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The guitar is on the left.
The cello is on the left and 

the guitar is on the right.
The piano is on the left.

The keyboard is on the 

left.

The cello is in the center, 

the guitar is on the right.

Spatialization

Model

Spatialization

Model

 Invisibility Occlusion Interference Silence Occ. & Int.

(a) Previous work: Visually guided sound spatialization with distractions 

Spatialization

Model

Spatialization

Model

(b) Ours: Text-guided sound spatialization without distractions 

Figure 1:We explore a new text-guided audio spatialization task that reconstructs the spatiality of audio based on text prompts.
Compared with previous visually guidedmethods, it circumvents the pitfalls of visual guidance and allows for greater person-
alization. The text in (b) corresponds to the frames in (a).

ABSTRACT
Synthesizing binaural audio according to personalized requirements
is crucial for building immersive artificial spaces. Previous meth-
ods employ visual modalities to guide the spatialization of audio
because it can provide spatial information about objects. However,
the paradigm is dependent on object visibility and strict audiovisual
correspondence, which makes it tough to satisfy personalized re-
quirements. In addition, the visual counterpart to the audio may be
crippled or even non-existent, which greatly limits the development
of the field. To this end, we advocate exploring a novel task known
as Text-guided Audio Spatialization (TAS), in which the goal is
to convert mono audio into spatial audio based on text prompts.
This approach circumvents harsh audiovisual conditions and al-
lows for more flexible individualization. To facilitate this research,
we construct the first TASBench dataset. The dataset provides a
dense frame-level description of the spatial location of sounding
objects in audio, enabling fine-grained spatial control. Since text
prompts contain multiple sounding objects and spatial locations,
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the core issue of TAS is to establish the mapping relationship be-
tween text semantic information and audio objects. To tackle this
issue, we design a Semantic-Aware Fusion (SAF) module to cap-
ture text-aware audio features and propose a text-guided diffusion
model to learn the spatialization of audio, which can generate spa-
tial audio consistent with text prompts. Extensive experiments on
TASBench compare the proposed method with several methods
from related tasks, demonstrating that our method is promising to
achieve the personalized generation of spatial sense of audio under
text prompts.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Artificial intelligence.

KEYWORDS
Text-guided generation, Audio spatialization, Audio synthesis, Mul-
timodal learning

1 INTRODUCTION
Generating music, speech, and sound effects based on personalized
requirements [3, 22, 39] is critical for applications such as aug-
mented reality, virtual reality, game development, and video editing
[6, 36]. In recent years, audio generation research has made surpris-
ing progress [13, 28, 30, 34]. However, existing studies mostly focus
on the semantic generation of audio and ignore the significance
of audio spatiality. Due to the binaural structure, human hearing
conveys critical spatial information [4]. We can easily identify the
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approximate location of a sound source and even track it without
relying on vision.

An artificial head prosthesis records realistic binaural audio to
provide users with a rich listening experience. However, binaural
audio recording is expensive and relies on professional equipment
[32]. Even though the device has been around for many years,
binaural audio is still scarce. It is wise to eschew hardware and
design algorithms to obtain binaural audio. Therefore, converting
mono audio to binaural audio has attracted increasing attention
[18, 20, 21]. Binaural audio with real human hearing experience
can provide users with an immersive artificial 3D experience and
has broad application prospects [1].

Recent work attempts to exploit visual modalities to synthesize
binaural audio from mono audio [8, 20, 23, 38, 40]. Ideally, it works
because the visual modality contains the spatial information of the
objects required for audio spatial recovery. However, relying on
visual modality requires two prerequisites: (i) The visual and audio
modalities must be strictly time-synchronized; (ii) The sounding
object must be visible. Object visibility guarantees may be con-
tradictory. To include the object, the field of view needs to be as
wide as possible. However, a larger field of view introduces more
irrelevant objects and background while narrowing the object. In
the case of audiovisual synchronization, we summarized 5 com-
mon situations of visual guidance, including invisibility, occlusion,
interference, silence and their combinations, as shown in Figure 1
(a). Therefore, it is very challenging to exploit visual modalities to
generate customized spatial audio.

The natural defects of visual guidance motivate us to search
for a new way to synthesize spatial audio. Recently, text prompt-
based generative methods have achieved impressive performance,
such as audio style conversion [14, 17, 26], text-to-speech synthesis
[2, 9, 31], etc. Generative models demonstrate powerful language
understanding and generation performance. Inspired by this, we
made the first attempt in this field to reconstruct the spatial sense
of audio using text prompts, as shown in Figure 1 (b). Our approach
circumvents the pitfalls of visual guidance and allows for greater
personalization. In addition, it is capable of serving as a promising
remedy when visual guidance methods fail.

In this paper, we raise the issue of text-guided audio spatializa-
tion, which requires models to generate spatially consistent spatial
audio from mono audio based on text prompts. To facilitate this re-
search, we present the TASBench dataset, the first dense frame-level
annotated spatial audio dataset that provides textual annotations
for the spatial locations of sounding objects. The text prompt con-
tains multiple sounding objects and different spatial locations. To
connect the semantic information in the text prompts with the
sounding objects in the audio, we design a Semantic-Aware Fu-
sion (SAF) module to capture text-aware audio features. Then, we
propose a new text-guided audio spatialization method as a first
baseline for the TAS task. The method follows the probabilistic
diffusion model structure, using mono waveforms and text prompts
as guiding conditions to generate differential waveforms. We con-
duct extensive and rich experiments to verify that the proposed
method and module are practicable and effective. Experimental re-
sults show that it is prospective to convert mono audio into spatial
audio using text prompts. In general, the contributions of the paper
can be summarized as follows:

1) We explore a novel text-guided audio spatialization task, and
introduce TASBench, a new dataset that provides dense frame-level
spatial location annotations of sounding objects for TAS.

2) We design a semantic-aware fusion module to establish the
perceptual relationship between text and audio modalities and
propose a text-guided diffusion model for spatial audio generation.

3) Extensive experimental results demonstrate the feasibility
and potential of our text-guided audio spatialization method. Com-
parisons with several methods from related tasks demonstrate the
superiority of the proposed method.

2 RELATEDWORK
2.1 Text-Guided Audio Generation
By integrating text and audio, we can mine diverse audio infor-
mation and expand the use scenario of audio [16]. Recently, with
the vigorous growth of deep generative models, text-guided gen-
eration has been intensively investigated in the audio field [29].
A prevalent text-guided generation task is audio style conversion,
which seeks to convert only specific attributes while leaving other
properties unaltered, such as speech conversion [14, 16], emotion
conversion [10, 41], etc. Le et al. [16] proposed a large-scale speech-
text guided generation model. It is based on non-autoregression
and can achieve zero-shot style conversion within a single or cross-
language. Guo et al. [10] proposed an emotion-controllable speech
generation model in which the intensity of emotion is guided by a
soft label. Another common task is text-to-speech synthesis, which
attempts to synthesize a target audio-style speech within a given
text. Kreuk et al. [15] proposed an autoregressive audio generation
model to generate high-quality audio under conditional and uncon-
ditional settings. However, it is difficult for autoregressive methods
to achieve fine-grained control of audio properties. Huang et al.
[12] proposed a diffusion model with prompt enhancement, which
utilizes latent diffusion mechanisms and autoencoders to generate
audio. Yang et al. [35] explored text-to-audio synthesis based on a
discrete diffusion process that handles audio codes in VQ-VAE [33],
employing masked text generation with CLIP [24] representation.
To solve the quality problem caused by quantization, Shen et al. [29]
proposed an audio codec based on a residual vector quantizer, and
then utilized a diffusion model to synthesize latent vectors based on
text prompts. Huang et al. [11] proposed a diffusion probabilistic
method for generating music from text prompts that outperformed
methods conditioned on simple music attributes. Currently, most
text-guided audio generation mostly focuses on the mono audio
level and ignores the spatial properties of audio.

2.2 Audio Spatialization
Reconstructing the spatial properties of sound from mono audio
has received long-standing attention. Traditional methods utilize
linear mapping relationships to convert mono audio to spatial audio,
making it difficult to simulate realistic non-linear scenes [7, 37].
Therefore, synthesizing spatial audio using the nonlinear model-
ing capabilities of deep learning has received widespread attention
[38, 40]. Due to the strong correlation between vision and hearing, it
is natural to associate spatial audio generation with visual modality.
Visually guided audio spatialization has been extensively studied in
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Figure 2: Illustration of our text-guided audio spatialization method. In (a), text prompts and audio are fed into the encoder to
extract features and then fused through the SAF module. In (b), the SAF module establishes the semantic perception relation-
ship between text and audio. In (c), the aggregated text-aware audio features provide guidance information to the spatialization
model to support the reconstruction of audio spatial perception.

recent years [8, 18]. In the pioneering approach, Gao et al. [8] pro-
posed a visually guided UNet-structured codec to generate binaural
audio via spectrograms. Next, Zhao et al. [40] introduced sound
source separation into binaural audio generation. The method im-
proves spatialization performance by incorporating both tasks into
a unified training framework through a shared visual network.
However, this paradigm makes binaural audio generation subject
to additional source-separated datasets and models. Li et al. [18]
proposed a generative adversarial approach to synthesize binaural
audio. The visual modality provides guidance information to the
generator while providing visual reference to the discriminator.

Although these existing audio spatialization methods can gen-
erate spatial audio that corresponds to visual content, they rely
on strict audiovisual correspondence and have limited flexibility.
Different from the above methods, we explore a new task of text-
guided audio spatialization and propose a text-guided diffusion
model to reconstruct the spatial sense of audio. Experimental re-
sults demonstrate that our approach can generate spatial audio
that is consistent with text prompts and outperforms some visually
guided methods.

3 METHOD
To address the TAS issue, we present a text-guided audio spatial-
ization method based on the diffusion model to realize audio spa-
tialization reasoning guided by text prompts. Our method recovers
differential audio from random noise conditioned on mono audio
and text prompts. Mono audio provides the original signal basis,
while text prompts provide spatial information during generation.
Figure 2 shows the pipeline illustration of the proposed method.

3.1 Problem Formulation
Given a mono audio 𝐴𝑚 and a text prompt 𝑇 , our model aims to
synthesize the binaural audio 𝐴𝑏 = {𝐴𝑙 , 𝐴𝑟 } corresponding to the
text prompt. 𝐴𝑚 can be obtained by mixing channels of binaural
audio 𝐴𝑏 :

𝐴𝑚 = 𝐴𝑙 +𝐴𝑟 . (1)
For simplicity, instead of directly synthesizing the binaural audio
itself, we predict the differential audio 𝐴𝑑 of the binaural audio:

𝐴𝑑 = 𝐴𝑙 −𝐴𝑟 . (2)

To convert the differential audio waveform distribution 𝑞(𝐴𝑑 )
into a Gaussian noise distribution N(0, I), we diffuse it via 𝑁 steps
in the diffusion process. 𝑎 is used to represent 𝐴𝑑 for convenience.
Then, the diffusion process can be described as:

𝑞(𝑎1:𝑁 |𝑎0) :=
𝑁∏
𝑛=1

𝑞(𝑎𝑛 |𝑎𝑛−1) . (3)

In the reverse process, our diffusion model with parameter 𝜃 gener-
ates clean differential audio from Gaussian noise 𝑝 (𝑥𝑇 ) ∼ N (0, I)
guided by both mono audio 𝐴𝑚 and text prompts 𝑇 . The reverse
process can be expressed as:

𝑝𝜃 (𝑎0:𝑁 ) := 𝑝 (𝑎𝑁 )
𝑁∏
𝑛=1

𝑝𝜃 (𝑎𝑛−1 |𝑎𝑛, 𝐴𝑚,𝑇 ) . (4)

Finally, the generated differential audio 𝐴′
𝑑
is computed with the

mixed audio 𝐴𝑚 to obtain the final binaural audio 𝐴′
𝑏
= {𝐴′

𝑙
, 𝐴′

𝑟 }:

𝐴′
𝑙
=
𝐴𝑚 +𝐴′

𝑑

2
, 𝐴′

𝑟 =
𝐴𝑚 −𝐴′

𝑑

2
. (5)

3
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Figure 3: Categories, numbers, and specific distributions of
sounding objects in the dataset.

3.2 Model Architecture
Audio Encoder: The audio encoder takes mono audio as input and
outputs the extracted audio features in the form of waveforms. The
audio encoder consists of two 1D convolutional layers to extract
audio features 𝑓𝑎 = [𝑓 1𝑎 , . . . , 𝑓 𝐿𝑎 ] ∈ R𝑑×𝐿 , where 𝑑 = 512 is the
embedding dimension and 𝐿 = 16000 is the audio clip length. The
weights of the audio encoder are not frozen during training.
Text Encoder: For input prompts, the text encoder of pre-trained
CLIP [24] is employed to extract text features 𝑓𝑡 ∈ R𝑑×1, where
𝑑 = 512 is the embedding dimension. We also utilize diverse text
encoders to extract text features to verify the impact of text repre-
sentation on audio spatialization, including BERT [5] and T5 [25]
(introduced in Sec. 4.6). We perform average pooling on the em-
bedding representations of all tokens to obtain the information
of the entire text prompt in BERT and T5. A learnable fully con-
nected layer is used to reduce the feature dimension of BERT from
768 to 512. Following the common practice, the weights of all text
encoders are frozen during training.
Semantic-Aware Fusion Module: To highlight key audio seman-
tic information closely related to text prompts, we propose a semantic-
aware fusion module. Specifically, given text features 𝑓𝑡 and audio
features 𝑓𝑎 , the semantic-aware fusion module learns to aggregate
text-aware audio features 𝑓 ′𝑎 . The text-aware audio features can be
computed as:

𝑓 ′𝑎 =

𝐿∑
𝑙=1

𝑤𝑎
𝑙
𝑓 𝑙𝑎 = 𝜎 ( 𝑓𝑡 𝑓

T
𝑎√
𝑑

) 𝑓𝑎 . (6)

Then, the text features are fused with text-aware audio features:

𝑓 ′𝑎𝑡 = 𝑓𝑡 ⊙ (FC(𝑓 ′𝑎 ) + 𝑓 ′𝑎 ), (7)

where ⊙ represents the matrix dot product, and FC represents the
fully connected layer. Finally, 𝑓 ′𝑎𝑡 is repeated 𝐿 times to splice with
audio features and fused through a convolutional layer to obtain
the final aggregated text-aware audio features 𝑓𝑎𝑡 :

𝑓𝑎𝑡 = Conv(Concat[𝑓 ′𝑎𝑡 , 𝑓𝑎]), (8)

where Conv represents a 1D convolution layer, and Concat repre-
sents element-wise concatenation.
Spatialization Network: The spatialization network consists of
3 residual blocks, and each residual block has 10 dilated 1D con-
volutional layers. The diffusion step is encoded using two fully
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the center.
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the left.
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Figure 4: Examples of the TASBench dataset. We implement
dense frame-level annotation of the sounding state and spa-
tial location of sounding objects.

connected layers. Next, the proposed semantic-aware fusion mod-
ule is used to highlight text-aware audio features and fuse audio and
text features. Then, the aggregated text-aware audio features are
injected into each residual block to provide guidance information.
Finally, the ultimate output of the model is the concatenation of
the outputs of all residual blocks.

4 EXPERIMENTS
We first introduce the construction of TASBench, implementation
details, and evaluation metrics in this section. Then, we conduct
comparative experiments between the proposed baseline and meth-
ods from related tasks. We also provide experimental results of
several task-related methods guided by text prompts. In addition,
we compare the impact of different text representations on audio
spatialization and verify the personalization generation capability
of the proposed method. Finally, we analyze the proposed method
in ablation experiments and user study.

4.1 TASBench
Dataset Statistics: We build the first text-guided audio spatializa-
tion dataset to facilitate related research. A straightforward idea is
to provide only one text annotation for an audio clip. In contrast,
we provide dense spatial location annotations for sounding objects
in spatial audio, which allows us to engage in fine-grained con-
trol of spatial sense generation. All spatial audio is collected from
the FAIR-Play dataset [8], which was recorded in a music room
with professional equipment. The TASBench dataset contains 1871
10-second audio clips and 190625 text annotations over 12 cate-
gories, covering sounds from musical instruments, humans, and
their various combinations. Figure 3 shows the specific categories

4
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Modality Method STFT↓ ENV↓ WAV↓ AMP↓ PHA↓ SNR↑
w/o Modality Mono-Mono 1.155 0.153 7.666 0.267 0.592 5.735

Visual Modality

L2BNet [23] 1.028 0.148 - - - -
MONO2BINAURAL [8] 0.959 0.141 6.496 0.252 0.591 6.232

APNet [40] 0.889 0.136 5.758 0.247 0.585 6.972
Sep-stereo [40] 0.879 0.135 6.526 0.256 0.590 6.422

Main network [38] 0.867 0.135 5.750 0.246 0.583 6.985
Complete network [38] 0.856 0.134 5.787 0.247 0.584 6.959

SAGM [18] 0.851 0.134 5.684 0.243 0.570 7.044
AVSN [20] 0.849 0.133 - - - -

Text Modality

MONO2BINAURAL [8] 0.980 0.143 6.534 0.252 0.593 6.223
APNet [40] 1.003 0.144 6.686 0.254 0.593 6.128

Ours 0.945 0.140 6.230 0.249 0.591 6.613
Ours+SAF 0.914 0.137 6.092 0.245 0.586 6.771

Table 1: Comparison with methods from related tasks. Modality refers to the guidance that provides spatial information for
the audio spatialization model.

Ukulele & Guitar Drums & Piano Keyboard & Piano Banjo & PianoTrumpet & GuitarTrumpet & GuitarTrumpetTrumpet TrumpetTrumpet

MONO2BINAURAL

APNet

Ours

GT

Figure 5: Visualization results of differential spectrogram generated by our approach and task-related methods.
MONO2BINAURAL and APNet are based on visual guidance. GT represents the ground truth.

and the number of each category. There may be multiple categories
in an audio clip, so the total number of categories exceeds the total
number of audios. The number of sound source categories in an
audio clip ranges from 1 to 4. Their proportions are shown in the

right pie chart in Figure 3. In the left pie chart, we also compute the
distribution of sound source directions. Overall, the distribution of
the TASBench dataset is reasonable.
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Figure 6: Envelope curves of binaural audio generated by differentmethods.MONO2BINAURAL andAPNet are based on visual
guidance. GT represents the ground truth.

Text Representation STFT↓ ENV↓ WAV↓ AMP↓ PHA↓ SNR↑
BERT [5] 0.937 0.139 6.253 0.251 0.578 6.813
T5 [25] 0.934 0.139 6.228 0.252 0.581 6.848
CLIP [24] 0.930 0.138 6.203 0.251 0.579 6.882

Table 2: Evaluation of text representations across different encoders on the split1 segmentation of TASBench dataset.

Annotation: To better annotate the spatial location of sounding
objects, we combine spatial audio and video provided by the FAIR-
Play dataset. Specifically, we first extract visual images from each
video at 10 frames per second. We then provide a spatial location
annotation for each sounding object in each image frame based
on its visual and auditory spatial location. There are some special
cases in the annotation process: (i) Audio spatial perception may
not exactly match the visual situation when the sounding object
is visible. In this case, we utilize visual information as the main
annotation to faithfully reflect the spatial position of the sounding
objects. (ii) We utilize spatial audio as the main annotation object
when the sounding object is invisible. Since the FAIR-Play dataset
lacks specific spatial location records, the spatial location of the
sounding object can be roughly divided into three directions: Left,
Center, and Right. We use text to annotate the spatial location and
status of the sounding objects in order from left to right. We only
annotate sounding objects. When the object is completely silent, it
will not appear in our annotations. Figure 4 shows some samples
of the constructed dataset.

4.2 Implementation Details
Dataset Settings:We train and test the proposedmethod and other
methods from related tasks on the constructed TASBench dataset.
We retain the original partition of the dataset, which is 1497/187/187

for training, validation and testing. The average of 10-fold cross-
validation of the model is used as the final result. We randomly
intercept a 1-second clip from a 10-second audio sample with a
sampling rate of 16kHz. The text closest to the timestamp in the
center of the clip is chosen as the input prompt.
Training and Inference: The batchsize of the model is 12 and the
maximum number of training steps is 3000. The proposed model is
optimized using Adam with a learning rate of 2e-4 during training.
We utilize a window with a hop size of 0.1 seconds to generate
audio during inference.

4.3 Metrics and Methods from Related Tasks
Metrics: Six evaluation metrics are employed to comprehensively
evaluate generated binaural audio, including STFT Distance [8], En-
velope (ENV) Distance [19], Wave L2 (WAV×10−3) [27], Amplitude
L2 (AMP), Phase L2 (PHA), and Signal-to-Noise Ratio (SNR) [21].
See supp. for details.
Methods from Related Task: We compare the proposed method
with several visually guided methods from related tasks, including
weakly semi-supervised method: L2BNet[23]; autoencoder-based
methods: MONO2BINAURAL [8], AVSN [20]; multi-tasking-based
methods: APNet [40], Sep-stereo [40]; attention-based methods:
Main network [38], Complete network [38]; GAN-based method:
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Figure 7: The sound pressure level curve of the audio generated by ourmethod under text promptswith different spatial senses.
Left: SPL > 0dB, Center: SPL = 0dB, and Right: SPL < 0dB.

Modality Fusion STFT↓ ENV↓ WAV↓ AMP↓ PHA↓ SNR↑
w/o Modality - 1.195 0.156 7.953 0.275 0.588 5.693
Audio-Only - 1.078 0.148 7.195 0.265 0.602 6.090

Audio-Text Add 0.967 0.141 6.446 0.255 0.585 6.731
Audio-Text Conv 0.959 0.141 6.402 0.253 0.586 6.738
Audio-Text SAF 0.930 0.138 6.203 0.251 0.579 6.882
Table 3: The ablation results of our approach on the split1 segmentation of TASBench dataset.

SAGM [18]. Mono-Mono represents fake binaural audio created by
channel duplication of mono audio.

4.4 Quantitative Results
To investigate the impact of different guidance modalities on audio
spatialization and prove the superiority of our method, we orga-
nize extensive quantitative experiments. Table 1 demonstrates the
quantitative results under different guidance. Mono-Mono is audio
without modal guidance, which has no spatial awareness. The im-
proved evaluation metrics show that both our method and other
methods can generate audio with spatial awareness. As can be seen,
our method even outperforms some visually guided methods. This
is challenging because most of the visual images in the FAIR-Play
dataset have clear visual expressions.

For intuitive comparison, we replaced the visual modality in
MONO2BINAURAL and APNet with text prompts and retrained it.
Some metrics decreased in text guidance compared to visual guid-
ance in the MONO2BINAURAL method, which further supports
our observations. In the text-guided method, Ours represents the
baseline model without the SAF module, and Ours+SAF represents
the baseline model with the SAF module. After eliminating the
influence of modality, our method outperforms other methods in
all metrics, indicating the superiority of the proposed model. The
proposed SAF module further significantly improves the perfor-
mance of our method by incorporating text-aware audio features.
This demonstrates the effectiveness of the proposed module.

4.5 Qualitative Results
We visualize the differential spectrogram generated by different
methods in Figure 5. The first row is the visual image correspond-
ing to the text prompt. The second and third rows are the results
generated by the visually guided method, while the fourth row is
the result generated by our text-guided method. It can be seen that
the time-frequency structure of the spectrogram generated by our
method is comparable to the ground truth.

To visually observe the similarity of the generated waveforms,
we visualize the envelope curves of the left and right waveforms,
as shown in Figure 6. The warping of the waveform envelope curve
generated by the proposed method follows the ground truth sit-
uation well. Compared with MONO2BINAURAL and APNet, the
proposed method has better warpage peak, and the waveform shape
is closer to the ground truth. Overall, our method demonstrates
competitive performance with visually guided generation methods
in both spectrogram and waveform domains. This demonstrates
the promise of using text prompts to synthesize mono audio into
binaural audio.

4.6 Text Representation
We use existing text encoders for feature extraction on text prompts,
including CLIP, BERT, and T5. CLIP is a pre-trained model obtained
through contrastive learning of multimodal data and is widely
used in text feature extraction. BERT is a large language model
pre-trained on a large amount of plain text corpus. Compared with
BERT, T5 is amore versatile large languagemodel that can adapt to a
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Figure 8: User study of direction perception. All samples are
generated based on text prompts. Mono and M2B represent
Mono-Mono and MONO2BINAURAL, respectively.

variety of natural language processing scenarios. Table 2 shows the
quantitative results of binaural audio generated based on different
text representations. It can be seen that the text representation of
CLIP is superior to other methods in most metrics, demonstrating
its potential in audio spatialization tasks.

4.7 Personalized Results
To evaluate the personalization capability of the proposed method,
we conduct personalization experiments. Specifically, given a mono
audio, we then feed it to our model with text prompts of different
spatial senses. Finally, the difference curve of the sound pressure
level is employed to visualize the spatial variations of the audio.
The SPL represents the difference in sound pressure level between
the left channel and the right channel of audio. The spatial sense
is biased to the left when SPL > 0, to the right when SPL < 0, and
toward the center when SPL is near 0. The personalization results
of our method are demonstrated in Figure 7. The purple line is
the visualization result of the ground truth, and the sense of space
is biased to the left. It can be seen that the spatial sense of the
audio generated by our method is comparable to the ground truth
(blue line). When the model is provided with different text prompts
(orange and green lines), it can generate audio consistent with the
text prompts, demonstrating the personalization capabilities of the
proposed method.

4.8 Ablation Results
We implement ablation experiments to demonstrate the impact of
text modality and fusion methods on audio spatialization. Table 3
shows the results of the ablation experiments. The w/o Modality
represents Mono-Mono, which is obtained by channel duplication
of mono audio, and it has no spatial information. Audio-Only means
using only mono audio as guidance without text prompts. Inter-
estingly, most metrics of Audio-Only still improve without spatial
information guidance. The reason may be that the model can learn
some audio with insignificant spatiality, which does not need to

rely on explicit spatial information, such as audio with the object
in the center.

The bottom of Table 3 shows the results of audio-text joint guid-
ance. It can be observed that the introduction of text modality
further boosts the performance of the model because it allows the
model to generate audio corresponding to the spatial information
in the text prompt. In addition, we also compare different fusion
methods of text and audio modalities, including element-wise addi-
tion, 1D convolution and the proposed SAF module. Compared to
these methods, our method achieves leading performance through
perceptual interaction between text and audio modalities.

4.9 User Study
We conduct a user study to artificially estimate binaural audio gen-
erated by different methods. The user study recruited 8 subjects.
We provide each subject with 30 sets of samples. Each set of sam-
ples contains audio generated by Mono-Mono, MONO2BINAURAL,
APNet, and Ours, as well as the ground truth. The samples in each
group are shuffled and named with random numbers. To ensure
generalizability, all subjects were novices and were asked to give
corresponding answers based on the audio and questions provided.
Specifically, we use text prompts with location information re-
moved as questions for each group of samples. Then, each subject
was asked to listen to each audio one by one and given the spatial
location of the sounding object, including left, center, and right.
Finally, we compute the average accuracy of all participants under
diverse methods as the final experimental results.

In Figure 8, we provide two levels of accuracy for user study,
including rank-object and rank-audio. Rank-object evaluates the
position accuracy of the sounding object from the object level. Rank-
audio evaluates the accuracy of spatial perception from the entire
audio level, 𝑖 .𝑒 ., the positions of all objects need to be consistent
with the ground truth. It can be seen that our approach can generate
credible spatial audio, demonstrating the effectiveness of using
text prompts to guide audio spatialization. Compared with other
methods, the spatial audio generated by the proposed method is
more realistic.

5 CONCLUSION
In this paper, we explore a novel text-guided audio spatialization
task, which aims to convert mono audio into spatial audio based
on text prompts. To promote research in this area, we construct the
first dense text-annotated spatial audio dataset, named TASBench.
We design a semantic-aware fusion module to capture text-aware
audio features to enhance the correlation between text and audio
features and propose a new text-guided audio spatialization model
as a first baseline for this task. We compare the proposed method
with several visually guided methods from related tasks and demon-
strate that the proposed method can establish a connection between
text prompts and the spatial perception of audio. Personalization
experiments demonstrate that the proposed method can generate
audio with a specified spatial sense based on text prompts. In the
future work, we believe this research will facilitate multimodal
audio spatialization, 𝑖 .𝑒 ., generation under the joint guidance of
text, audio, and visual modalities.
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