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A SOME AUXILIARY RESULTS

Remark 1. For X ∼ LAP(2/ϵ), we have

Pr[X ≥ α] =
1

2
e−

α
2/ϵ .

Remark 2. As a consequence of Remark 1, for X ∼ LAP(2/ϵ), we have

Pr

[
|X| ≥ 4C log n

ϵ

]
= n−2C .

Remark 3. Let X ∼ LAP(2/ϵ), then we have

E[|X|] = 1

ϵ
.

Remark 4 (Laurent and Massart [2000]). Let Y :=
∑d

k=1 Z
2
k , where Zk ∼ N (0, 1) are i.i.d. random variables. Then

Pr
[
Y ≥ d+ 2

√
dx+ 2x

]
≤ e−x,∀x > 0

Corollary 1. Let Y :=
∑d

k=1 Z
2
k , where Zk ∼ N (0, σ2) are i.i.d. random variables. Then

Pr
[
Y/σ2 ≥ 2d+ 3x

]
≤ Pr

[
Y/σ2 ≥ d+ 2

√
dx+ 2x

]
≤ e−x,∀x > 0

Corollary 2. For any X ∼ N (c, σ2I), we have

Pr
[
||X − c||2 ≥ σ

√
2d+ 3x

]
≤ e−x

Lemma 3 (Chernoff bounds). Let X1, X2, . . . , Xn be independent binary random variables. Define Y :=
∑n

i=1 Xi and
µ := E[Y ]. Then, for any δ > 0 and

Pr[|Y − µ| > δµ] ≤ 2 exp(−δ2µ/4).

B DATA INDEPENDENT APPROACH: t = 0 CASE

Lemma 4 (Perturbation bound for Gaussian kernel). For Gaussian kernel given by K(x,y) = e−
||x−y||22

2 , x,y ∈ Rd, if
x ∈ Rd and x′ ∈ Rd are such that ||x− x′||2 ≤ α, then:

max
y∈Rd

|K(x,y)−K(x′,y)| ≤ min(1,
α√
e
)
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Proof. First, by triangle inequality and the assumption that ||x− x′||2 ≤ α, we have

||x− y||2 − ||x′ − y||2 ≤ ||x− x′||2 ≤ α. (1)

For f(x) = e−
x2

2 , we have

max
x∈R

|f ′(x)| = 1√
e
, (2)

and thus

max
y∈Rd

|K(x,y)−K(x′,y)| ≤ α√
e
.

It remains to note that 0 ≤ K(x,y) ≤ 1 and thus also maxy∈Rd |K(x,y)−K(x′,y)| ≤ 1.

Lemma 5 (Error analysis of rounding to centers). Let P ⊂ Rd be the input dataset and let P ′ := {(c1, v1), . . . , (cJ , vJ)},
where vector of J point counts v ∈ RJ , and centers of J bins c1, . . . , cJ are defined in lines 7 and 8 of Algorithm 1,
respectively. Then for the KDE metric between P ′ and P we have

sup
x∈Rd

|KDP ′(x)− KDP (x)| ≤ max

(
w
√
d

2
√
e
, 1

)
. (3)

Proof. For any point x ∈ Rd that belongs to a bin with a center c ∈ Rd we have

||x− c||2 ≤ w
√
d

2
.

Plugging the above bound in Lemma 4 completes the proof.

Lemma 6. If total number of bins J in Algorithm 1 is such that J ≤ nC , then for each bin i ∈ [J ], the noise term
wi = ṽi − vi added in step 9 is such that

wi ≤
4C log n

ϵ
,

with probability at least 1− 1
nC .

Proof. This is a consequence of Remark 2 and union bound argument.

Lemma 7 (Bound on the total noisy count). For J-dimensional vector of noisy point counts ṽ defined in line 9 of Algorithm
1, with probability at least 1− 1

nC we have

n− 4CJ log n

ϵ
≤ |ṽ| ≤ n+

4CJ log n

ϵ
.

Proof. This is a consequence of Lemma 6 and the fact that initial size of dataset is n.

Lemma 8 (Error analysis of noise addition). Let P ′ := {(c1, v1), . . . , (cJ , vJ)}, where vector of J point counts
v ∈ RJ , and centers of J bins c1, . . . , cJ are defined in lines 7 and 8 of Algorithm 1, respectively. Let Q :=
{(c1, ṽ1), (c2, ṽ2), . . . , (cJ , ṽJ)} be the noisy output of the algorithm. Then with probability at least 1− 1

nC we have

sup
x∈Rd

|KDQ(x)− KDP ′(x)| ≤ 8CJ log n

ϵn− 4CJ log n
. (4)



Proof. For any x ∈ Rd we have

|KDQ(x)− KDP ′(x)| =

∣∣∣∣∣ 1|ṽ|
J∑

i=1

ṽiK(ci, x)−
1

|v|

J∑
i=1

viK(ci, x)

∣∣∣∣∣
=

1

n

∣∣∣∣∣
J∑

i=1

K(ci, x)

(
n

|ṽ|
ṽi − vi

)∣∣∣∣∣
≤ 1

n

J∑
i=1

∣∣∣∣ n|ṽ| ṽi − vi

∣∣∣∣
where the second equality is the consequence of the fact that the point count in the original dataset is n, i.e. |v| = n, and the
inequality follows from K(ci, x) ≤ 1. Let wi denote the noise added to the ith bin’s point count in step 9 of Algorithm 1, so
that wi = ṽi − vi. Then we have

|KDQ(x)− KDP ′(x)| ≤ 1

n

J∑
i=1

∣∣∣∣vi

(
n

|ṽ|
− 1

)
+

n

|ṽ|
wi

∣∣∣∣
≤ 1

n

J∑
i=1

∣∣∣∣vi

(
n

|ṽ|
− 1

)∣∣∣∣+ 1

n

J∑
i=1

∣∣∣∣ n|ṽ|wi

∣∣∣∣ (5)

≤
∣∣∣∣ n|ṽ| − 1

∣∣∣∣+ J∑
i=1

∣∣∣∣ 1|ṽ|wi

∣∣∣∣ (6)

where the second inequality is the triangle inequality and the last one follows as |v| = n. Since wi ∼ LAP(2/ϵ), by
Lemma 7 we have

|KDQ(x)− KDP ′(x)| ≤

∣∣∣∣∣ n

n− 4CJ logn
ϵ

− 1

∣∣∣∣∣+ 1

n− 4CJ logn
ϵ

J∑
i=1

|wi|

≤ n

n− 4CJ logn
ϵ

− 1 +
1

n− 4CJ logn
ϵ

4CJ log n

ϵ
(7)

=
8CJ log n

ϵn− 4CJ log n
. (8)

with probability 1− 1
nC . The second inequality is the consequence of Lemma 6.

Proof of Theorem 3: This is a consequence of Lemma 5 and Lemma 8 for C such that δ = 1
nC . Triangle inequality

completes the proof.

C DATA INDEPENDANT APPROACH: t > 0 CASE

Lemma 9 (Algorithm 1 filters out all t/2-light bins). If for t = 8C logn
ϵ and the total number of bins J we have J ≤ nC for

some constant C, then with probability at least 1− 1
2n

−C all t/2-light bins will be filtered out by step 10 of Algorithm 1.

Proof. For t = 8C logn
ϵ , since we are adding Lap(2/ϵ) noise the probability of a bin with point count less than t/2 having

noisy point count more than t is upper bounded by 1
2n

−2C (see Remark 2).

Union bound over J ≤ nC bins completes the proof.

Lemma 10 (Algorithm 1 does not filter any 3t/2-heavy bins). If for t = 8C logn
ϵ and the total number of bins J we have

J ≤ nC for some constant C, then with probability at least 1 − 1
2n

−C no 3t/2-heavy bin gets filtered out by step 10 of
Algorithm 1. Algorithm 1 does not filter any 3t/2-heavy bin with probability at least 1− 1

2n
−C .

Proof. For t = 8C logn
ϵ , since we are adding Lap(2/ϵ) noise the probability of a bin with point count at least 3t/2 having

noisy point count less than t is upper bounded by 1
2n

−2C (see Remark 2). Union bound argument over J < nC bins
completes the proof.



Lemma 11 (Noisy point counts). If for t = 8C logn
ϵ and the total number of bins J we have J ≤ nC for some constant C,

then for J-dimensional vector of noisy point counts ṽ defined in line 9 of Algorithm 1, with probability at least 1− 1
nC we

have

n−m− 4CM log n

ϵ
≤ |ṽ| ≤ n+

4CM log n

ϵ
,

where M and m denote the total number of t/2-heavy bins and the total number of points in 3t/2-light bins, respectively.

Proof. Let F := {i : vi > 0, ṽi = 0}, Z := {i : vi = 0, ṽi = 0} and H := {i : ṽi > 0} denote the set of non empty bins
that are filtered out, the set of empty bins that are filtered out and the set of bins that survive filtering, respectively. Note that
every bin belongs to one of the three sets i.e. [J ] = F ∪ Z ∪H . We have

|ṽ| =
J∑

i=1

ṽi

=
∑
i∈F

ṽi +
∑
i∈Z

ṽi +
∑
i∈H

ṽi

=
∑
i∈H

ṽi

≤ |v|+ |H| · 4C log n

ϵ

≤ n+
4CM log n

ϵ
,

where the third equality follows by definition of F and Z, and the first inequality is the consequence of Lemma 6. The last
inequality follows from |v| = n and the consequence of Lemma 9 which gives that with probability at least 1− 1

2n
−C any

bin that survives filtering is t/2-heavy i.e. |H| ≤ M . On the other hand, we also have

|ṽ| =
J∑

i=1

ṽi

=
∑
i∈H

ṽi

≥
∑
i∈H

vi − |H| · 4C log n

ϵ

≥
∑
i∈H

vi −
4CM log n

ϵ

≥ n−m− 4CM log n

ϵ

where again second equality comes from the definition of F and Z, and the first inequality is the consequence of Lemma 6
and the second inequality follows from |H| ≤ M as above. Finally, the last inequality is the consequence of Lemma 10
which gives us that with probability at least 1− 1

2n
−C any bin that gets filtered out is 3t/2-light and so the total number of

filtered out points is upper bounded by m. This means that the total number of points in bins that survive filtering is at least
n−m i.e.

∑
i∈H vi ≥ |v| −m ≥ n−m. Union bound argument completes the proof.

Now, we analyze the error between kernel density induced by Q and P ′. For any q ∈ Rd we have

Lemma 12. Let P ′ := {(c1, v1), . . . , (cJ , vJ)}, where v, c are defined as in lines 7 and 8 of Algorithm 1. For t = 8C logn
ϵ

and the total number of bins J ≤ nC , with probability 1− n−C we have

sup
x∈Rd

|KDQ(x)− KDP ′(x)| ≤ ϵm+ 8CM log n

ϵn− ϵm− 4CJ log n
+

m

n
. (9)



Proof. Let H := {i : ṽi > 0} denote the bins that survive filtering step. We have

|KDQ(x)− KDP ′(x)| =

∣∣∣∣∣ 1|ṽ|
J∑

i=1

ṽiK(ci, x)−
1

|v|

J∑
i=1

viK(ci, x)

∣∣∣∣∣
=

1

n

∣∣∣∣∣
J∑

i=1

K(ci, x)

(
n

|ṽ|
ṽi − vi

)∣∣∣∣∣
≤ 1

n

J∑
i=1

∣∣∣∣ n|ṽ| ṽi − vi

∣∣∣∣
≤ 1

n

∑
i∈H

∣∣∣∣ n|ṽ| ṽi − vi

∣∣∣∣+∑
i ̸∈H

|vi|


≤ 1

n

(∑
i∈H

∣∣∣∣ n|ṽ| ṽi − vi

∣∣∣∣+m

)

where the second equality holds since |v| = n, and the first inequality is the consequence of K(ci, x) ≤ 1. The second
inequality follows by the definition of H , and the final one is the consequence of Lemma 10, as with probability at least
1− 1

2n
−C any bin that is filtered out must be 3t/2-light. Let wi = ṽi − vi, then wi ∼ LAP(2/ϵ). Then we further have

|KDQ(x)− KDP ′(x)| ≤ 1

n

(∑
i∈H

∣∣∣∣ n|ṽ| ṽi − vi

∣∣∣∣+m

)
(10)

≤ 1

n

(∑
i∈H

∣∣∣∣vi

(
n

|ṽ|
− 1

)
+

n

|ṽ|
wi

∣∣∣∣+m

)

≤ 1

n

(∑
i∈H

∣∣∣∣vi

(
n

|ṽ|
− 1

)∣∣∣∣+ 1

n

∑
i∈H

∣∣∣∣ n|ṽ|wi

∣∣∣∣+m

)

≤
∣∣∣∣ n|ṽ| − 1

∣∣∣∣+∑
i∈H

∣∣∣∣ 1|ṽ|wi

∣∣∣∣+ m

n

where the third is the triangle inequality and the last one follows since |v| = n. Let n′ := n−m− 4CM logn
ϵ . By Lemma

11 with probability 1− n−C we have

|KDQ(x)− KDP ′(x)| ≤
∣∣∣ n
n′ − 1

∣∣∣+ 1

n′

J∑
i=1

|wi|+
m

n

≤ n

n′ − 1 +
4CM log n

n′ϵ
+

m

n

=
ϵm+ 8CM log n

ϵn− ϵm− 4CJ log n
+

m

n
. (11)

where the second inequality holds by Lemma 6

Proof of Theorem 5:

As a consequence of triangle inequality and Lemmas 5 and 12, for C such that δ = n−C we have

sup
x∈Rd

|KDP (q)− KDQ(q)| ≤
ϵm+ 8CM log n

ϵn− ϵm− 4CM log n
+

m

n
+

w
√
d

2
√
e

=
ϵm+ 8M log 1

δ

ϵn− ϵm− 4M log 1
δ

+
m

n
+

w
√
d

2
√
e
.

This completes the proof.



D SPECIAL CASE: ORIGINAL DATASET FROM MIXTURE OF GAUSSIANS

Lemma 13. If r > 0, C > 0 are such that nwd

(2πσ2)d/2
e−

(r/2)2

2σ2 > 2C logn
ϵ , then r ≤ 3σ

√
log n+ d log

(
w

σ
√
2π

)
.

Proof. The condition of the lemma translates to

r ≤ 2
√
2σ

√√√√log

(
n

2C log n
·
(

w

σ
√
2π

)d
)

= 2
√
2σ

√
log n− log log n− log 2C + d log

(
w

σ
√
2π

)

≤ 3σ

√
log n+ d log

(
w

σ
√
2π

)

Lemma 14. If r > 0, C > 0 are such that nwd

(2πσ2)d/2
e−

r2

σ2 < 16C logn
ϵ , then we have r ≥

σ

√
log(ϵn)− log(16C log n) + d log

(
w

σ
√
2π

)
Proof. Condition on r translates to

r ≥

√√√√√−σ2 log

16C log n

ϵn
·

(
σ
√
2π

w

)d


≥ σ

√√√√log

(
ϵn

16C log n
·
(

w

σ
√
2π

)d
)

= σ

√
log(ϵn)− log(16C log n) + d log

(
w

σ
√
2π

)
.

Definition 15. For a bin (hypercube) B and a point y ∈ Rd, we define their distance as the ℓ2 distance of the center of B to
y.

Lemma 16 (Upper bound on M ). For a dataset coming from a multivariate Gaussian with variance σ2I in Rd there are at
most (

6σ

w

√
log n+ d log

(
w

σ
√
2π

)
+ 2

)d

t/2-heavy bins with arbitrary high probability.

Proof. Without loss of generality we assume that the mean of the distribution is the origin. Let B be a bin at distance r from
the origin, and x ∈ Rd be a point inside B. For X from multivariate Gaussian we have

f(X = x) ≤ 1

(2πσ2)d/2
e−

(r−w
√

d
2

)2

2σ2 .



Hence, the expected number of points within B is upper bounded by nwd

(2πσ2)d/2
e−

(r−w
√

d
2

)2

2σ2 . For r such that w
√
d ≤ r, this

is further upper bounded by nwd

(2πσ2)d/2
e−

(r/2)2

2σ2 .

For simplicity of notation, let us introduce µ(r) = nwd

(2πσ2)d/2
e−

(r/2)2

2σ2 . If we assume that r is large enough so that µ(r) ≤
2C log n, Chernoff bounds (see Lemma 3) give us

Pr [|B| ≥ 4C log n] ≤ 2e−µ

≤ 1

n2C
,

where |B| denotes the number of the points from the dataset within B. Thus if r is such that µ(r) > 2C log n, then bins at
distance at least r from the origin are t/2-light with probability at least 1− 1

n2C . Equivalently this means that all t/2-heavy
bins are at distance at most r from the origin.

By Lemma 13 the furthest bin that can be t/2-heavy is at distance at most

3σ

√
log n+ d log

(
w

σ
√
2π

)
from the origin. It remains to note that the area of diameter α is covered by at most α/w + 2 bins of width on a single axis.
Thus, the number of t/2-heavy bins is bounded by(

6σ

w

√
log n+ d log

(
w

σ
√
2π

)
+ 2

)d

with probability at least 1− 1
n2C .

Lemma 17 (Upper bound on m). For a dataset coming from a multivariate Gaussian with variance σ2I in Rd, when
binning is done with widths such that 8 ≤ log( w

σ
√
2π

), there are at most n2/3+o(1) points in 3t/2-light bins with arbitrary
high probability.

Proof. Without loss of generality we assume that the mean of the distribution is the origin. Let B be a bin at distance r from
the origin, and x ∈ Rd be a point inside B. For X from multivariate Gaussian we have

1

(2πσ2)d/2
e−

(r+w
√

d
2

)2

2σ2 ≤ f(X = x).

Hence, the expected number of points within B is lower bounded by nwd

(2πσ2)d/2
e−

(r+w
√

d
2

)2

2σ2 . For r such that w
√
d

2 ≤ (
√
2−1)r

we further have the lower bound of E[|B|] ≥ nwd

(2πσ2)d/2
e−

2r2

2σ2 , where B denotes the number of points from the dataset within
B.

For simplicity of notation let µ(r) = nwd

(2πσ2)d/2
e−

r2

σ2 . For r such that µ(r) ≥ 16C logn
ϵ , Chernoff bounds (see Lemma 3) we

have

Pr

[
|B| ≤ 12C log n

ϵ

]
≤ 1

n2C
.

Thus if r is such that µ(r) ≥ 16C logn
ϵ for some r, then bins at distance at most r are 3t/2-heavy with probability at least

1− 1
n2C . In other words, all 3t/2-light bins are at distance at least r. By Lemma 14, the smallest r such that all 3t/2-light

bins are at distance at least r is σ
√
log(ϵn)− log(16C log n) + d log

(
w

σ
√
2π

)
.



From Corollary 2 it follows that the probability of a point taking distance at least

σ

√
log(ϵn)− log(16C log n) + d log

(
w

σ
√
2π

)
from the cluster center is

Pr

X ≥ σ

√√√√2d+ 3

(
log(ϵn)− log(16C log n) + d log( w

σ
√
2π

)− 2d

3

) ≤ exp

(
−
(log(ϵn)− log(16C log n) + d(log( w

σ
√
2π

)− 2)

3

)

≤ (16C log n)1/3 · e−
d
3 (log

w
σ
√

2π
−2)

(ϵn)1/3

Let C′ be the set of points that are at least σ
√
2d+ 3

(
log(ϵn)−log(16C logn)+d log( w

σ
√

2π
)−2d

3

)
far from the mean of the

ditribution i.e. origin. Any point in 3t/2-light bins belongs to C′ with probability at least 1 − 1
n2C . Chernoff bound (see

Lemma 3) gives us

|C′| ≤ ϵ−1/3n2/3(16C log n)1/3 · e−
d
3 (log

w
σ
√

2π
−2)

with high probability. This completes the proof.

Proof of Theorem 6: From above analysis we have that the number of t/2-heavy bins is bounded by

M =

(
6σ

w

√
log n+ d log

(
w

σ
√
2π

)
+ 2

)d

with high probability. We also have that the total number of points in 3t/2-light bins is upper bounded by m =

ϵ−1/3n2/3(16C log n)1/3 · e−
d
3 (log

w
σ
√

2π
−2). Thus we have

M =

(
6σ

w

√
log n+ d log

(
w

σ
√
2π

)
+ 2

)d

(12)

≤
(
6σ

w

√
2
√

log n+ 2

)d

(13)

≤
(
12σ

w

)d

(log n)d/2 (14)

where the first inequality follows by n ≥
(

w
σ
√
2π

)d
and the second also follows for large n. We have

ϵm+ 8M log
1

δ
≤ ϵm+ 8 log

(
1

δ

)
·
(
12σ

w

)d

(log n)d/2 (15)

≤ 1

2
ϵn (16)

where the second inequality follows from condition n
(logn)d/2

> 16 log
(
1
δ

)
·
(
12σ
w

)d
. Thus remains to apply Theorem 5 and

we get



ϵm+ 8M log 1
δ

ϵn− ϵm− 4M log 1
δ

+
m

n
+

w
√
d

2
√
e

≤
ϵ(ϵ−1/3n2/3(16C log n)1/3 · e−

d
3 (log

w
σ
√

2π
−2)

) + 8 log
(
1
δ

)
·
(
12σ
w

)d
(log n)d/2

1
2ϵn

(17)

+
n2/3(16C log n)1/3 · e−

d
3 (log

w
σ
√

2π
−2)

n
+

w
√
d

2
√
e

(18)

≤ 3(16C log n)1/3 · e−
d
3 (log

w
σ
√

2π
−2)

(ϵn)1/3
+

16 log
(
1
δ

)
·
(
12σ
w

)d
(log n)d/2

ϵn
+

w
√
d

2
√
e
(19)

E DATA DEPENDENT ALGORITHM

Figure 1: Example of stages of data dependent partitioning of the dataset in R2.

E.1 IMPLICIT SAMPLING FOR DATA INDEPENDENT ALGORITHM 1

For the data independent algorithm, implicit implementation of empty bins sampling is straightforward. Instead of storing
(Rw )d bins centers, it is enough to store only those corresponding to non empty bins, and sample empty centers via independent
uniform random sampling of each coordinate from the set of possible values (and rejection if gluing them together gives
center corresponding to a non empty bin). Note that this requires storing O(Rw · d) values for non empty bins instead of
O(Rw )d.

F IMPLICIT SAMPLING OF EMPTY BINS

Proof of Lemma 9: Equivalence of Algorithm 4 and Algorithm 5 is the consequence of independence of Bernoulli indicators
(as Laplace noise are independent for different bins) and the fact that Binomial can be represented as the sum of independent
Bernoullis.

Figure 2: Tree with h = 2 and h′ = 5. Black nodes are non-empty bins, gray nodes are empty bins we need to sample.



Lemma 18. For a dataset of size n, if the decision tree is data independent up to depth level h and data dependent in the
remaining part, then the number of empty bins is upper bounded by

2h + n(h′ − h)

where h′ denotes the total number of levels.

Proof. We need to upper bound the number of leaves for such binary tree. Since the binary tree is complete up to depth h,
we have at most 2h leaves at level h. Furthermore, for any non empty bin we can have at most h′ − h empty bins between
depth h+ 1 and h′. Thus, we have at most n(h′ − h) empty bins between depth h+ 1 and h′.

Proof of Lemma 10: For a single empty bin, by Remark 1 we have

Pr[Lap(
2(h′ − h)

ϵ
) ≥ τ ] =

1

2
e
− τ

2(h′−h)/ϵ .

Thus for

τ =
2(h′ − h)

ϵ
log

(
1

δ
·
(
2h + n(h′ − h)

))
the right hand side is less than δ

2h+n(h′−h)
. As a consequence of Lemma 18 there are at most 2h + n(h′ − h empty bins and

thus union bound argument completes the proof.

More implementation details: Our algorithm for implicitly sampling the empty bins proceeds as follows: in the recursion
tree, from left to right, our algorithm first finds common ancestor for any two consecutive non-empty bins, say i’th and
i+ 1’th and calls it i’th common ancestor. Then, it calculates the number of empty bins between i’th non-empty bin and i’th
common ancestor. And similarly, it calculates the number of empty bins between i+ 1’th non-empty bin and i’th common
ancestor. Note that by the above-mentioned binomial distribution implicit sampling argument, one can apply a binomial
distribution sampling technique to each of these numbers, and it is not hard to locate the sampled empty bins. Finally, we
need to apply an implicit sampling technique to empty bins at level h. This is done similarly to the rejection sampling
technique we mentioned in implicit implementation of data independent algorithm.

G EXPERIMENTS

G.1 EXPERIMENTAL SETTING FOR COMPARISON WITH Balog et al. [2018]

For both dimension 2 and 5, the dataset consists of n = 100, 000 samples from a multivariate mixture of Gaussians. The
mixture has 10 components, with mixing weights proportional to (1, 1/2, . . . , 1/10), and their means are chosen from
spherical Gaussian with mean [100, . . . , 100] and covariance 200I . Each point is simulated by first sampling the mixture
component, and then sampling from a spherical Gaussian centered at the mean of the chosen mixture component and with
covariance 30I . For accuracy of the comparison, we did not re-sample the dataset and used the exact version in the code of
Balog et al. [2018].

G.2 DEPENDENCY ON DATASET SIZE

Intuitively, it is easier to hide the contribution of an individual in a large set, compared to a small set, in kernel density.
We show this empirically using three datasets with different dataset sizes, but the same underlying mixture of Gaussians
parameters as the 5 dimensional datasets in the experiments section, see Figure 3. This experiment also shows that our
algorithm is able to produce synthetic datasets with better minimum error when the size of the dataset, N , is larger. This
dependency in N was also evident in our theoretical results in Theorem 5 and Theorem 6.

G.3 DEPENDENCY ON VARIANCE

Next, we show the effect of σ (see Theorem 6 for the definition of σ) in the mixture of Gaussians datasets. We consider
two datasets with underlying mixture of Gaussians distributions in dimension 10, with σ = 30 and σ = 3 for each cluster.
As expected, the simulation results presented in Figure 4 confirm that our algorithm performs better in the setting where
clusters are more concentrated around a center, i.e., small σ case.
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Figure 3: Using three 5 dimensional datasets with 1k, 10k and 100k data points, yet with the same underlying distribution
parameters, we show that larger dataset size, N , naturally results in a better performance. Moreover, for larger N , our
algorithm is capable of achieving better minimum error.
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Figure 4: Performance comparison of our data dependent algorithm on 10-dimensional datasets with underlying mixture of
Gaussians distribution with σ = 3 and σ = 30. Note that our algorithm performs better with smaller σ as predicted by our
theory.

G.4 BINARY CLASSIFICATION

We use a dataset from a Kaggle competition https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud with information of credit card transactions which were either fraudelent or not, which
was also used in Harder et al. [2021]. This dataset has 31 categories, 30 numerical features and a binary label. Similarly to
Harder et al. [2021], we use all but the first feature (Time).

For both our data dependent algorithm and DP-MERF [Harder et al., 2021], we use 80% of input data for synthetic data
generation, for various privacy budgets ϵ. Synthetic data is then used to train 12 classifiers (see Table 1), which are tested on
remaining 80% of input data.

For training DP-MERF synthesizers, we set parameters as in Harder et al. [2021], i.e. number of epochs 4000, number of
Furier features 5000, mini-batch side 0.5, undersampling rate 0.005. For our data dependent algorithm, we use undersampling
rate of 0.005, and set the number of data independent levels to be equal to 30 and maximal number of levels to 60.

As comparison metrics, we use ROC (area under the receiver operating curve). Table 1 shows average ROC for our data
dependent algorithm over 20 repetitions for each classifier, as well as average ROC over the classifiers. Table 2 shows
average ROC over classifiers for DP-MERF with 5 repetitions for each classifier.

Although our data dependent algorithm does not outperform DP-MERF, its performance degrades slower for increasing
privacy.

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud


Table 1: Data dependent algorithm: ROC for various levels of privacy. Average over 20 repetitions.

ϵ = 10 ϵ = 1 ϵ = 0.1 ϵ = 0.01

Logistic Regression 0.705 0.545 0.481 0.527
Gaussian Naive Bayes 0.562 0.563 0.479 0.547
Bernoulli Naive Bayes 0.495 0.564 0.497 0.521

Linear SVM 0.758 0.524 0.508 0.546
Decision Tree 0.676 0.611 0.519 0.532

LDA 0.518 0.580 0.480 0.542
Ada Boost 0.632 0.572 0.485 0.521
Bagging 0.673 0.579 0.518 0.508

Random Forest 0.663 0.594 0.530 0.543
GBM 0.631 0.582 0.521 0.523

Multi-layer percepton 0.625 0.553 0.486 0.525
XGBoost 0.588 0.598 0.527 0.478
Average 0.627 0.572 0.503 0.526

Table 2: DP-MERF: ROC for various levels of privacy. Average over 5 repetitions.

ϵ = 10 ϵ = 1 ϵ = 0.1

Average 0.880 0.792 0.564



H APPROXIMATING GAUSSIAN DISTRIBUTION BY MIXTURE OF UNIFORMS

H.1 MMD

Let us assume that the data is arising from a Gaussian distribution and we are estimating with the samples {zi}n1 . The
maximum-mean discrepance (MMD) between the population P and the samples is given by:

MMD2
u(Nd, Qn) = Ex,x′∼Nd

[k(x, x′)]− 2

n

n∑
i=1

Ex∼Nd
[k(x, zi)] +

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(zi, zj). (20)

The expectations in the expression above can be computed analytically to yield the formula Rustamov [2021]:

MMD2
u(Nd, Qn) =

(
γ2

2 + γ2

)d/2

− 2

n

(
γ2

1 + γ2

)d/2 n∑
i=1

e
− ∥zi∥

2

2(1+γ2) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

e
−

∥zi−zj∥
2

2γ2 .

H.2 WIDTHS OF BINS

Let us assume that we have 2k + 1 boxes to approximate the Gaussian distribution where we assume an odd number of
boxes to apply symmetry arguments. The distributions are given by:

P (x) =
1√
2π

e−x2/2Q(x) = w0I0 +

k∑
i=1

wiIi +

k∑
i=1

w−iI−i (21)

where Ii = I[(2i− 1)C <= x < (2i+ 1)C] and
∑k

i=−k wi = 1. The KL divergence between distributions is given by:

DKL(P ||Q) := −
∫ ∞

∞
p(x) log

p(x)

q(x)
dx (22)

and in particular for our setting is given by:

DKL(Q||P ) =

k∑
i=−k

wi log
wi

2C
+

1

2
log(2π) +

k∑
i=−k

wiC
2

6
(12i2 + 1) (23)

Using the KL bounds for measuring divergence, we are able to obtain the following weights and size of the boxes. Each
box is of size given by 2c and placed at location 2ci for i ∈ [−k, k]. Applying the method of Lagrange multipliers, we can
obtain the optimal box weights for a mixture of uniform distributions with respect to the Gaussian distribution:

w0 =
1

1 + 2
∑k

i=1 e
−2i2c2

(24)

wi = w0e
−2i2c2 ∀i ∈ [−k, k] and i ̸= 0 (25)
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