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ABSTRACT

The spiking neural networks are inspired by the biological neurons that em-
ploy binary spikes to propagate information in the neural network. It has gar-
nered considerable attention as the next-generation neural network, as the spik-
ing activity simplifies the computation burden of the network to a large extent
and is known for its low energy deployment enabled by specialized neuromor-
phic hardware. One popular technique to feed a static image to such a net-
work is rate encoding, where each pixel is encoded into random binary spikes,
following a Bernoulli distribution that uses the pixel intensity as bias. By es-
tablishing a novel connection between rate-encoding and randomized smooth-
ing, we give the first provable robustness guarantee for spiking neural networks
against adversarial perturbation of inputs bounded under l1-norm. We intro-
duce novel adversarial training algorithms for rate-encoded models that signifi-
cantly improve the state-of-the-art empirical robust accuracy result. Experimen-
tal validation of the method is performed across various static image datasets,
including CIFAR-10, CIFAR-100 and ImageNet-100. The code is available at
https://github.com/BhaskarMukhoty/CertifiedSNN.

1 INTRODUCTION

Spiking neural networks (SNNs) are inspired by biological neurons that are significantly energy ef-
ficient compared to the conventional artificial neurons used in state-of-the-art deep neural networks.
One of the reasons behind higher energy consumption by ordinary artificial neurons is thought to
be the dense floating point dot products required between neuronal outputs (floating point) and the
corresponding connection weights (floating point) to compute the input to a next-layer neuron. The
artificial spiking neurons instead produce binary outputs so that the floating-point dot product can be
replaced by the accumulation of edge weights that are selected by active spikes, over a fixed num-
ber of steps. Thus, the task of computing a forward-pass through a spiking neural network, when
performed in specialized neuromorphic hardware (e.g., IBM TrueNorth (Merolla et al., 2014), Intel
Loihi (Davies et al., 2018) etc.), requires significantly less power consumption.

Similar to the neurons in recurrent neural networks, the spiking neurons possess a temporal dimen-
sion (a.k.a. inference latency) and maintain their present state as the membrane potential, which gets
updated at each time step after receiving the input in the form of weighted spikes. To process a static
input, say x ∈ Rd, the network requires a strategy to convert it into a temporal sequence of spikes.
One standard encoding technique, called constant or direct encoding, repeats the value x, T times,
assuming it to be the input potential of the first-layer neurons, so that sequential spikes are generated
as output of these neurons (Guo et al., 2021). Another technique called rate-encoding, inspired by
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biological evidence, intends to approximate an input x ∈ [0, 1] with the rate of spikes (Eshraghian
et al., 2021). It generates T binary spikes {zi}Ti=1, using a Bernoulli distribution, zi ∼ Ber(x), so
that the average number of spikes approximates the intensity of the pixel, 1

T

∑T
i=1 zi ≈ x. Yet an-

other technique, called time-to-first-spike, generates a single spike, where the spike timing encodes
the input pixel intensity (Johansson & Birznieks, 2004). It can be noted that among the encoding
techniques discussed here, only rate-encoding introduces a systematic noise with the input, while
the rest supply the information precisely.

As spiking neural networks aspire to replace the conventional artificial neural networks (ANN) for
energy efficiency, they become exposed to intelligent attacks. Adversarial perturbation of inputs
is one such attack, where an input image is altered with mild perturbation imperceptible to the
human eye but can fool the classifier to make an incorrect prediction (Goodfellow et al., 2015).
Defending against such attacks is imperative for many safety-critical applications. The work in
(Sharmin et al., 2020) made some important experimental observations, where they found that the
rate-encoded SNNs are adversarially robust compared to vanilla ANN classifiers and that the robust-
ness of rate-encoding drops with the increase in inference latency, T . They further conjectured that
the robustness may be due to the sparse spiking activity. However, (Kundu et al., 2021) observed
that constant-encoded SNNs have lower adversarial robustness compared even to ANNs, but also
have low spiking activity similar to rate-encoded SNNs. The present work is thus motivated by the
need to provide a theoretical proof for the empirical observations of robustness.

We start by observing an intriguing connection between rate-encoding and the randomized smooth-
ing framework (Lecuyer et al., 2019). Given a base classifier, the randomized smoothing technique
ensures that the smooth classifier obtained as the expected classifier, under noise to the input, is ad-
versarially robust. That is, for a given input x ∈ Rd, the smoothed classifier provides a radius within
which any perturbation to the input will not result in a change of output. As the guarantee originates
from the noise introduced to the input, it becomes a property of the smooth classifier rather than the
base classifier. Nevertheless, (Salman et al., 2019) observed that it is possible to adversarially train
a smooth classifier for better empirical results.

Our Contributions: Considering the rate-encoded network as an estimate of the smoothed clas-
sifier to Bernoulli noise enables us to establish the first certified robustness result for SNNs. The
observation that rate and constant encoded classifiers correspond respectively to the smooth and
base classifiers explains the superior adversarial robustness of rate encoding. The theoretical results
further reveal that the certified radius suffers a drop with increasing latency, confirming the empir-
ical observations. Table 3 reports the certified accuracies at different perturbation radii under the
l1-norm for various datasets on state-of-the-art architectures.

To further improve the adversarial robustness of the rate-encoded classifiers, we adopt adversarial
training methods for rate-encoded classifiers. Since rate-encoding uses stochasticity to introduce
Bernoulli noise, we employ the well-known Straight Through Estimator (STE) (Bengio et al., 2013;
Yin et al., 2019) for back-propagation of gradients to the inputs. Experimental findings demonstrate
that adversarially trained rate-encoded networks outperform their vanilla counterpart and other state-
of-the-art adversarial training algorithms (Ding et al., 2022).

2 BACKGROUND AND RELATED WORK

Spiking Neural Network consists of neurons, such as Leaky Integrate and Fire (LIF) (Gerstner
et al., 2014), which is governed by first-order differential equations as a continuous function of time.
As the hardware required to train a network of LIF neurons operate in the discrete-time domain, the
differential equations are discretized into the following recurrent equations:

u
(l)
i [t] = βu

(l)
i [t− 1] +

∑
j

wijx
(l−1)
j [t]− x

(l)
i [t− 1]uth,

x
(l)
i [t] = h(u

(l)
i [t]− uth) =

{
1 if u(l)

i [t] > uth

0 otherwise,
(1)

where, u(l)
i [t] denote the membrane potential of the i-th neuron on layer l at time-step t, and x

(l)
i [t]

denotes the corresponding binary spike produced whenever u
(l)
i [t] exceeds the fixed membrane
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threshold uth. The leaky constant β ∈ (0, 1] determines how the membrane potential will natu-
rally decay on each step after receiving the input spikes from previous layer neurons weighted by
the connection weight wij .

Adversarial Attacks: Given a hard classifier h : Rd → Y , where Y is the set of class labels, and
input x, an adversarial perturbation tries to obtain a perturbation δ, such that, h(x + δ) ̸= h(x),
under the restriction ∥δ∥p ≤ ϵ. One popular way to obtain such a perturbation is to maximize the
network loss over the input perturbations:

max
∥δ∥≤ϵ

L(hθ(x+ δ), y) (2)

The Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) attack attempts to increase the
loss using a single gradient step with a ∥·∥∞-constraint on δ, where the gradient step is δ := δ0 +
η∇δL, with δ0 = 0. Applying the norm constraint on δ and maximizing over η we obtain,

δ := max
η

clip(η∇δL, [−ϵ, ϵ]) = ϵ · sign(∇δL) (3)

Often, the optimization is performed over several gradient ascent steps with Π as the projection
operation performed on the lp-norm ball of radius ϵ:

δt+1 = Πϵ(δt + η∇δL(hθ(x+ δt), y) (4)
when the projection step is performed on a l∞-ball, the attack is popularly known as projected
gradient descent (PGD) attack (Madry et al., 2018).

Empirical Defense: To defend a classifier against adversarial attacks, several strategies are proposed
that provide empirical robustness to ANNs (Papernot et al., 2016; Guo et al., 2018). One popular
defense strategy is adversarial training (Madry et al., 2018), where a classifier is trained with respect
to adversarial examples instead of clean ones. As an optimization to find the worst adversarial
perturbation is NP-hard, such a strategy, though empirically adequate, does not guarantee that no
adversarial perturbation can exist for a given input. In the context of SNNs, to improve the empirical
robustness of constant-encoded networks, (Kundu et al., 2021) proposed to perturb the input image
separately at different time steps instead of supplying the same image repeatedly, thus avoiding
any computational burden due to adversarial training. More recently, (Ding et al., 2022) proposed
the adversarial training of constant encoded SNNs with additional regularization, called regularized
adversarial training (RAT), which has been shown to provide higher robustness against adversarial
attacks.

Certifiable Defense: Though empirical defenses are practical, they do not ensure the absence of
an adversarial perturbation. In practice, the empirical defense strategies are often broken with more
potent attacks. Given an input x, a classifier h is said to be provably robust under norm lp attacks if
there exists a radius r within which any perturbation to x does not change the output of the classifier,
i.e.,

∀x′ : ∥x− x′∥p ≤ r we have, h(x′) = h(x) (5)
Through bounding input/output of the activation and bound propagation, certified training strategies
prove whether adversarial perturbation can exist within a particular radius of any input. A recent
method that adopts such existing literature (Xu et al., 2020; Wang et al., 2021) to SNNs is known as
(S-IBP, S-CROWN) (Liang et al., 2022).

Randomized Smoothing: One of the effective strategies to provide a probabilistic certificate of ro-
bustness in a classifier agnostic way is through randomized smoothing (Lecuyer et al., 2019), which
gives provable robustness against adversarial attacks restricted under l1 or l2 norm. Randomized
smoothing analyses the effect of adding input noise, such as Gaussian or Laplacian, to a base clas-
sifier. A classifier that gives class probabilities as output is known as a soft classifier, in contrast to
a hard classifier that returns the predicted class label. Given a (soft) base classifier f : Rd → P(Y),
the Gaussian smoothing constructs a smooth classifier g : Rd → P(Y):

g(x) = Eϵ∼N(0,σ2·I)[f(x+ ϵ)] = Ez∼N(x,σ2·I)[f(z)] (6)

Given, a = argmaxy∈Y g(x)y , b = argmaxy ̸=a g(x)y and let pa, pb be the corresponding proba-
bilities with their statistical estimates, pa ≤ pa and pb ≤ pb, we have from (Cohen et al., 2019):

argmax
y∈Y

g(x+ δ)y = a (7)

∀δ : ∥δ∥2 ≤ σ

2
(Φ−1(pa)− Φ−1(pb)) (8)
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where, Φ−1 is the inverse Gaussian CDF. This implies that the smooth classifier, g, when deployed
in the test time, can tolerate any adversarial attack with a bounded norm of radius R = σ

2 (Φ
−1(pa)−

Φ−1(pb)). As probabilities pa and pb are difficult to compute analytically, they are estimated using
Monte-Carlo (MC) simulations (Cohen et al., 2019; Salman et al., 2019), by evaluating the base
classifier on multiple noisy input, i.e.,

ĝ(x) ≈ 1

m

m∑
i=1

f(zi) where, zi ∼ Noise(x) (9)

so that the bounds pa ≤ pa and pb ≤ pb hold with high probability.

3 ADVERSARIAL ROBUSTNESS USING BERNOULLI SMOOTHING

3.1 RANDOMIZED SMOOTHING VIA BERNOULLI NOISE

We propose to analyze the robustness properties of a classifier that uses Bernoulli noise as the source
of randomness. The input to the smoothed classifier g can be an image x ∈ [0, 1]d, where individual
pixel values xi ∈ [0, 1] are bounded. For Bernoulli smoothing, the individual pixel intensity xi can
be treated as the bias of a Bernoulli random variable, zi,

zi ∈ {0, 1} : zi ∼ Ber(xi) (10)
which in vector notation we write as, z ∼ Ber(x). The theorem below proves that we can construct
a provably robust classifier g using Bernoulli noise, given a base classifier f .
Theorem 1. Given a base classifier f : [0, 1]d → P(Y), we construct a smooth classifier g :
[0, 1]d → P(Y), such that,

g(x) = Ez∼Ber(x)[f(z)] (11)
Let pa = maxy∈Y g(x)y , pb = maxy ̸=a g(x)y , then,

∀δ : ∥δ∥1 <
pa − pb

2
argmax

y∈Y
g(x+ δ) = a (12)

As Monte-Carlo simulations estimate the probabilities pa and pb, we expect to obtain bounds pa ≥
pa and pb ≤ pb with high probability. Since, pa − pb ≤ pa − pb,
Corollary 1. We have,

∀δ : ∥δ∥1 <
pa − pb

2
= pa − 0.5 argmax

y∈Y
g(x+ δ) = a

where in the last equality we used the upper bound, pb := 1− pa.

To prove the Theorem1, we would require to use Definition1 along with lemma 2 and 3.
Definition 1. A function h : Rd → R is said to be L-Lipschitz w.r.t. to the norm ∥·∥, if ,

∀x,y ∈ Rd : |h(x)− h(y)| ≤ L∥x− y∥
Equivalently, if h is differentiable, it is L-Lipschitz if and only if,

∀x, ∥∇h(x)∥∗ ≤ L

where ∥·∥∗ : Rd → R denotes the dual norm of ∥·∥ : Rd → R, and it is defined as: ∥y∥∗ =
sup∥x∥=1 x

Ty

Lemma 2. Let h : Rd → P(Y) be soft classifier and suppose it is L-Lipschitz with respect to each
of the classes x → h(x)y and the norm ∥·∥. For a given input x, if we have pa = maxy∈Y h(x)y ,
pb = maxy ̸=a h(x)y , then,

∀δ : ∥δ∥ <
pa − pb
2L

argmax
y∈Y

h(x+ δ) = a (13)

A proof for the above can be found in Lemma 2.1 (Li, 2019).
Lemma 3. For all y, g(x)y is 1-Lipschitz under ∥·∥1-norm.

The proof of this lemma is given in the appendix.
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3.2 MULTI-BERNOULLI SMOOTHING AND ITS APPLICATION TO SNN

Armed with the proof that the smooth classifier is robust when a single Bernoulli variable is used
to encode a pixel xi, let us now move to the more practical situation of rate-encoding, where T-
independent Bernoulli variables encode the input pixel. To fix the notation, let us consider constant
encoding replicating the original input x ∈ Rd, T times, creating temporal encoding that we denote
using the notation [x]T . To be consistent, let us denote a base classifier fT : [0, 1]d → P(Y)

which accepts the input without the encoding, and further let us define, fT (x) = f̃T ([x]
T ), where

the classifier f̃T : [0, 1]T×d → P(Y) receives the replicated input. The notation of f̃T helps us
demonstrate the definition of the corresponding smooth classifier, which receives replicated input
[x]T encoded with independent Bernoulli noise. The smooth classifier gT : [0, 1]d → P(Y) can now
be defined as:

gT (x) = Ezi∼BerT (xi)[f̃T (⟨z1, z2, · · · , zd⟩)] (14)

where, the smooth classifier gT uses T independent Bernoulli variables zi = ⟨zi,1, zi,2, · · · , zi,T ⟩ ∈
{0, 1}T to encode each input pixel xi ∈ [0, 1]. The notation BerT (xi) describes the joint Bernoulli
distribution of T variables, each having the same bias xi. We can now show,
Lemma 4. For all y, gT (x)y is T3T−1-Lipschitz under ∥·∥1-norm.

We differ the proof to the appendix.
Theorem 5. For the smooth classifier gT defined as above, and pa = maxy∈Y gT (x)y , pb =
maxy ̸=a gT (x)y , we have:

∀δ : ∥δ∥1 <
pa − pb
2T 3T−1

argmax
y∈Y

gT (x+ δ) = a (15)

The proof of the theorem follows from lemma2 and 4. It is interesting to note that Theorem 1 is a
special case of Theorem5 when T = 1.
Corollary 2. Similar to corollary 1, if we estimate pa ≥ pa with high probability, then robustness

guarantee on the perturbation δ : ∥δ∥1 <
pa−0.5

T 3T−1 , holds with the same probability.

One may highlight that the certified radius drops quickly with T , which, we agree, can perhaps be
improved with a tighter bound on the Lipschitzness. Also, the largest l1-radius on which an input can
obtain a robustness guarantee is upper bounded by 0.5, with T = 1. To put it in perspective, it allows
a change of 127

255 , which, assuming 8-bit encoding of pixels, allows a single pixel to be changed by
127 or 127 pixels to be changed by 1. In comparing the results with Gaussian smoothing, one may
find that their guarantee can hold for arbitrary radius. However, certificates for larger radii require
a significantly large number of MC simulations. Moreover, such results are impossible for discrete
random variables such as Bernoulli.

3.3 PREDICTION AND CERTIFIED ROBUSTNESS

Estimation of the smooth classifier gT (x) requires MC simulations, which corresponds to the eval-
uation of the base classifier fT on rate-encoded input. To evaluate gT , we use the predict and
certify functions described in Algorithm 1 and 2, which are similar to that of (Cohen et al., 2019),
with the exception that the Gaussian noise is replaced by multi-Bernoulli noise. The sub-routine
RateEncode(fT ,x,m) evaluates the classifier fT after rate-encoding the input x. The process is
repeated m times, and the vector counts records the number of times a particular class is predicted.
For proof that Algorithm 1 makes an incorrect prediction ĉa ̸= gT (x) with a probability upper
bounded α, please refer to proposition 1 (Cohen et al., 2019) that in turn uses results from (Hung &
Fithian, 2019). Algorithm 2 describes the certify function, which works in two stages. First, using
m0 MC simulations, it identifies the predicted class ĉa, then to find the lower bound pa, it uses
another m simulations. Proof that Algorithm 2 makes an incorrect prediction with probability upper
bounded by α can also be found in proposition 2 (Cohen et al., 2019).

Certified Test Accuracy: For each input x, the certify function either abstains or returns the pre-
dicted class with a l1 radius, within which no adversarial example exists. Two conditions are verified
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on each input data point to obtain the certified test accuracy of a model at a given radius r. First, the
predicted class should match the target label y; second, the radius returned by the certify function
should be larger or equal to r. The fraction of test data that satisfies both conditions without abstain-
ing gives the certified test accuracy of a model. Observe that this is an estimate of the true certified
test accuracy, as we only have an estimate of the smooth classifier gT . However, the estimate can be
improved by reducing the error rate α given Algorithms 1 and 2.

Algorithm 1 predict gT (x)

Require: f̃T ,x,m, α
counts← RateEncode(f̃T ,x,m)
ĉa, ĉb ← top two indicies in counts
na, nb ← counts[ĉa], counts[ĉb]
if BinomPValue(na, na + nb, 0.5) ≤ α then

return ĉa
else

return abstain
end if

Algorithm 2 certify gT around x

Require: f̃T ,x,m0,m, α
counts0← RateEncode(f̃T ,x,m0)
ĉa ← top index in counts0

counts← RateEncode(f̃T ,x,m)
pa ← LowerConfBound(counts[ĉa],m, 1− α)
if pa ≥ 0.5 then

return prediction ĉa, radius
pa−0.5

T3T−1

else
return abstain

end if

4 ADVERSARIAL TRAINING OF SNN CLASSIFIER

The notion of adversarial training can be seen as a min-max problem, where the objective is first
maximized with respect to bounded input perturbations and then minimized over the model param-
eters.

min
θ

1

|S|
∑

x,y∈S

max
∥δ∥≤ϵ

L(hθ(x+ δ), y) (16)

Since exactly solving the inner maximization is often not possible, one of the most common ap-
proaches of optimization is to alternately solve (approximately) the inner maximization with the
help of adversarial attacks and then partially solve the outer minimization using methods such as
mini-batch stochastic gradient descent (SGD). Each mini-batch SGD step would require obtaining
the adversarial images x + δ∗, computed with respect to the latest network weight that is updated
after the SGD step.

As we would like to use the smooth classifier as the final classifier for robustness properties, it is
natural to choose hθ = gT,θ in adversarial training, which has been demonstrated as an effective
approach for ANN (Salman et al., 2019). However, there are two difficulties. First, we can only
estimate the classifier g using ĝ, as given in equation 9, thus forcing us to use hθ = ĝT,θ. For
the computational efficiency of the adversarial training process, we use m = 1, α = 1 to obtain
a prediction of the smooth classifier, which corresponds to a single evaluation of the rate-encoded
classifier. In constant encoding, performing adversarial training corresponds to setting, hθ = fT,θ.

Secondly, to carry out the adversarial attack for inner maximization, we need to compute the gradient
of ĝ with respect to the input, which, following the chain rule, requires back-propagating through the
stochastic node that rate-encodes the input x. We employ the Straight Through Estimator (Hinton,
2012; Bengio et al., 2013), which estimates the gradient of a stochastic node assuming there is an
identity function in the backward pass of the node, enabling gradient-based attacks to find adversarial
examples.

5 EXPERIMENTS

Competitors: We compare the performance of the proposed methods with state-of-the-art adver-
sarial training algorithms in SNN. We refer to the models trained with un-perturbed data as CLEAN
and when perturbed with Gaussian as GN. We generate adversarial images using FGSM and PGD
attacks implemented using back-propagation through time (BPTT) with ϵ = 8

255 and refer to the
corresponding adversarially models by the attack name followed by the abbreviation of encoding,
where (C) and (R) stands for constant and rate, respectively. To identify the attacks separately from
the corresponding adversarial training algorithms, they are named in small letters, e.g., the FGSM
attack assuming a rate-encoded model is referred to as fgsm(R). Further, the training of adversarial
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Figure 1: (a) shows the clean and robust accuracy of smooth classifiers improve with m and saturates
quickly before m=20. The improvement is more significant for clean accuracy compared to robust
accuracy. Fig. (b) shows the effect of error rate α on the prediction. For m = 100, the prediction
accuracy does not deteriorate at α = 10−2, as it helps to avoid the high abstain rate suffered in
the case of m = 10. Fig. (c) empirically confirms that with larger T, the clean accuracy of rate-
encoded classifiers improves, while the robust accuracy drops. Fig. (d) compares robustness of
the FGSM(R) model with its competitors, with radius ϵ of l∞-norm attacks varying in the range
[ 0
255 ,

8
255 ]. Prediction of the FGSM(R) model with m = 10 offers superior robust accuracy for most

cases, while prediction using m = 1 beats competitors in the higher range of ϵ.

models, when performed with regularization proposed by Regularized Adversarial Training (Ding
et al., 2022), is identified by (RAT). We do not compare with (Kundu et al., 2021) as RAT offers
superior adversarial robustness.

Dataset and Network Architecture: We use standard static image dataset such as CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and ImageNet-100 (Deng et al.,
2009). They are temporally encoded using constant or rate encoding for the SNN classifier to be
trained at T = 4. We use SEW-Resnet-34 (Fang et al., 2021) architecture for Imagenet-100 and
VGGSNN architecture for other datasets. The VGGSNN is based on VGG-11 and has the config-
uration (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-AP2-FC) (Deng
et al., 2022).

Clean and Robust Accuracy: The clean accuracy of a model is its accuracy on uncorrupted test
images. To evaluate the smooth classifier, we employ Algorithm 1 for the prediction, which returns
the output of a conventional rate-encoded network when m = 1, α = 1. To demonstrate the smooth
classifier, we also make predictions with m = 10, α = 1 and study the effect of α on prediction
separately, see Fig.1(b). To avoid the scenario where the classifier abstains from prediction due
to low statistical confidence, we set α = 1, making the accuracies comparable to the constant
models. The empirical robust accuracy is the prediction accuracy when input images are corrupted
with specific adversarial attacks. With the exception to Fig.1(d) where we study the effect of attack
radius, the l∞-norm radius is set to ϵ = 8

255 .

5.1 COMPARISON OF EMPIRICAL ROBUST ACCURACY

Table 1 compares the constant encoded network under different training algorithms with the rate-
encoded counterpart. We highlight the minimum accuracy against all attacks for each training
method, reported column-wise. The minimum robust accuracy represents the empirical robust-
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T=4 CIFAR-10, Constant Encoding CIFAR-100, Constant Encoding

Attack CLEAN GN FGSM(C) PGD(C) CLEAN GN FGSM(C) PGD(C)

clean 92.15 91.7 79.4 79.15 72.01 70.19 54.31 53.38
gn 90.62 91.25 78.84 78.28 66.46 69.64 53.87 53.02
fgsm(C) 10.68 15.95 48.86 48.56 3.19 5.35 26.05 26.49
pgd(C) 0.1 1.24 39.75 41.65 0.04 0.45 21.12 22.61
fgsm(R) 81.01 85.13 77.33 75.69 45.4 59.23 49.63 50.81
pgd(R) 85.14 85.07 77.42 75.29 55.82 59.73 49.57 50.69

T=4 CIFAR-10, Constant Encoding, RAT CIFAR-100, Constant Encoding, RAT

Attack CLEAN GN FGSM(C) PGD(C) CLEAN GN FGSM(C) PGD(C)

clean 91.29 90.86 84.13 83.33 70.85 68.87 58.1 58.05
gn 88.71 90.72 83.09 82.95 66.05 69.82 57.93 57.34
fgsm(C) 25.09 29.42 54.18 53.50 10.39 13.12 35.62 34.36
pgd(C) 0.49 3 42.76 44.44 0.34 1.71 27.1 29.89
fgsm(R) 84.62 87.55 81.68 80.90 53.15 64.34 56.31 55.08
pgd(R) 87.41 87.96 81.96 80.58 62.88 64.93 55.85 54.52

T=4, m=1 CIFAR-10, Rate Encoding CIFAR-100, Rate Encoding

Attack CLEAN GN FGSM(R) PGD(R) CLEAN GN FGSM(R) PGD(R)

clean 79.55 79.36 76.89 76.36 50.9 50.89 45.85 46.98
gn 78.62 79.07 76.39 76.77 50.43 50.77 46.4 46.05
fgsm(C) 75.57 75.34 72.03 73.99 48.36 49.12 45.16 45.15
pgd(C) 76.23 76.06 73.03 78.87 47.94 48.95 45.74 45.38
fgsm(R) 43.69 43.31 55.05 55.27 25.75 24.84 31.64 32.47
pgd(R) 37.37 37.4 51.63 51.59 21.98 20.72 28.56 29.99

T=4, m=10 CIFAR-10, Rate Encoding CIFAR-100, Rate Encoding

Attack CLEAN GN FGSM(R) PGD(R) CLEAN GN FGSM(R) PGD(R)

clean 83.22 83.5 80.15 80.54 55.27 55.83 49.58 50.51
gn 83.54 83.41 80.33 80.41 54.82 55.2 49.84 50.15
fgsm(C) 80.29 79.94 76.41 78.22 52.76 53.6 49.19 48.3
pgd(C) 80.6 80.05 76.73 78.59 52.54 53.73 49.07 48.8
fgsm(R) 44.93 44.89 57.89 57.85 27.61 26.32 33.46 33.88
pgd(R) 37.74 37.58 52.27 53.08 22.79 21.5 30.03 31.05

Table 1: Experiments on CIFAR-10 and CIFAR-100 datasets demonstrate that under the strongest
attacks, rate encoded classifiers offer superior robustness compared to the constant encoded coun-
terpart. The columns stands for different training (adversarial) procedure, while the rows stands for
different adversarial attacks.

ness of a model when subjected to arbitrary attack. It is found that for constant-encoded models,
pgd(C) attack gives minimum accuracy, while for the rate-encoded models, pgd(R) is the strongest.
It can be observed that RAT improves the robustness of the constant encoded models. However,
rate-encoded models significantly improve the robust accuracy compared to RAT. For example,
in CIFAR-10, CLEAN(R) is 37% more robust than CLEAN(C), while under adversarial training,
FGSM(R), PGD(R) improve the minimum robust accuracy by 9% and 18%, respectively, com-
pared to RAT. For CIFAR-100, the improvement in robust accuracy is 22% for CLEAN(R), 3% for
FGSM(R), and 13% for PGD(R), considering predictions using m = 10.

A common criticism of the rate-encoded model is that it offers lower accuracy on clean images than
constant encoding. Fig.1(a) shows on CIFAR-10 that the prediction of rate-encoded models can
significantly improve with the better estimation of the smooth model at the test time. The same
observation can be made from Table 1 where shifting from m=1 to 10 improves the clean accuracy
by 4-5 % across all the rate-encoded models. A further defense for rate-encoded models comes
from Fig.1(d), where we vary radius of the l∞-attack between [ 0

255 ,
8

255 ], where ϵ = 0, corresponds
to clean images. It can be observed that constant encoded models quickly lose accuracy even for
small perturbations, showing the relevance of rate-encoded models when there is a possibility of
attack. Fig.1(c) studies the effect of latency on robustness. It separately trains the CLEAN(R) and
FGSM(R) models at various T ∈ {4, 6, 8, 10} and measures their clean and robust accuracy (against
pgd(R)). The results show that although clean accuracy improves with latency, the robust accuracy

8
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ImageNet-100, T=4 clean gn fgsm(C) pgd(C) fgsm(R) pgd(R)

CLEAN(C) 72.02 71.78 4.98 0.02 51.18 61.1
CLEAN(C) +RAT 65.14 63.66 7.48 0.06 51.1 57.22
CLEAN(R), m=1 62.16 62 52.3 55.44 19.88 12.06
CLEAN(R), m=10 64.18 64.1 58.42 60.24 28.04 19.86

SVHN, T=4 clean gn fgsm(C) pgd(C) fgsm(R) pgd(R)

CLEAN(C) 95.36 94.71 26.6 3.11 65.61 70.56
CLEAN(C) +RAT 96.17 95.5 40.43 4.03 80.33 78.44
CLEAN(R), m=1 86.09 85.67 77.49 77.82 43.68 37.44
CLEAN(R), m=10 91.7 91.44 84.51 84.87 46.58 38.79

Table 2: Experiments on ImageNet-100 and SVHN show that rate-encoded models can offer rea-
sonable clean accuracy and significantly higher robust accuracy against the strongest attacks.

T=4 CIFAR-10, Rate Encoding CIFAR-100, Rate Encoding

r ∗ 108 = 0.1 0.2 0.3 0.4 0.45 0.1 0.2 0.3 0.4 0.45

CLEAN(R) 72.48 67.62 60.29 49.71 37.01 41.8 37.62 32.02 25.36 18.49
PGD(R) 73.23 68.5 61.69 51.58 38.78 41.48 37.31 32.15 25.65 18.68

T=4 ImageNet-100, Rate Encoding SVHN, Rate Encoding

CLEAN(R) 51.38 46.7 41.04 33.54 24.52 81.67 76.85 69.15 56.67 41.18

Table 3: presents the certified test accuracy for rate-encoded SNN models at different l1-norm radii
for various static datasets.

drops, confirming our theoretical results. In the appendix, we provide full results for T = 8 to
further confirm the same.

Results on other Datasets: We further compare the robustness of constant vs. rate-encoding on
larger datasets. Often, for large datasets such as ImageNet, adversarial training can be computa-
tionally challenging due to the size of the dataset, which gets multiplied by the temporal dimen-
sion of SNN. However, rate-encoding encoded classifiers trained with clean images offer robustness
properties and are computationally easier to train. Table2 provides empirical robustness results for
Imagenet-100 and SVHN dataset, where CLEAN(R) obtains significantly higher robust accuracy
than other feasible methods.

5.2 PROVABLE ROBUSTNESS VIA CERTIFIED ACCURACY

We provide the empirical certified test accuracy of the rate-encoded smooth classifier for perturba-
tion bounded under l1-norm radius. As given in Table 3, the radius varies between

[
0.1

L(T ) ,
0.5

L(T )

]
,

with L(T ) = T3T−1 representing the Lipschitzness of the smooth classifier as in Lemma 4. We use
the certify function with parameters m0 = 10, m = 100, and α = 0.01 to find the certified accuracy
of the rate-encoded models. The certified radii obtained are not entirely vacuous. For example, at
T = 4, we have L(T ) = 108, so that we can obtain a certified accuracy at the radius 0.45

108 which is
larger than 1

255 . Assuming 8-bit pixels allows a single pixel in the image to be changed by 1. There
also remains scope to obtain the certificate at lower latencies, as highlighted in the section 3.2. Fig.
2 shows a comparison between certified accuracy and robust accuracy under l1 attack.

6 DISCUSSIONS

The present work provides a theoretical grounding for the empirical observations of the adversarial
robustness of the rate-encoded classifiers. Consequently, we improve the classifier’s prediction at
test time by better estimating the corresponding smooth classifier. Further, we improve the empirical
robustness of the rate-encoded classifiers by adversarial training, which uses a novel implementation
of gradient-based attacks. The future scope for research remains open to reduce the gap between
empirical and theoretical results on the shrinkage of the certified radius with latency and other norm-
based attacks.
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A APPENDIX

Lemma 3. For all y, g(x)y is 1-Lipschitz under ∥·∥1-norm.

Proof.

g(x)y = Ezi∼Ber(xi)[f(⟨z1, z2, · · · , zd⟩)y] =
∑

z
(j)
i ∈{0,1}

f(⟨z(j)1 , z
(j)
2 , · · · , z(j)d ⟩)y

d∏
i=1

P(z(j)i |xi)

=
∑

z
(j)
i ∈{0,1}

f(⟨z(j)1 , z
(j)
2 , · · · , z(j)d ⟩)y

d∏
i=1

(xi)
z
(j)
i (1− xi)

1−z
(j)
i

=
∑

i ̸=1,z
(j)
i ∈{0,1}

f(⟨1, z(j)2 , · · · , z(j)d ⟩)y x1

∏
i ̸=1

(xi)
z
(j)
i (1− xi)

1−z
(j)
i

+
∑

i̸=1,z
(j)
i ∈{0,1}

f(⟨0, z(j)2 , · · · , z(j)d ⟩)y (1− x1)
∏
i ̸=1

(xi)
z
(j)
i (1− xi)

1−z
(j)
i

Let us now take partial derivative of g(·)y w.r.t. x1, which can be generalized to other co-ordinates
in a similar fashion:∣∣∣∣∂gy∂x1

∣∣∣∣ = ∑
i ̸=1, z

(j)
i ∈{0,1}

∣∣∣(f(⟨1, z(j)2 , · · · , z(j)d ⟩)y − f(⟨0, z(j)2 , · · · , z(j)d ⟩)y
)∣∣∣∏

i ̸=1

(xi)
z
(j)
i (1− xi)

1−z
(j)
i

≤
∑

i ̸=1, z
(j)
i ∈{0,1}

∏
i ̸=1

(xi)
z
(j)
i (1− xi)

1−z
(j)
i [diff. of probabilities is less than 1]

= 1 [using marginal probability]

Thus, we have, ∥∇g(·)y∥∞ ≤ 1 which following the Definition 1, ensures g(·)y is 1−Lipschitz
under ∥·∥1-norm.

Lemma 4. For all y, gT (x)y is T3T−1-Lipschitz under ∥·∥1-norm.

Proof.

gT (x) = Ezi∼BerT (xi)[f̃(⟨z1, z2, · · · , zd⟩)]

=
∑

zi∈{0,1}T

f̃(⟨z1, z2, · · · , zd⟩)
d∏

i=1

T∏
t=1

P(zi,t|xi)

=
∑

zi∈{0,1}T

f̃(⟨⟨z1,1, · · · , z1,T ⟩, z2, · · · zd⟩)
T∏

t=1

x
z1,t
1 (1− x1)

1−z1,t
∏
i ̸=1

T∏
t=1

P(zi,t|xi)

Now, let us denote, ck(z2, · · · , zd) =
∑

∥z1∥1=k f̃(⟨⟨·⟩, z2, · · · , zd⟩)y , the sum of f̃ for different
possible values that z1 can assume, with the restriction that there are k 1’s out of T binary values.
Thus,
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0 ≤ c0(z2, · · · , zd) := f̃(⟨⟨0, 0, · · · 0⟩, z2, · · · , zd⟩)y ≤
(
T

0

)
0 ≤ c1(z2, · · · , zd) := f̃(⟨⟨1, 0, · · · 0⟩, z2, · · · , zd⟩)y + · · ·+ f̃(⟨⟨0, 0, · · · , 1⟩, z2, · · · , zd⟩)y ≤

(
T

1

)
...

0 ≤ cT (z2, · · · , zd) := f̃(⟨⟨1, 1, · · · , 1⟩, z2, · · · , zd⟩)y ≤
(
T

T

)
and,P (x2, · · · , xd) =

∏
i ̸=1

T∏
t=1

P(zi,t|xi)

So that, we may write after expanding the expectation over the values that variable z1 may take:

gT (x) =
∑

zi∈{0,1}T

f̃(⟨⟨z1,1, · · · , z1,T ⟩, z2, · · · zd⟩)
T∏

t=1

x
z1,t
1 (1− x1)

1−z1,tP (x2, · · · , xd)

=
∑

i̸=1,zi∈{0,1}T

T∑
k=0

ckx
k
1(1− x1)

T−kP (x2, · · · , xd)

Let us denote h : [0, 1] → R as the function :

hT (x) =

T∑
k=0

ckx
k(1− x)T−k =

T∑
k=0

ckx
k
T−k∑
j=0

(
T − k

j

)
(−x)j

=

T∑
k=0

T−k∑
j=0

ck

(
T − k

j

)
xk+j(−1)j

=

T∑
l=0

l∑
m=0

cm

(
T −m

l −m

)
xl(−1)l−m [after re-indexing]

dhT (x)

dx
=

T∑
l=1

lxl−1
l∑

m=0

cm

(
T −m

l −m

)
(−1)l−m

=

T∑
l=1

lxl−1
l∑

j=0

cl−j

(
T − l + j

j

)
(−1)j [setting, j=l-m]

≤
T∑
l=1

lxl−1

l/2∑
j=0

(
T

l − 2j

)(
T − l + 2j

2j

)
as, 0 ≤ cj ≤

(
T

j

)

=

T∑
l=1

lxl−1

l/2∑
j=0

T !

(l − 2j)!(T − l)!(2j)!

=

T∑
l=1

lxl−1

(
T

l

) l/2∑
j=0

l!

(l − 2j)!(2j)!

=

T∑
l=1

lxl−1

(
T

l

)
2l−1 = T

T∑
l=1

(
T − 1

l − 1

)
(2x)l−1 = T (1 + 2x)T−1 ≤ T3T−1
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Taking partial derivative of g w.r.t. x1,∣∣∣∣∂gT (·)y∂x1

∣∣∣∣ = ∑
i ̸=1,zi∈{0,1}T

|h′
T (x1)|P (x2, · · · , xd)

≤ T3T−1
∑

i̸=1,zi∈{0,1}T

P (x2, · · · , xd)

= T3T−1

Thus, we have, ∥∇g∥∞ ≤ T3T−1 which following the Definition 1, ensures g is T3T−1−Lipschitz
under norm ∥·∥1.

B ADDITIONAL EXPERIMENTS

Comparison at higher latency Table 4 compares the constant encoded SNN under different training
algorithms with their rate encoded counterpart at T = 8. Similar to Table1 with T = 4, adversarially
trained rate-encoding demonstrates superior accuracy compared to their constant encoded counter-
parts. Also, one can observe that for most cases in rate-encoded models, the clean accuracy has
improved when compared to T = 4, while the robust accuracy has dropped. Our theoretical find-
ings for rate-encoded models also confirm that rate-encoded classifiers’ robustness decreases with
higher latency.

T=8 CIFAR-10, Constant Encoding CIFAR-100, Constant Encoding

Attack CLEAN GN FGSM(C) PGD(C) CLEAN GN FGSM(C) PGD(C)

clean 90.29 92.28 81.71 82.69 73 71.2 55.21 56.96
gn 88.93 91.85 81.26 82.56 68.67 71 53.04 56.47
fgsm(C) 8.45 18.04 48.79 46.33 4.17 6.47 32.39 25.99
pgd(C) 0.07 1.11 39.41 41.04 0.1 0.67 17.37 23.36
fgsm(R) 71.03 84.77 79.17 80.43 49.36 62.03 52.06 53.39
pgd(R) 75.54 84.49 79.48 81.35 61.36 62.84 51.01 54.55

T=8,m=1 CIFAR-10, Rate Encoding CIFAR-100, Rate Encoding

Attack CLEAN GN FGSM(R) PGD(R) CLEAN GN FGSM(R) PGD(R)

clean 83.77 83.57 80.43 80.64 54.26 48.73 48.78 50.85
gn 76.94 82.86 80.03 79.76 53.34 48.25 48.58 50.41
fgsm(C) 70.49 78.85 76.63 77.05 51.36 42.6 47.87 48.34
pgd(C) 71.76 80.11 77.8 77.86 50.9 44.1 47.46 49.22
fgsm(R) 36.05 41.01 54.42 52.02 24.95 17.74 33.51 28.87
pgd(R) 32.48 31.82 49.06 51.29 21.23 14.13 33.41 28.31

Table 4: Experiments on CIFAR-10 and CIFAR-100 datasets, with T = 8, demonstrate that under
the strongest attacks, rate encoded classifiers offer superior robustness compared to the constant
encoded counterpart. The columns stands for different training (adversarial) procedure, while the
rows stands for different adversarial attacks.

Comparison of empirical robust accuracy: We further compare the test fgsm/pgd attacks im-
plemented with different back-propagation techniques such as, Back Propagation Through Time
(BPTT) (Wu et al., 2018), Backward Pass Through Rate (BPTR) (Ding et al., 2022), Rate Gradi-
ent Attack (RGA) (Bu et al., 2023), and report the corresponding accuracies in the respective order.
Table5 shows the experiments conducted on CIFAR-10, where BPTT produces the strongest attacks.

Comparison under Gaussian noise attack The results in Table 1 with gn attack uses Gaussian
perturbation: x + δ, where δ ∼ N(0, σ2), with σ = 8/255 ≈ 0.031. The superior results obtained
there for the constant encoded models against Gaussian noise attacks can quickly break down as we
increase the strength of the attacks, as computed in Table6. For example, at σ = 0.1, CLEAN(R)
with m=10, provides 21.77% higher accuracy than CLEAN(C)+RAT.
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T=4 CIFAR-10, Constant Encoding

Attack CLEAN GN FGSM(C) PGD(C)

clean 92.15 91.7 79.4 79.15
gn 90.62 91.25 78.84 78.28
fgsm(C) 10.68 | 16.08|10.68 15.95 | 22.40 | 15.53 48.86 | 55.79 | 52.73 48.56 | 55.55 | 52.12
pgd(C) 0.1 | 1.71 | 0.47 1.24 | 6.64 | 2.76 39.75 | 49.70 | 47.62 41.65 | 49.57 | 48.30
fgsm(R) 81.01 | 84.36 | 80.18 85.13 | 88.39 | 83.10 77.33 | 78.08 | 76.78 75.69 | 76.93 | 74.90
pgd(R) 85.14 | 88.84 | 82.49 85.07 | 88.73 | 82.48 77.42 | 78.40 | 77.02 75.29 | 76.46 | 75.13

T=4 CIFAR-10, Constant Encoding, RAT

Attack CLEAN GN FGSM(C) PGD(C)

clean 91.29 90.86 84.13 83.33
gn 88.71 90.72 83.09 82.95
fgsm(C) 25.09 | 25.90 | 15.40 29.42 | 34.45 | 20.74 54.18 | 64.46 | 55.86 53.50 | 63.97 | 56.15
pgd(C) 0.49 | 5.97 | 0.45 3 | 15.93 | 3.23 42.76 | 58.92 | 48.66 44.44 | 58.78 | 50.05
fgsm(R) 84.62 | 84.06 | 82.94 87.55 | 88.59 | 87.11 81.68 | 82.56 | 81.45 80.90 | 82.53 | 0.63
pgd(R) 87.41 | 88.29 | 85.75 87.96 | 89.15 | 87.41 81.96 | 82.95 | 81.60 80.58 | 82.52 | 80.33

T=4, m=1 CIFAR-10, Rate Encoding

Attack CLEAN GN FGSM(R) PGD(R)

clean 79.55 79.36 76.89 76.36
gn 78.62 79.07 76.39 76.77
fgsm(C) 75.57 | 78.01 | 75.62 75.34 | 77.75 | 75.36 72.03 | 73.01 | 73.00 73.99 | 75.81 | 74.50
pgd(C) 76.23 | 78.73 | 76.19 76.06 | 78.74 | 76.30 73.03 | 74.76 | 73.35 74.87 | 76.62 | 75.15
fgsm(R) 43.69 | 55.97 | 46.02 43.31 | 54.90 | 45.30 55.05 | 62.49 | 56.06 55.27 | 63.42 | 55.77
pgd(R) 37.37 | 51.71 | 39.48 37.4 | 50.79 | 40.0 51.63 | 59.92 | 52.12 51.59 | 61.21 | 51.99

T=4, m=10 CIFAR-10, Rate Encoding

Attack CLEAN GN FGSM(R) PGD(R)

clean 83.22 83.5 80.15 80.54
gn 83.54 83.41 80.33 80.41
fgsm(C) 80.29 | 82.65 | 80.05 79.94 | 82.04 | 80.37 76.41 | 77.97 | 76.82 78.22 | 79.88 | 78.6
pgd(C) 80.6 | 82.93 | 80.51 80.05 | 82.73 | 80.27 76.73 | 78.87 | 76.76 78.59 | 80.15 | 78.69
fgsm(R) 44.93 | 59.58 | 47.64 44.89 | 57.75 | 47.54 57.89 | 65.94 | 58.63 57.85 | 66.87 | 59.03
pgd(R) 37.74 | 53.68 | 40.97 37.58 | 52.2 | 40.46 52.27 | 62.07 | 53.77 53.08 | 63.93 | 54.19

Table 5: We compare the test fgsm/pgd attacks implemented with different back-propagation tech-
niques such as BPTT, BPTR, and RGA and report the corresponding accuracies in the respective
order. The results show that, most often, BPTT produces the most potent attacks.

σ 0.05 0.1 0.2 0.3 0.4 0.5

CLEAN(C) 86.53 59.58 22.8 14.63 13.14 11.73
CLEAN(C)+RAT 84.3 60.3 26.01 16.01 12.66 11.26
CLEAN(R), m=1 78.38 77.74 72.58 61.77 48.38 35.13
CLEAN(R), m=10 83.13 82.07 77.65 66.26 51.14 36.66

Table 6: Under stronger Gaussian noise rate-encdoed SNNs show superior robustness.
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Constant Encoding Rate encoding

Attack T=4 32 64 128 4 32 64 128
clean 92.58 95.47 95.47 95.51 11.83 24.12 41.5 63.11

gn 85.84 89.1 88.98 88.97 11.54 22.8 38.35 57.4
fgsm(C) 21.02 14.25 15.85 17.56 11.14 17.43 23.64 28.8
pgd(C) 0.2 0.03 0.02 0.03 11.24 17.56 23.54 26.2
fgsm(R) 73.59 64.54 37.34 14.7 11.49 16.36 18 15.76
pgd(R) 87.46 82.53 58.36 11.9 11.46 17.54 18.94 13.92

Table 7: Converted SNN model trained on CIFAR10 dataset

Table 8: Training hyper-parameters

CIFAR-10/100 ImageNet-100 SVHN
Number epochs 200 200 200
Mini batch size 64 64 64
T 4,8 4 4
LIF: β 0.5 1 0.5
LIF: u0 0 0 0
LIF: uth 1 1 1
Learning Rate 0.1 0.1 0.1
FGSM/PGD/GN: ϵ 8/255 8/255 8/255
PGD (train): η 2/255 na na
PGD (train) Iteration 4 na na
PGD (test): η 2.55/255 2.55/255 2.55/255
PGD (test) Iteration 7 7 7
Optimizer: SGD with momentum: 0.9, weight decay: 5× 10−4, Rate Scheduler: cosine annealing

Comparison under ANN-SNN converted models: The theory of randomized smoothing holds
irrespective of the base classifier that we choose. That is, whether we use the base classifier f
(in eqn. 6) from an adversarially trained model or a converted model, the corresponding smooth
classifier g, will be robust against adversarial perturbation, i.e., g(x + δ) = g(x). However, if
the base classifier is unfit, the prediction g(x) can be incorrect, leading to poor clean and robust
accuracy.

We conducted experiments on VGG-16 models obtained using ANN-to-SNN conversion(Bu et al.,
2021) on the CIFAR-10 dataset. Under rate-encoding, converted SNNs do not offer clean accuracy
at smaller latency T, which should be considered as the limitation of the base classifier trained to
work with direct inputs without the Bernoulli noise. The same happens to constant encoded SNNs
trained on clean images if we add significant Gaussian noise to the input (see Table6).

It is interesting to note that, (i) while the clean accuracy of rate encoding is lower than that of
directly trained SNNs, the robust accuracy (minimum accuracy across among the attacks) of rate
encoding surpasses that of SNNs with constant encoding. (ii) The clean accuracy of rate encoding
keeps improving larger T, but the robust accuracy initially increases (due to better prediction), but
eventually drops, possibly due to the effect of T as found in our theory. (T=4: 11.49, T=32:16.36,
T=64: 18, T=128: 15.76). A similar observation was made in directly trained SNNs, as given in
Table 4, as we evaluated the direct trained models at T=4 vs T=8. (iii) A similar drop in robust
accuracy for constant encoded models may hint at rate-encoded nature of spikes in general SNN
layers, as reported in (Bu et al., 2023).

Training hyper-parameters and time Table 8 reports the training hyper-parameters used across
the four datasets. Additionally, Table 9 reports time required by each epoch of various adversarial
training methods on a single NVIDIA RTX A6000 GPU. For example, the column FGSM(C/R)
report that both constant and rate encoded adversarial training takes same amount of time for a
single epoch.

Comparison with l1 adversarial perturbations: The certified accuracy is further compared with
robust accuracy obtained with respect to the pgd attack within an l1 adversarial budget. Projection
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Table 9: Training time per epoch (in seconds)
CLEAN (C/R) GN (C/R) FGSM(C/R) PGD(C/R)

CIFAR-10 65 66 106 150
CIFAR-100 48 48 72 251
Imagenet-100 704 na na na
SVHN 95 na na na
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Figure 2: We compare the empirical robust accuracy of a CLEAN(R) model under the PGD attack
with its certified accuracy across various l1 radius values and for different datasets. The correspond-
ing gap highlights the scope for improvement in theoretical/experimental results.

into l1 ball is implemented using the code from (Croce & Hein, 2021). Figure 2 compares the results
on different datasets.
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