiple short video clips with the

selected key frames zkey
t = {zkNc

t }
N
Nc

k=0, where each clip is of length Nc − 1 and the kth clip is
denoted as ẑk

t = {zj
t }

(k+1)Nc−1
j=kNc+1 . Then, we pre-generate the key frames with fully cross-frame

attention for long-range coherence, where reference frames are zkey
t = {zkNc

t }
N
Nc

k=0. Conditioned on
each pair of key frames, i.e., reference frames as {zkNc

t , z
(k+1)Nc

t }, we sequentially synthesize their
corresponding clip ẑk

t holding the holistic consistency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation details. ControlVideo is adapted from ControlNet 1 (Zhang & Agrawala, 2023) ,
and our interleaved-frame smoother employs a lightweight RIFE (Huang et al., 2022) to interpolate

1https://huggingface.co/lllyasviel/ControlNet
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Table 1: Quantitative comparisons of ControlVideo with other methods. We evaluate them on 125
motion-prompt pairs in terms of consistency, and the best results are bolded.

METHOD Structure Condition FC (×10−2) PC (×10−2) WE (×10−2)

Tune-A-Video Wu et al. (2022b) DDIM Inversion 94.53 31.57 18.16

Text2Video-Zero Khachatryan et al. (2023) Canny Edge 95.17 30.74 8.76
ControlVideo (ours) Canny Edge 96.83 30.75 2.75
Text2Video-Zero Khachatryan et al. (2023) Depth Map 95.99 31.69 10.36
ControlVideo (ours) Depth Map 97.22 31.81 5.81

the middle frame of each three-frame clip. The synthesized short videos are of length 15, while
the long videos usually contain about 100 frames. Unless otherwise noted, their resolution is both
512× 512. During sampling, we adopt DDIM sampling (Song et al., 2020a) with 50 timesteps, and
interleaved-frame smoother is performed on predicted RGB frames at timesteps {30, 31} by default.
With the efficient implementation of xFormers (Lefaudeux et al., 2022), ControVideo could produce
both short and long videos with one NVIDIA RTX 2080Ti in about 2 and 10 minutes, respectively.

Datasets. To evaluate our ControlVideo, we collect 25 object-centric videos from DAVIS
dataset (Pont-Tuset et al., 2017) and manually annotate their source descriptions. Then, for each
source description, ChatGPT (OpenAI, 2022) is utilized to generate five editing prompts automati-
cally, resulting in 125 video-prompt pairs in total. Finally, we employ Canny and MiDaS DPT-Hybrid
model (Ranftl et al., 2020) to estimate the edges and depth maps of source videos, and form 125
motion-prompt pairs as our evaluation dataset. More details are provided in Appendix A.

Metrics. We evaluate the video quality from three perspectives. (i) Frame consistency (FC): the
average cosine similarity between all pairs of consecutive frames, and (ii) Prompt consistency (PC):
the average cosine similarity between input prompt and all video frames. (iii) Warping error (WE) (Lai
et al., 2018): the average error between all frames and their warped frames using optical flow.

Baselines. We compare our ControlVideo with three publicly available methods: (i) Tune-A-
Video (Wu et al., 2022b) extends Stable Diffusion to the video counterpart by finetuning it on a source
video. During inference, it uses the DDIM inversion codes of source videos to provide structure
guidance. (ii) Text2Video-Zero (Khachatryan et al., 2023) is based on ControlNet, and employs the
first-only cross-frame attention on Stable Diffusion without finetuning. (iii) Follow-Your-Pose (Ma
et al., 2023) is initialized with Stable Diffusion, and is finetuned on LAION-Pose (Ma et al., 2023) to
support human pose conditions. After that, it is trained on millions of videos (Xue et al., 2022) to
enable temporally-consistent video generation.

4.2 QUALITATIVE AND QUANTITATIVE COMPARISONS

Qualitative results. Fig. 3 first illustrates the visual comparisons of synthesized videos conditioned
on both (a) depth maps and (b) canny edges. As shown in Fig. 3 (a), our ControlVideo demonstrates
better consistency in both appearance and structure than alternative competitors. Tune-A-Video fails
to keep the temporal consistency of both appearance and fine-grained structure, e.g., the color
of coat and the structure of road. With the motion information from depth maps,
Text2Video-Zero achieves promising consistency in structure, but still struggles with incoherent
appearance in videos e.g., the color of coat. Besides, ControlVideo also performs more
robustly when dealing with large motion inputs. As illustrated in Fig. 3 (b), Tune-A-Video ignores
the structure information from source videos. Text2Video-Zero adopts the first-only cross-frame
mechanism to trade off frame quality and appearance consistency, and generates later frames with
visible artifacts. In contrast, with the proposed fully cross-frame mechanism and interleaved-frame
smoother, our ControlVideo can handle large motion to generate high-quality and consistent videos.

Fig. 4 further shows the comparison conditioned on human poses. From Fig. 4, Tune-A-Video only
maintains the coarse structures of the source video, i.e., human position. Text2Video-Zero and
Follow-Your-Pose produce video frames with inconsistent appearance, e.g., changing faces
of iron man (in row 4) or disappearing objects in the background (in row 5).
In comparison, our ControlVideo performs more consistent video generation, demonstrating its
superiority. More qualitative comparisons are provided in Appendix D.

6



Published as a conference paper at ICLR 2024

Table 2: User preference study. The numbers denote the percentage of raters who favor the videos
synthesized by our ControlVideo over other methods.

Method Comparison Video Quality Temporal Consistency Text Alignment

Ours vs. Tune-A-Video Wu et al. (2022b) 73.6% 83.2% 68.0%
Ours vs. Text2Video-Zero Khachatryan et al. (2023) 76.0% 81.6% 65.6%

Source 
Videos

Structure
Conditions

Tune-A-Video

ControlVideo
(Ours)

Text2Video-Zero

Follow-Your-Pose

Iron man does the moonwalk 
on the road.

Figure 4: Qualitative comparisons on poses.
Tune-A-Video only preserves original human
positions, while Text2Video-Zero and Follow-
Your-Pose produce frames with appearance inco-
herence. Our ControlVideo achieves better con-
sistency in both structure and appearance. See
videos at qualitative comparisons.

Source
Video

Individual

First-only

Sparse-causal

Fully 
Cross-frame

Fully 
Cross-frame
+ Smoother

A mighty elephant marches steadily through 
the rugged terrain.

Figure 5: Qualitative ablation studies on
cross-frame mechanisms and interleaved-frame
smoother. Fully cross-frame interaction pro-
duces video frames with higher quality and con-
sistency than other mechanisms, and adding the
smoother further enhances the video smoothness.
See corresponding videos for better comparison.

Quantitative results. We have also compared our ControlVideo with existing methods quantita-
tively on 125 video-prompt pairs. From Table 1, our ControlVideo conditioned on depth outperforms
the state-of-the-art methods in terms of all metrics, which is consistent with the qualitative re-
sults. In contrast, despite finetuning on a source video, Tune-A-Video still struggles to produce
temporally coherent videos. Although conditioned on the same structure information, Text2Video-
Zero obtains worse frame consistency and warping error than ControlVideo. For each method,
the depth-conditioned models generate videos with higher frame and prompt consistency than the
canny-condition counterpart, since depth maps provide smoother motion information.

4.3 USER STUDY

We then perform the user study to compare our ControlVideo conditioned on depth maps with other
competing methods. In specific, we provide each rater a structure sequence, a text prompt, and
synthesized videos from two different methods (in random order). Then we ask them to select the
better synthesized videos for each of three measurements: (i) video quality, (ii) temporal consistency
throughout all frames, and (iii) text alignment between prompts and synthesized videos. The
evaluation set consists of 125 representative structure-prompt pairs. Each pair is evaluated by 5
raters, and we take a majority vote for the final result. From Table 2, the raters strongly favor our
synthesized videos from all three perspectives, especially in temporal consistency. On the other hand,
Tune-A-Video fails to generate consistent and high-quality videos with only DDIM inversion for
structural guidance, and Text2Video-Zero also produces videos with lower quality and coherency.
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Table 3: Quantitative ablation studies on cross-frame mechanisms and interleaved-frame smoother.
The results indicate that our fully cross-frame mechanism achieves better frame consistency than
other mechanisms, and the interleaved-frame smoother significantly improves the frame consistency.

Cross-Frame Mechanism FC (×10−2) PC (×10−2) WE (×10−2) Time Cost (min)

Individual 89.94 30.79 20.13 1.2
First-only 94.92 30.54 8.91 1.2

Sparse-Causal 95.06 30.59 7.05 1.5
Fully 95.36 30.76 5.93 3.0

Fully + Smoother 96.83 30.79 2.75 3.5

Frame 0 Frame 11 Frame 22 Frame 33 Frame 44 Frame 55

Frame 66 Frame 77 Frame 88 Frame 99 Frame 110 Frame 121

a steamship on the ocean, at sunset, sketch style

Figure 6: A long video produced with our hierarchical sampling. Motion sequences are shown
on the top left. Using the efficient sampler, our ControlVideo generates a high-quality long video
with the holistic consistency. See videos at long video generation.

4.4 ABLATION STUDY

Effect of fully cross-frame interaction. To demonstrate the effectiveness of the fully cross-frame
interaction, we conduct a comparison with the following variants: i) individual: no interaction between
all frames, ii) first-only: all frames attend to the first one, iii) sparse-causal: each frame attends to the
first and former frames, iv) fully: our fully cross-frame, refer to Sec. 3. Note that, all the above models
are extended from ControlNet without any finetuning. The qualitative and quantitative results are
shown in Fig. 5 and Table 3, respectively. From Fig. 5, the individual cross-frame mechanism suffers
from severe temporal inconsistency, e.g., colorful and black-and-white frames. The
first-only and sparse-causal mechanisms reduce some appearance inconsistency by adding cross-
frame interaction. However, they still produce videos with structural inconsistency and visible
artifacts, e.g., the orientation of the elephant and duplicate nose (row 3 in
Fig. 5). In contrast, due to less generation gap with ControlNet, our fully cross-frame interaction
performs better appearance coherency and video quality. Though the introduced interaction brings an
extra 1 ∼ 2× time cost, it is acceptable for a high-quality video generation.

Effect of interleaved-frame smoother. We further analyze the effect of the proposed interleaved-
frame smoother. From Table 3 and last two rows of Fig. 5, our interleaved-frame smoother greatly
improves the video smoothness, e.g., mitigating structural flickers in red boxes. We provide more
ablation studies on the timestep choices of the smoother in Appendix C and ablation studies.

4.5 EXTENSION TO LONG-VIDEO GENERATION

Producing a long video usually requires an advanced GPU with high memory. With the proposed
hierarchical sampler, our ControlVideo achieves long video generation (more than 100 frames) in
a memory-efficient manner. As shown in Fig. 6, our ControlVideo can produce a long video with
consistently high quality. Notably, benefiting from our efficient sampling, it only takes approximately
ten minutes to generate 100 frames with resolution 512× 512 in one NVIDIA RTX 2080Ti. More
visualizations of long videos can be found in Appendix D.
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5 RELATED WORK

Text-to-image synthesis. Through pre-training on billions of image-text pairs, large-scale gen-
erative models (Nichol et al., 2021; Balaji et al., 2022; Saharia et al., 2022; Ramesh et al., 2022;
Rombach et al., 2022; Ramesh et al., 2021; Chang et al., 2023; Ding et al., 2021; 2022; Yu et al.,
2022; Sauer et al., 2023; Kang et al., 2023; Huang et al., 2023) have made remarkable progress in
creative and photo-realistic visual generation. Various frameworks have been explored to enhance
image quality, including GANs (Goodfellow et al., 2020; Sauer et al., 2023; Kang et al., 2023),
autoregressive models (Nichol et al., 2021; Chang et al., 2023; Ding et al., 2021; 2022; Yu et al.,
2022), and diffusion models (Ho et al., 2020; Balaji et al., 2022; Saharia et al., 2022; Ramesh et al.,
2022; Rombach et al., 2022). Among these generative models, diffusion-based models are well
open-sourced and popularly applied to several downstream tasks, such as image editing (Hertz et al.,
2022; Meng et al., 2021) and customized generation (Gal et al., 2022; Wei et al., 2023; Kumari et al.,
2022; Ruiz et al., 2022). Besides text prompts, several works (Zhang & Agrawala, 2023; Mou et al.,
2023) also introduce additional structure conditions to pre-trained text-to-image diffusion models for
controllable text-to-image generation. Our ControlVideo is implemented based on the controllable
text-to-image models to inherit their ability of high-quality and consistent generation.

Text-to-video synthesis. Large text-to-video generative models usually extend text-to-image mod-
els by adding temporal consistency. Earlier works (Wu et al., 2022a; Hong et al., 2022; Wu et al.,
2021; Villegas et al., 2022) adopt an autoregressive framework to synthesize videos according to given
descriptions. Capitalizing on the success of diffusion models in image generation, recent works (Ho
et al., 2022a;b; Singer et al., 2022) propose to leverage their potential to produce high-quality videos.
Nevertheless, training such large-scale video generative models requires extensive video-text pairs
and computational resources. To reduce the training burden, Gen-1 (Esser et al., 2023) and Follow-
Your-Pose (Ma et al., 2023) provide coarse temporal information (e.g., motion sequences) for video
generation, yet are still costly for most researchers and users. By replacing self-attention with the
sparser cross-frame mechanisms, Tune-A-Video (Wu et al., 2022b) and Text2Video-Zero (Khacha-
tryan et al., 2023) keep considerable consistency in appearance with little finetuning. ControlVideo
also adapts text-to-image diffusion models without any training, but generates videos with better
temporal consistency and continuity.

6 DISCUSSION

In this paper, we present a training-free framework, namely ControlVideo, towards consistent and
continuous controllable text-to-video generation. ControlVideo, inflated from ControlNet, introduces
an interleaved-frame smoother to ensure video continuity. Particularly, interleaved-frame smoother
alternately smooths out the latents of three-frame clips, and stabilizes each clip by updating the middle
frame with the interpolation among other two frames in latent space. Moreover, we empirically
demonstrate the superior performance of fully cross-frame interaction, while presenting hierarchical
sampler for long-video generation in commodity GPUs. Quantitative and qualitative experiments on
extensive motion-prompt pairs demonstrate that ControlVideo achieves state-of-the-arts in terms of
frame consistency and video continuity.

Broader impact. Large-scale diffusion models have made tremendous progress in text-to-video
synthesis, yet these models are costly and unavailable to the public. ControlVideo focuses on training-
free controllable text-to-video generation, and takes an essential step in efficient video creation.
Concretely, ControlVideo could synthesize high-quality videos with commodity hardware, hence,
being accessible to most researchers and users. For example, artists may leverage our approach to
create fascinating videos with less time. Moreover, ControlVideo provides insights into the tasks
involved in videoss, e.g., video rendering, video editing, and video-to-video translation. On the flip
side, albeit we do not intend to use our model for harmful purposes, it might be misused and bring
some potential negative impacts, such as producing deceptive, harmful, or explicit videos. Despite
the above concerns, we believe that they could be well minimized with some steps. For example,
an NSFW filter can be employed to filter out unhealthy and violent content. Also, we hope that the
government could establish and improve relevant regulations to restrict the abuse of video creation.
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A. DATASET DETAILS

In Table 4, we select 25 representative videos from DAVIS dataset (Pont-Tuset et al., 2017) and
manually annotate their source captions. After that, we ask ChatGPT to generate five edited prompts
for each source caption, following the instruction like: Please generate five new sentences that similar
to “A man dances on the road”, while being more diverse and highly detailed. Finally, we obtain 125
video-prompt pairs in total, and use them to evaluate both canny and depth conditioned generation.

B. USER STUDY DETAILS

We conduct a user study to compare ControlVideo against two other methods on 125 samples, and
ask five raters to answer questions in each sample. In Fig. 7, there are three questions involving in (i)
video quality, (ii) temporal consistency, and (iii) text alignment. The raters are given unlimited time
to make the selection. After collecting their answers, we take a majority vote as the final result for
each sample, and present statistics in Table 2.

C. MORE ABLATION STUDIES

During inference, we adopt DDIM sampling with T = 50 timesteps, which iteratively denoises a
Gaussian noise from T to 0.

Which timesteps does interleaved-frame smoother perform at? In Fig. 8, we explore three
timestep choices at different noise levels, including {48, 49} at large noise level, {30, 31} at middle
noise level, and {0, 1} at little noise level. When using the smoother at timesteps {48, 49}, the
processed video is still unstable, since structure sequences bring additional flickers at the following
timesteps. At timesteps {0, 1} nearby image distribution, applying the interleaved-frame smoother
leads to visible distortion in some frames. In contrast, performing smoothing operation at middle
timesteps {30, 31} promisingly deflickers the video, while preserving the quality and individuality of
interpolated frames.

How many timesteps are used in interleaved-frame smoother? Fig. 9 shows the smoothed
videos using interleaved-frame smoother at different numbers of timesteps. Applying the smoother
at two consecutive timesteps (i.e., 2 steps) could smooth the entire video with little video quality
degradation. As the number of smoothing steps increases, the processed video is much smoother, but
some frames become slightly blurred. Thus, for higher quality and efficiency, we set the number of
smoothing timesteps as 2 by default.

Non-deterministic DDPM-style sampler. ControlVideo can also employ a non-deterministic
DDPM-style sampler during inference. Following Eq.12 in DDIM (Song et al., 2020b), one can
predict zt−1 from zt via (i.e., line 10 of Alg. 1 in paper):

zt−1 ←
√
αt−1z̃t→0 +

√
1− αt−1 · ϵθ(zt, t, c, τ) + σtϵt, (7)

where ϵt and σt controls the level of random noise. DDPM results presents the generated videos of
ControlVideo at different noise levels. Notably, as the noise level increases, ControlVideo generates
more photo-realistic videos with dynamic details, e.g., ripples in the water.

D. MORE VISUALIZATIONS AND COMPARISONS

Fig. 10, Fig. 11, and Fig. 12 show more video visualizations conditioned on canny edges, depth maps,
and human poses. Fig. 14, Fig. 15, and Fig. 16 present qualitative comparisons conditioned on canny
edges, depth maps, and human poses. Fig. 13 provides an additional long video. More comparisons
with video editing methods (Qi et al., 2023; Wang et al., 2023) are shown in this link.

Firstly, Vid2Vid-Zero and FateZero are designed for video editing by a hybrid of fully and sparse-
casual cross-frame attention, and does not investigate different attention mechanisms in depth. In
contrast, our ControlVideo focuses on continuous controllable text-to-video generation, and first
empirically investigate the superiority of fully cross-frame attention. Secondly, Fig. 18 shows their
qualitative comparisons on video editing. As one can see, the edited videos of ControlVideo not only
have more consistent structure with source videos, but also aligns better with text prompts.
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Table 4: Names and captions of selected videos from DAVIS dataset.

Video Name Source Caption

blackswan a black swan moving on the lake
boat a boat moves in the river
breakdance-flare a man dances on the road
bus a bus moves on the street
camel a camel walks on the desert
car-roundabout a jeep turns on a road
car-shadow a car moves to a building
car-turn a jeep on a forest road
cows a cow walks on the grass
dog a dog walks on the ground
elephant an elephant walks on the ground
flamingo a flamingo wanders in the water
gold-fish golden fishers swim in the water
hike a man hikes on a mountain
hockey a player is playing hockey on the ground
kite-surf a man is surfing on the sea
lab-coat three women stands on the lawn
longboard a man is playing skateboard on the alley
mallard-water a mallard swims on the water
mbike-trick a man riding motorbike
rhino a rhino walks on the rocks
surf a sailing boat moves on the sea
swing a girl is playing on the swings
tennis a man is playing tennis
walking a selfie of walking man

Structure
Sequence

Video 1 Video 2

Between Method 1 & 2 :
1. Which video has higher quality ?
2. Which video has better temporal consistency across all frames?
3. Which video aligns better with text prompt?

A determined 
man is trudging 
up a snowy and 
icy mountain 

slope, braving the 
biting cold and 
fierce winds.

Text
Prompt

Figure 7: The instruction of user study. A user study sample consists of a text prompt, structure
sequence, and synthesized videos from two different methods (in random order). The raters are asked
to answer the above three questions for each sample.

E. LIMITATIONS.

While our ControlVideo enables consistent and high-quality video generation, it still struggles with
producing videos beyond input motion sequences. For example, in Fig. 17, given sequential poses
of Michael Jackson’s moonwalk, it is difficult to generate a vivid video according to text
prompts like Iron man runs on the street. In this link, when input text prompts (e.g.,
rabbit) seriously conflict with input motion (e.g., ), the synthesized videos usually tend to align
with input motion, ignoring the implicit structure in text prompts. To increase the ratio of text prompts
over structure, we decrease the scale of ControlNet λ to 0.3 (λ = 1 by default). Therefore, it can be
seen λ = 0.3 that achieves a better trade-off between two input conditions than λ = 1. In the future,
we will explore how to adaptively modify input motions according to text prompts, so that users can
create more vivid videos.
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A dusty old jeep was making its way down the winding forest road, 
creaking and groaning with each bump and turn.

w/o 
smoother

Timesteps
{0, 1}
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Timesteps
{30, 31}

Timesteps
{48, 49}

Figure 8: Ablation on timestep choices in interleaved-frame smoother. We apply interleaved-
frame smoother at different timesteps, including {48, 49} at large noise level, {30, 31} at middle
noise level, and {0, 1} at little noise level. Among them, using the smoother at timesteps {30, 31}
promisingly mitigates the flicker effect while ensuring high quality. Results best seen at 500%
zoom.

A sleek black jeep was speeding along the narrow forest road, dodging trees and rocks with ease.

0 step

4 steps

2 steps

6 steps

8 steps
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Figure 9: Ablation on the number of timesteps used in interleaved-frame smoother. Applying
the smoother at two consecutive timesteps (i.e., 2 steps) effectively reduces the flickers in structure.
As we increase the number of smoothing steps, the processed video becomes smoother, but some
frames are slightly blurred. Therefore, we set the number of smoothing steps as two by default.
Results best seen at 500% zoom.
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A white swan 
moving on the 
lake, cartoon 

style.

A majestic 
camel gracefully 
strides across 
the scorching 
desert sands.

A shiny red jeep 
smoothly turns on 
a narrow, winding 

road in the 
mountains.

A dusty old jeep 
was making its 
way down the 
winding forest 

road, creaking and 
groaning with each 

bump.

A fit man is 
leisurely hiking 
through a lush 
and verdant 

forest.

Figure 10: More video visualizations conditioned on canny edges. Results best seen at 500%
zoom.
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A sleek boat glides 
effortlessly 
through the 

shimmering river, 
van gogh style.

A striking 
mallard floats 
effortlessly on 
the sparkling 

pond.

A contented cow 
ambles across the 
dewy, verdant 

pasture.

A majestic 
sailing boat 
cruises along 

the vast, azure 
sea.

A gigantic yellow 
jeep slowly turns 

on a wide, smooth 
road in the city.

Figure 11: More video visualizations conditioned on depth maps. Results best seen at 500%
zoom.
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Top: Hulk is 
jumping on the 
street, cartoon 

style

Bottom: The 
Simpsons in the 
city, Hockney 

style.

Top: Goku in a 
mountain range, 

surreal style.

Bottom: Wonder 
Woman in a 

desert, Pop Art 
style.

Top: A man, 
wearing pink 

clothes, moonwalk 
at sunset.

Bottom: James 
bond moonwalk 
on the beach, 

animation style.

Figure 12: More video visualizations conditioned on human poses. Results best seen at 500%
zoom.

Hulk is dancing on the beach, cartoon style.

Figure 13: Additional long video visualization. Results best seen at 500% zoom.
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A mighty elephant marches steadily 
through the rugged terrain.

A shiny silver vehicle gracefully maneuvers 
towards a modern glass building.

Source 
Videos

Structure
Conditions

Tune-A-Video

ControlVideo
(Ours)

Text2Video-Zero

Figure 14: More qualitative comparisons conditioned on canny edges. Results best seen at
500% zoom.

Source 
Videos

Structure
Conditions

Tune-A-Video

ControlVideo
(Ours)

A dusty old jeep was making its way down 
the winding forest road, creaking and 
groaning with each bump and turn.

A daring man performing gravity-defying 
stunts on a high-speed, blue motorbike in 

an empty parking lot.

Text2Video-Zero

Figure 15: More qualitative comparisons conditioned on depth maps. Results best seen at 500%
zoom.
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Source 
Videos

Structure
Conditions

Tune-A-Video

ControlVideo
(Ours)

Text2Video-Zero

Follow-Your-Pose

A robot dances on a road, animation style. The astronaut dances in futuristic city, 
cyberpunk style.

Figure 16: More qualitative comparisons conditioned on human poses. Results best seen at
500% zoom.

Source
Video

Synthesized
Video

Human
Pose

Iron man runs in the road.

Figure 17: Limitation visualizations. ControlVideo struggles with producing videos beyond input
motion sequences. The motion of text prompt Iron man runs on the street does not
align with the given sequential poses of Michael Jackson’s moonwalk, which degrades the
video quality and consistency. See videos at limitations.
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Source 
Videos

Structure
Conditions

Vid2Vido-Zero

ControlVideo
(Ours)

Drone flyover of the Canadian National Tower, 
surrounded by martian desert.

An Audi Q7 goes on a snow trail, aerial view with 
snow-capped mountains in the background.

Figure 18: Qualitative comparisons with Vid2Vid-Zero. Inconsistent objects and prompts are
colored in red.
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