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ABSTRACT

Recent advances in diffusion models, like Stable Diffusion, have been shown to
significantly improve performance in image super-resolution (SR) tasks. How-
ever, existing diffusion techniques often sample noise from just one distribution,
which limits their effectiveness when dealing with complex scenes or intricate
textures in different semantic areas. With the advent of the segment anything
model (SAM), it has become possible to create highly detailed region masks that
can improve the recovery of fine details in diffusion SR models. Despite this, in-
corporating SAM directly into SR models significantly increases computational
demands. In this paper, we propose the SAN-Diff model, which can utilize the
fine-grained structure information from SAM in the process of sampling noise to
improve the image quality without additional computational cost during inference.
In the process of training, we encode structural position information into the seg-
mentation mask from SAM. Then the encoded mask is integrated into the forward
diffusion process by modulating it to the sampled noise. This adjustment allows
us to independently adapt the noise mean within each corresponding segmentation
area. The diffusion model is trained to estimate this modulated noise. Crucially,
our proposed framework does NOT change the reverse diffusion process and does
NOT require SAM at inference. Experimental results demonstrate the effective-
ness of our proposed method, which exhibits the fewest artifacts compared to other
generated models, and surpassing existing diffusion-based methods by 0.74 dB at
the maximum in terms of PSNR on DIV2K dataset.

1 INTRODUCTION

Single-image super-resolution (SR) has remained a longstanding research focus in computer vision,
aiming to restore a high-resolution (HR) image based on a low-resolution (LR) reference image.
The applications of SR span various domains, including mobile phone photography (Ignatov et al.,
2022), medical imaging (Huang et al., 2017; Isaac & Kulkarni, 2015), and remote sensing (Wang
et al., 2022a; Haut et al., 2018). Considering the inherently ill-posed nature of the SR problem, deep
learning models (Dong et al., 2014; Kim et al., 2016; Chen et al., 2021) have been employed. These
models leverage deep neural networks to learn informative hierarchical representations, allowing
them to effectively approximate HR images.

Conventional deep learning-based SR models typically process an LR image progressively through
CNN blocks (Zhang et al., 2018a) or transformer blocks (Liang et al., 2021; Chen et al., 2021;
2023). The final output is then compared with the corresponding HR image using distance measure-
ment (Dong et al., 2014; Zhang et al., 2018a) or adversarial loss (Ledig et al., 2017; Wang et al.,
2018b). Despite the significant progress achieved by these methods, there remains a challenge in
generating satisfactory textures (Li et al., 2023). The introduction of diffusion models (Ho et al.,
2020a; Rombach et al., 2022a) marked a new paradigm for image generation, exhibiting remark-
able performance. Motivated by this success, several methods have incorporated diffusion models
into the image SR task (Saharia et al., 2022b; Li et al., 2022; Shang et al., 2023; Xia et al., 2023).
Saharia et al. (Saharia et al., 2022b) introduced diffusion models to predict residuals, enhancing
convergence speed. Building upon this framework, Li et al. (Li et al., 2022) further integrated a
frequency domain-based loss function to improve the prediction of high-frequency details.
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(a) Noise distribution in the original diffusion model

(b) Noise distribution in our method

(A) Comparison of noise distribution in the forward
diffusion process.

Our method
PSNR=23.20

SRDiff
PSNR=22.60

directly integrating SAM
PSNR=23.02

GT

(B) Visualization of restored images generated by different
methods.

Figure 1: (A) is comparison of noise distribution in the forward diffusion process between existing diffusion-
based image SR methods and our SAN-Diff. Our approach enhances the restoration of different image areas
by modulating the corresponding noise with guidance from segmentation masks generated by SAM. (B) is
Visualization of restored images generated by different methods. Our method can achieve similar reconstruction
performance to directly integrating SAM into diffusion model.

In comparison with traditional CNN-based methods, diffusion-based image SR has shown signif-
icant performance improvements in texture-level prediction. However, existing approaches in this
domain often employ independent and identically distributed noise during the diffusing process, ig-
noring the fact that different local areas of an image may exhibit distinct data distributions. This
oversight can lead to inferior structure-level restoration and chaotic texture distribution in generated
images due to confusion of information across different regions. In the visualization of SR images,
this manifests as distorted structures and bothersome artifacts.

Recently, the segment anything model (SAM) has emerged as a novel approach capable of extracting
exceptionally detailed segmentation masks from given images (Kirillov et al., 2023). For instance,
SAM can discern between a feather and beak of a bird in a photograph, assigning them to distinct
areas in the mask, which provides a sufficiently fine-grained representation of the original image at
the structural level. This structure-level ability is exactly what diffusion model lacks. But directly
integrating SAM into diffusion model may result in significant computational costs at inference
stage. Motivated by these problems, we are intrigued by the question: Can we introduce structure-
level ability to distinguish different regions in the diffusion model, ensuring the generation of correct
texture distribution and structure in each region without incurring additional inference time?

In this paper, we verified the feasibility of controlling the generated images by modulating the dis-
tribution of noise during training stage, and the theory is illustrated in Figure 1(A). Based on this
theory, we proposed the structure-modulated diffusion framework named SAN-Diff for image SR
task. This framework utilizes the fine-grained structure segmentation ability to guide image restora-
tion. By enabling the denoise model (U-Net) to approximate the SAM ability, it can modulate the
structure information into the noise during the diffusion process.

The training and inference process are illustrated in Figure 3(b). Our method does not change the
inference process, and the training process is as follows: (1)For each HR image in the training set,
SAM is employed to generate a fine-grained segmentation masks. (2) Subsequently, the Structural
Position Encoding (SPE) module is introduced to incorporate masks by position information and
generate SPE mask. (3) Finally, the SPE mask is utilized to modulate the mean of the diffusing noise
in each fine-grained area separately, thereby enhancing accuracy of structure and texture distribution
during the forward diffusion process.

To achieve the goal of reducing the cost of training and inference, our method have with the follow-
ing advantages:

• During the training, our method have negligible extra training cost. We use SAM to pre-
generated mask of training samples, and reused them in all epochs. And the cost of modu-
late noise process is negligible.
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Figure 2: We compared the metrics MANIQA, FID, PSNR, and Artifact(5.3) on the DIV2K dataset.
In this context, higher values of MANIQA and PSNR are better, while lower values of FID and
Artifact are preferred. The red arrow indicates the direction of the best performance based on the
combined horizontal and vertical metrics.

• During the inference, our method have no additional inference cost. The diffusion model
has already acquired structure-level knowledge during training, it can restore SR images
without requiring access to the oracle SAM.

We conduct extensive experiments on several commonly used image SR benchmarks, and our
method showcases superior performance over existing diffusion-based methods. Furthermore, our
method has the fewest artifacts in generated models such as GAN and diffusion models. Our model
achieved a balanced advantage across various metric combinations, as shown in Figure 2.

2 RELATED WORKS

2.1 DISTANCE-BASED SUPER-RESOLUTION

Neural network-based methods have become the dominant approach in image super-resolution (SR).
The introduction of convolutional neural networks (CNN) to the image SR task, as exemplified by
SRCNN (Dong et al., 2015), marked a significant breakthrough, showcasing superior performance
over conventional methods. Subsequently, numerous CNN-based networks has been proposed to
further enhance the reconstruction quality. This is achieved through the design of new residual
blocks (Ledig et al., 2017) and dense blocks (Wang et al., 2018b; Zhang et al., 2018b). Moreover,
the incorporation of attention mechanisms in several studies (Dai et al., 2019; Mei et al., 2021) has
led to notable performance improvements.

Recently, the Transformer architecture (Vaswani et al., 2017) has achieved significant success in
the computer vision field. Leveraging its impressive performance, Transformer has been introduced
for low-level vision tasks (Tu et al., 2022; Wang et al., 2022b; Zamir et al., 2022). In particular,
IPT (Chen et al., 2021) develops a Vision Transformer (ViT)-style network and introduces multi-
task pre-training for image processing. SwinIR (Liang et al., 2021) proposes an image restoration
Transformer based on the architecture introduced in (Liu et al., 2021). VRT (Liang et al., 2022b)
introduces Transformer-based networks to video restoration. EDT (Li et al., 2021) validates the
effectiveness of the self-attention mechanism and a multi-related-task pre-training strategy. These
Transformer-based approaches consistently push the boundaries of the image SR task.

2.2 GENERATIVE SUPER-RESOLUTION

To enhance the perceptual quality of SR results, Generative Adversarial Network (GAN)-based
methods have been proposed, introducing adversarial learning to the SR task. SRGAN (Ledig et al.,
2017) introduces an SRResNet generator and employs perceptual loss (Johnson et al., 2016) to train
the network. ESRGAN (Wang et al., 2018b) further enhances visual quality by adopting a residual-
in-residual dense block as the backbone for generator.

In recent times, diffusion models (Ho et al., 2020a) have emerged as influential in the field of
image SR. SR3 (Saharia et al., 2022b) and SRdiff (Li et al., 2022) have successfully integrated
diffusion models into image SR, surpassing the performance of GAN-based methods. Addition-
ally, Palette (Saharia et al., 2022a) draws inspiration from conditional generation models (Mirza &
Osindero, 2014) and introduces a conditional diffusion model for image restoration. Despite their
success, generated models often suffer from severe perceptually unpleasant artifacts. SPSR (Ma
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et al., 2020) addresses the issue of structural distortion by introducing a gradient guidance branch.
LDL (Liang et al., 2022a) models the probability of each pixel being an artifact and introduces an
additional loss during training to inhibit artifacts.

2.3 SEMANTIC GUIDED SUPER-RESOLUTION

As image SR is a low-level vision task with a pixel-level optimization objective, SR models in-
herently lack the ability to distinguish between different semantic structures. To address this lim-
itation, some works introduce segmentation masks generated by semantic segmentation models as
conditional inputs for generated models. For instance, (Gatys et al., 2017) utilizes semantic maps
to control perceptual factors in neural style transfer, while (Ren et al., 2017) employs semantic
segmentation for video deblurring. SFTGAN (Wang et al., 2018a) demonstrates the possibility of
recovering textures faithful to semantic classes. SSG-RWSR (Aakerberg et al., 2022) utilizes an
auxiliary semantic segmentation network to guide the super-resolution learning process.

Image segmentation tasks have undergone significant evolution in recent years, wherein the most
recent development is the SAM (Kirillov et al., 2023), showcasing superior improvements in seg-
mentation capability and granularity. The powerful segmentation ability of SAM has opened up new
ideas and tools for addressing challenges in various domains. For instance, (Xiao et al., 2023) lever-
ages semantic priors generated by SAM to enhance the performance of image restoration models.
Similarly, (Lu et al., 2023) improves both alignment and fusion procedures by incorporating seman-
tic information from SAM. However, these approaches necessitate segmentation models to provide
semantic information during inference, resulting in much higher latency. In contrast, our method
endows SR models with the ability to distinguish different semantic distributions in images without
incurring additional costs at inference.

3 PRELIMINARY

3.1 DIFFUSION MODEL

The diffusion model is an emerging generative model that has demonstrated competitive perfor-
mance in various computer vision fields (Ho et al., 2020a; Rombach et al., 2022a). The basic idea
of diffusion model is to learn the reverse of a forward diffusion process. Sampling in the original
distribution can then be achieved by putting a data point from a simpler distribution through the
reverse diffusion process. Typically, the forward diffusion process is realized by adding standard
Gaussian noise to a data sample x0 ∈ Rc×h×w from the original data distribution step by step:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where xt represents the latent variable at diffusion step t. The hyperparameters β1, . . . , βT ∈ (0, 1)
determine the scale of added noise for T steps. With a proper configuration of βt and a sufficiently
large number of diffusing steps T , a data sample from the original distribution transforms into a
noise variable following the standard Gaussian distribution. During training, a model is trained to
learn the reverse diffusion process, i.e., predicting xt−1 given xt. At inference time, new samples
are generated by using the trained model to transform a data point sampled from the Gaussian
distribution back into the original distribution.

As illustrated in Equation 1, identical Gaussian noise is added to each pixel of the sample during
the forward diffusion process, indicating that all spatial positions are treated equally. Existing ap-
proaches (Saharia et al., 2022b; Li et al., 2022; Shang et al., 2023; Xia et al., 2023) introduce the
diffusion model into the image SR task following this default setting of noise. However, image SR
is a low-level vision task aiming at learning a mapping from the LR space to the HR space. This
implies that data distributions in corresponding areas of an LR image and an HR image are highly
correlated, while other areas are nearly independent of each other. The adoption of identical noise in
diffusion-based SR overlooks this local correlation property and may result in an inferior restoration
of structural details due to the confusion of information across different areas in an image. There-
fore, injecting spatial priors into diffusion models to help them learn local projections is a promising
approach to improve diffusion-based image SR.
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Figure 3: Comparison between (a) directly integrating SAM into the diffusion model and (b) our
proposed SAN-Diff reveals distinct approaches, and the PSNR evaluate on DIV2K dateset. In (a),
mask information predicted by SAM is utilized during both the training and inference stages. In
contrast, (b) only employs modulated noise generated by the structural noise modulation model
during training. The details of structural noise modulation can by found in Figure 4(a), and our
method achieves comparable reconstruction performance to (b) as demonstrated in Figure 1(B).

3.2 SEGMENT ANYTHING MODEL

Segment Anything Model (SAM) is proposed as a foundational model for segmentation tasks, com-
prising a prompt encoder, an image encoder, and a lightweight mask decoder. The mask decoder
generates a segmentation mask by incorporating both the encoded prompt and image as input.

In comparison to conventional cluster-based models and image segmentation models, SAM is prefer-
able for generating segmentation masks in image SR tasks. Cluster-based models lack the ability
to extract high-level information from images, resulting in the generation of low-quality masks.
Deep-learning image segmentation models, while capable of differentiating between different ob-
jects, produce coarse masks that struggle to segment areas within an object. In contrast, SAM excels
in generating extraordinarily fine-grained segmentation masks for given images, owing to its ad-
vanced model architecture and high-quality training data. It can generate mask for each different
texture region. This ability to distinguish different texture distribution is we aspire to incorporate
into diffusion model.

Table 1: Comparison of the effectiveness and efficiency of various diffusion-based image super-
resolution methods.

SRDiff SAM+SRDiff SAN-Diff

Parameter 12M 632M+12M 12M
Train time 10h16min/100k step 48h52min/100k step 10h21min/100k step

Inference time 37.64s/per img 65.72s/per img 37.62s/per img
PSNR 28.6 29.41 29.34
FID 0.4649 0.3938 0.3809

3.3 DIRECTLY INTEGRATING SAM INTO DIFFUSION MODEL

To validate the enhancing effect of structure level information on the diffusion process, we devised a
straightforward diffusion model (SAM+SRDiff) to utilize the mask information predicted by SAM.
Specifically, we concatenated the LR image with the embedding mask information to guide the
denoising model in predicting noise. The model structure is detailed in Figure 3(a). Results indicate
that the images generated by this simple model exhibit more accurate texture and fewer artifacts.

However, this approach introduces additional inference time as SAM predicts the mask, as shown
in Table 1. Can we enable the diffusion model to learn the capability of distinguishing different
texture distributions without relying on an auxiliary model? Furthermore, is it possible to train the
denoising model to acquire this capability?
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(a) Details of the structural noise modulation module.
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(b) Details of the SPE module.

Figure 4: (a) During training, a SAM generates a segmentation mask for an HR image, and a structural position
encoding (SPE) module encodes structure-level position information in the mask. The encoded mask is then
added to the noise to modulate its mean in each segmentation area separately. At inference time, the framework
utilizes only the trained diffusion model for image restoration, eliminating the inference cost of SAM. (b) This
module encodes structural position information in the mask generated by SAM.

4 METHOD

4.1 OVERVIEW

In this paper, we present SAN-Diff, a structure-modulated diffusion framework designed to im-
prove the performance of diffusion-based image SR models by leveraging fine-grained segmentation
masks. As illustrated in Figure 3(b), these masks play a crucial role in a structural noise modulation
module, modulating the mean of added noise in different segmentation areas during the forward
process. Additionally, a structural position encoding (SPE) module is integrated to enrich the masks
with structure-level position information.

We elaborate on the forward process in the proposed framework.1 As discussed in Section 3.1, the
added noise at each spatial point is independent and follows the same distribution, treating different
areas in sample x0 equally during the forward process, even though they may possess different
structural information and distributions. To address this limitation, we utilize a SAM to generate
segmentation masks for modulating the added noise. The corresponding segmentation mask of x0

generated by SAM is denoted as MSAM. We then encode structural information into the mask using
the SPE module, and the resulting encoded embedding mask is denoted as ESAM. Details of the SPE
module will be provided in Section 4.2. At each step of the forward process, ESAM is added to the
standard Gaussian noise to inject structure-level information into the diffusion model. This modified
process can be formulated as:

q(xt|xt−1,ESAM) = N (xt;
√

1− βtxt−1 +
√
βtESAM, βtI). (2)

Compared with the original forward diffusion process defined in Equation 1, the modified process
adds noise with different means to different segmentation areas. This makes local areas in an image
distinguishable during forward diffusion, further aiding the diffusion model in learning a reverse
process that makes more use of local information when generating an SR restoration for each area.
Since the added Gaussian noise is independently sampled at each step, we can obtain the conditional
distribution of xt given x0 by iteratively applying the modified forward process:

q(xt|x0,ESAM) = N (xt;
√
ᾱtx0 + φtESAM, (1− ᾱt)I), (3)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, and φt =
∑t

i=1

√
ᾱt

βi

ᾱi
. With this formula, we can directly

derive the latent variable xt from x0 in one step.

To achieve the SR image from restoration of an LR image, learning the reverse of the forward dif-
fusion process is essential, characterized by the posterior distribution p(xt−1|xt,ESAM). However,
the intractability arises due to the known marginal distributions p(xt−1) and p(xt). This challenge
is addressed by incorporating x0 into the condition. Employing Bayes’ theorem, the posterior dis-
tribution p(xt−1|xt,x0,ESAM) can be formulated as:

1For additional details regarding the derivation, please refer to the supplementary material.
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µ̃t(xt,x0,ESAM) =
1√
αt

(xt −
βt√
1− ᾱt

(

√
1− ᾱt√
βt

ESAM + ϵ)),

β̃t =
1− ᾱt−1

1− ᾱt
βt,

p(xt−1|xt,x0,ESAM) = N (xt−1; µ̃t(xt,x0,ESAM), β̃tI),

(4)

where ϵ ∼ N (0, 1). To generate an SR image of an unseen LR image, we need to estimate the
weighted summation of ESAM and ϵ, as these variables are only defined in the forward process and
cannot be accessed during inference. We adopt a denoising network ϵθ(xt,xxxLR, t) for approxima-
tion. The associated loss function is formulated as:

L(θ) = Et,x0,ϵ[∥
√
1− ᾱt√
βt

ESAM + ϵ− ϵθ(xt,xxxLR, t)∥22]. (5)

The denoising network ϵθ(xt,xxxLR, t) predicts the weighted summation based on latent variable xt,
LR image xxxLR, and step t. During training, xt is derived by sampling from the distribution defined
in Equation 3. At inference time, the restored sample at step t is used as xt.

Discussion. The structure-level information encoded by the mask can be injected into the diffusion
model through two distinct approaches. One method involves using the mask to modulate the input
of the diffusion model, while the other method entails modulating the noise in the forward process,
which is the approach adopted in our proposed method. In comparison to directly modulating the
input, our method only requires the oracle SAM during training. Subsequently, the trained diffusion
model can independently restore the SR image of an unseen LR image by iteratively applying the
posterior distribution defined in Equation 4. This highlights that our SAN-Diff method incurs no
additional inference cost during inference.

4.2 STRUCTURAL POSITION ENCODING

After obtaining the original segmentation mask using SAM, we employ an SPE module to encode
structural position information in the mask. Details of this module are illustrated in Figure 4(b).

The fundamental concept behind the SPE module is to assign a unique value to each segmenta-
tion area. The segmentation mask generated by SAM comprises a series of 0-1 masks, where each
mask corresponds to an area in the original image sharing the same semantic information. Con-
sequently, for HR image x3×h×w

HR , we can represent the K segmentation masks as MSAM,i, where
i = 1, 2, · · · ,K is the index of different areas in the original image. Specifically, the value of a point
in MSAM,i ∈ 0, 11×h×w equals 1 when its position is within the i-th area in the original image and
0 otherwise. To encode position information, we generate a rotary position embedding (RoPE) (Su
et al., 2021) xRoPE ∈ R1×h×w, where the width is considered the length of the sequence and the
height is considered the embedding dimension in RoPE. We initialize xRoPE with a 1-filled tensor
Similarly, xRoPE can be decomposed as: xRoPE =

∑
i xRoPE,i =

∑
i xRoPE ·MSAM,i. Subsequently,

we obtain the structurally positioned embedded mask by:

ESAM =
∑
i

MSAM,i · mean(xRoPE,i), (6)

which means to assign the average value of xRoPE,i to i-th segmentation area.

4.3 TRAINING AND INFERENCE

The training of the diffusion model necessitates segmentation masks for all HR images in the training
set. We employ SAM to generate these masks. This process is executed once before training,
and the generated masks are reused in all epochs. Therefore, our method incurs only a negligible
additional training cost from the integration of SAM. Subsequently, a model is trained to estimate
the modulated noise in the forward diffusion process using the loss function outlined in Equation 5.

During inference, we follow the practice of SRDiff(Li et al., 2022), the restoration of SR images can
be accomplished by applying the reverse diffusion process to LR images. By iteratively applying
the posterior distribution in Equation 4 and utilizing the trained model to estimate the mean, the
restoration of the corresponding SR image is achieved. It is noteworthy that we opted for the xT

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on test sets of several public benchmarks and the validation set of DIV2K. We
report the results achieved by GAN-based and diffusion-based methods. (↑) and (↓) indicate that a
larger or smaller corresponding score is better, respectively. Best and second best performance are
in red and blue colors, respectively.

Urban100 BSDS100 Manga109 General100 DIV2K

PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FIDMethod
(↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓)

SRGAN 22.85 0.6846 0.6162 10.4991 24.75 0.6400 0.6058 54.50 28.08 0.8616 0.5822 4.1818 25.98 0.7470 0.6172 36.23 28.05 0.7738 0.5600 2.0889
SFTGAN 21.95 0.6457 0.6153 9.1382 24.69 0.6365 0.6173 49.30 20.72 0.7008 0.5687 9.6466 22.19 0.6432 0.6253 37.06 24.70 0.6929 0.5602 5.1979
ESRGAN 22.99 0.6940 0.6678 7.3793 24.65 0.6374 0.6449 45.88 28.60 0.8553 0.6026 3.1242 26.03 0.7449 0.6452 30.93 28.18 0.7709 0.5849 1.4586
USRGAN 23.23 0.7060 0.6785 6.4375 25.13 0.6604 0.6517 48.58 20.70 0.7092 0.6226 8.6123 26.35 0.7631 0.6411 35.22 28.79 0.7945 0.5827 0.5938
SPSR 23.05 0.6973 0.6823 7.8380 24.60 0.6375 0.6648 48.81 23.26 0.7740 0.6211 6.6369 25.96 0.7435 0.6571 30.94 28.19 0.7727 0.5945 1.4315
BSRGAN 22.37 0.6628 0.6334 33.7447 24.95 0.6365 0.5993 114.08 26.09 0.8272 0.6105 33.5110 25.23 0.7309 0.6337 86.14 27.32 0.7577 0.5616 14.1312

LDM 22.23 0.6546 0.6239 23.0718 23.56 0.5812 0.6194 109.77 24.26 0.7941 0.5870 20.7506 25.32 0.6779 0.5683 265.82 26.45 0.7340 0.5356 9.5518
StableSR 21.16 0.6529 0.7025 28.9426 24.64 0.6523 0.6606 68.77 21.22 0.7456 0.6576 31.4120 18.39 0.5324 0.6749 73.51 26.83 0.7653 0.5747 14.5232
StableSR(Turbo) 21.22 0.6658 0.6633 29.5486 24.61 0.6691 0.6347 74.04 22.68 0.7819 0.5875 29.1558 18.63 0.5421 0.6446 67.04 26.68 0.7776 0.5468 14.2138
DiffBIR 22.40 0.6417 0.6536 30.6352 25.09 0.6254 0.6626 69.18 21.81 0.7197 0.6251 30.6433 24.37 0.6878 0.6762 66.35 26.25 0.7051 0.5919 17.8206
SRDiff 25.08 0.7602 0.6604 5.2194 25.86 0.6805 0.6478 56.27 28.78 0.8764 0.5967 2.4929 29.82 0.8223 0.6500 36.35 28.60 0.7908 0.5910 0.4649
SAN-Diff (Ours) 25.54 0.7721 0.6709 4.5276 26.47 0.7003 0.6667 60.81 29.43 0.8899 0.6046 2.3994 30.30 0.8353 0.6346 38.42 29.34 0.8109 0.5959 0.3809

sample from N (0, I) instead of N (φTESAM, I). Because the denoising model can generate the
correct noise distribution, the initial distribution is not expected to exert a significant impact on the
ultimately reconstructed image during the iterative denoising process. Simultaneously, such choice
also ensures that our SAN-Diff method without additional inference cost.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate the proposed method on the general SR (4×) task. The training data in
DIV2K (Agustsson & Timofte, 2017) and all data in Flickr2K (Wang et al., 2019) are adopted
as the training set. For images in the training set, we adopt a SAM to obtain their corresponding
segmentation masks. After that, structural position information is encoded into the mask by the
SPE module in our proposed framework. We adopt a patch size settings of 160×160 to crop each
image and its corresponding mask. For evaluation, several commonly-used SR testing dataset are
used, including Set14 (Zeyde et al., 2012), Urban100 (Huang et al., 2015), BSDS100 (Martin et al.,
2001), Manga109 (Fujimoto et al., 2016), General100 (Dong et al., 2016). Besides, the validation
set of DIV2K (Agustsson & Timofte, 2017) is also used for evaluation.

Baseline. We choose a wide range of methods for comparison. Among them, SRGAN (Ledig et al.,
2017), SFTGAN (Wang et al., 2018a), ESRGAN (Wang et al., 2018b), BSRGAN (Zhang et al.,
2021), USRGAN (Zhang et al., 2020), and SPSR (Ma et al., 2020) are GAN-based generative meth-
ods. Besides, we also comparison with diffusion-base generative methods such as LDM (Rombach
et al., 2022b), StableSR (Wang et al., 2023), DiffBIR (Lin et al., 2023), and SRDiff (Li et al., 2022),
.

Model architecture. Architecture of the used denoising model in our experiments follows Li et
al. (Li et al., 2022). As for configuration of the forward diffusion process, we set the number of
diffusing steps T to 100 and scheduling hyperparameters β1, . . . , βT following Nichol et al. (Nichol
& Dhariwal, 2021)

Optimization. We train the diffusion model for 400K iterations with a batch size of 16, and adopt
Adam (Kingma & Ba, 2014) as the optimizer. The initial learning rate is 2 × 10−4 and the cosine
learning rate decay is adopted. The training process requires approximately 75 hours and 30GB of
GPU memory on a single GPU card.

Metric. Both objective and subjective metrics are used in our experiment. PSNR and SSIM (Wang
et al., 2004) serve as objective metrics for quantitative measurements, which are computed over
the Y-channel after converting SR images from the RGB space to the YUV space. To evaluate
the perceptual quality, we also adopt Fréchet inception distance (FID) (Heusel et al., 2017) and
MANIQA (Yang et al., 2022) as the subjective metric, which measures the fidelity and diversity of
generated images.
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GT DiffBIRESRGAN USRGAN SPSR LDM StableSR SRDiff Ours

Figure 5: Visualization of restored images generated by different methods. Our SAN-Diff surpasses
other approaches in terms of both higher reconstruction quality and fewer artifacts. Additional
visualization results can be found in our supplementary material.

5.2 PERFORMANCE OF IMAGE SR

We compare the performance of the proposed SAN-Diff method with baselines on several commonly
used benchmarks for image SR. The quantitative results are presented in Table 2. In the results,
our method outperforms the diffusion-based baseline SRDiff in terms of all three metrics, except
a slightly higher FID score on BSDS100 and General100. Moreover, SAN-Diff can even achieves
better performance when compared to conventional approaches.

Figure 5 presents several images by generated different methods. Compared with the baselines, our
methods is able to generate more realistic details of the given image. Moreover, the reconstructed
images contain less artifact, which refers to the unintended distortion or anomalies in the SR image.
We further evaluate the proposed method in terms of inhibiting artifact in Section 5.3.

Table 3: Averaged value of artifact maps. Lower value indicates fewer artifacts in SR images.
Method Set5 Set14 Urban100 BSDS100 Manga109 General100 DIV2K

SRGAN (Ledig et al., 2017) 0.2263 1.3248 2.7320 1.2158 0.4736 1.4216 0.7456
SFTGAN (Wang et al., 2018a) 0.9014 2.0866 4.4362 1.2137 5.7064 3.6220 2.1495
ESRGAN (Wang et al., 2018b) 0.1842 1.4140 2.7006 1.2331 0.4042 1.4331 0.7335
USRGAN (Zhang et al., 2020) 0.1661 1.1537 2.5297 1.0947 5.7367 1.3029 0.6239
SPSR (Ma et al., 2020) 0.1653 1.3096 2.7069 1.2467 2.6665 1.4701 0.7295
BSRGAN (Zhang et al., 2021) 0.5255 1.3557 2.9030 1.1467 1.0150 1.5147 0.7718

LDM (Rombach et al., 2022b) 0.7735 2.1252 3.4932 1.8173 1.9994 1.5201 1.0334
StableSR (Wang et al., 2023) 3.4917 5.6209 4.0859 1.2014 4.5033 8.4946 0.8749
StableSR(Turbo) (Wang et al., 2023) 3.1433 5.4212 3.9131 1.2598 2.9956 8.3225 0.8883
DiffBIR (Lin et al., 2023) 0.9508 1.5292 2.5967 1.0446 4.0051 1.8129 1.0440
SRDiff (Li et al., 2022) 0.1821 0.7375 1.4163 1.2226 0.4047 0.4370 0.6185
SAN-Diff(Ours) 0.1322 0.5804 1.1453 0.9226 0.3081 0.3145 0.4391

5.3 PERFORMANCE OF INHIBITING ARTIFACT

Generative image SR models excel at recovering sharp images with rich details. However, they are
prone to unintended distortions or anomalies in the restored images (Liang et al., 2022a), commonly
referred to as artifacts. In our experiments, we closely examine the performance of our method in
inhibiting artifacts.

Following the approach outlined in (Liang et al., 2022a), we calculate the artifact map for each SR
image. Table 3 presents the averaged values of artifact maps on four datasets, and Figure 6 visually
showcases the artifact maps. When compared with other methods, our SAN-Diff demonstrates the
ability to generate SR images with fewer artifacts, as supported by both quantitative and qualitative
assessments.
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Figure 6: Visualization of artifact maps. Bright regions indicate artifacts in the restored images. Our
proposed method generates images with fewer artifacts compared to other methods.

5.4 ABLATION STUDY

Quality of mask. Segmentation masks provide the diffusion model structure-level information dur-
ing training. We conduct experiments to study the impact of using masks with different quali-
ties. Specifically, masks with three qualities are considered: those that are generated by Mobile-
SAM (Zhang et al., 2023) using LR images, those that are generated by MobileSAM using HR
images, and those that are generated the original SAM (Kirillov et al., 2023) using HR images.
These three kinds of masks are referred to as “Low”, “Medium”, and “High”, respectively. The
results of comparing masks with varying qualities are presented in Table 4, indicating that the final
performance of the trained model improves as the mask quality increases on both the Urban100
and DIV2k datasets. These findings demonstrate the critical role of high-quality masks in achieving
exceptional performance.

Structural position embedding. In our SPE module, the RoPE is adopted to generate a 2D position
embedding map for obtaining the value assigned to each segmentation area. Here we consider two
other approaches: one is using a cosine function to generate a 2D grid as the position embedding
map, and the other one is using a linear function whose output value ranges from 0 to 1 to generate
the 2D grid. Table 5 shows the corresponding results. Compared with using 2D grids generated with
cosine or linear functions, utilizing that generated by RoPE to calculate the value assigned to each
segmentation area results in superior performance, thereby showcasing the effectiveness of our SPE
module design.

Table 4: Comparison of masks with different
qualities.

Urban100 DIV2K

PSNR SSIM FID PSNR SSIM FIDMask
quality (↑) (↑) (↓) (↑) (↑) (↓)

Low 25.33 0.7702 4.7100 29.09 0.8062 0.4480
Medium 25.40 0.7700 4.7576 29.30 0.8103 0.4176

High 25.54 0.7721 4.5276 29.34 0.8109 0.3809

Table 5: Comparison of different schemes for
position embedding.

Urban100 DIV2K

PSNR SSIM FID PSNR SSIM FIDPosition
embedding (↑) (↑) (↓) (↑) (↑) (↓)

Cosine 25.28 0.7670 4.7790 28.98 0.8033 0.4689
Linear 25.31 0.7693 4.6197 29.09 0.8073 0.4731
RoPE 25.54 0.7721 4.5276 29.34 0.8109 0.3809

6 CONCLUSION

This paper focuses on enhancing the structure-level information restoration capability of diffusion-
based image SR models through the integration of SAM. Specifically, we introduce a framework
named SAN-Diff, which involves the incorporation of structural position information into the SAM-
generated mask, followed by its addition to the sampled noise during the forward diffusion process.
This operation individually modulates the mean of the noise in each corresponding segmentation
area, thereby injecting structure-level knowledge into the diffusion model. Through the adoption
of this method, trained model demonstrates an improvement in the restoration of structural details
and the inhibition of artifacts in images, all without incurring any additional inference cost. The
effectiveness of our method is substantiated through extensive experiments conducted on commonly
used image SR benchmarks.
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A ALGORITHM DETAILS

Here we provide algorithm details of our SAN-Diff framework. We adopt the original notations in
denoising diffusion probabilistic model (DDPM) (Ho et al., 2020b). Given a data sample x0 ∈ pdata,
the proposed framework in DDPM is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (7)

where xt is the noise latent variable at step t. β1, . . . , βT ∈ (0, 1) are hyperparameters scheduling
the scale of added noise for T steps. Given xt−1 We can sample xt from this distribution by:

xt =
√

1− βtxt−1 +
√
βtϵt, (8)

where ϵt ∼ N (0, I).

In our SAN-Diff framework, we use a structural position encoded segmentation mask ESAM to
modulate the standard Gaussian noise used in the original DDPM by adding ESAM to ϵt. Then the
sampling of xt becomes:

xt =
√

1− βtxt−1 +
√
βt(ϵt +ESAM), (9)

and its corresponding conditional distribution is:

q(xt|xt−1,ESAM) = N (xt;
√

1− βtxt−1 +
√
βtESAM, βtI). (10)

Let αt = 1− βt and iteratively apply Equation 9, we have:

xt =
√
αt(

√
αt−1(. . . ) +

√
βt−1ESAM +

√
βt−1ϵt−1) +

√
βtESAM +

√
βtϵt

=
√
αt . . . α1x0 + (

√
αt . . . α2β1 + · · ·+

√
βt)ESAM + (

√
αt . . . α2β1ϵ1 + · · ·+

√
βtϵt)

=
√
ᾱtx0 + φtESAM +

√
1− ᾱtϵ,

(11)
where ᾱt =

∏t
i=1 αi, φt =

√
αt . . . α2β1 + · · ·+

√
βt =

∑t
i=1

√
ᾱt

βi

ᾱi
, and ϵ ∼ N (0, I).

The corresponding conditional distribution is:

q(xt|x0,ESAM) = N (xt;
√
ᾱtx0 + φtESAM, (1− ᾱt)I). (12)

Then similar to the original DDPM, we are interested in the posterior distribution that defines the
reverse diffusion process. With Bayes’ theorem, it can be formulated as:

p(xt−1|xt,x0,ESAM) =
p(xt|xt−1)p(xt−1|x0,ESAM)

p(xt|x0,ESAM)

∝ exp

(
−1

2

((
αt

βt
+

1

1− ᾱt−1

)
x2
t−1 − 2

(√
αt(xt −

√
βtESAM)

βt
+

√
ᾱt−1x0 + φt−1ESAM

1− ᾱt−1

)
xt−1

))
+ C(xt,x0,ESAM),

(13)
where C(xt,x0,ESAM) not involves xt−1. The posterior is also a Gaussian distribution. By using
the following notations:

β̃t = 1/

(
αt

βt
+

1

1− ᾱt−1

)
=

1− ᾱt−1

1− ᾱt
βt, (14)

µ̃t(xt,x0,ESAM) =

(√
αt(xt −

√
βtESAM)

βt
+

√
ᾱt−1x0 + φt−1ESAM

1− ᾱt−1

)
· β̃t

=
1

√
αt

(xt −
βt√
1− ᾱt

(

√
1− ᾱt√
βt

ESAM + ϵ)),

(15)

the posterior distribution can be formulated as:

p(xt−1|xt,x0,ESAM) = N (xt−1; µ̃t(xt,x0,ESAM), β̃tI). (16)
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Given latent variable xt, we want to sample from the posterior distribution to obtain the denoised
latent variable xt−1. This requires the estimation of µ̃t(xt,x0,ESAM), i.e., the estimation of√

1−ᾱt√
βt

ESAM+ϵ. This is achieved by a parameterized denoising network ϵθ(xt, t). The loss function
is:

L(θ) = Et,x0,ϵ[∥
√
1− ᾱt√
βt

ESAM + ϵ− ϵθ(xt, t)∥22]

= Et,x0,ϵ[∥
√
1− ᾱt√
βt

ESAM + ϵ− ϵθ(
√
ᾱtx0 + φtESAM +

√
1− ᾱtϵ, t)∥22].

(17)

This is the loss function in our main paper. Note that the form of µ̃t(xt,x0,ESAM) is same to that
in the original DDPM. Therefore, our framework requires no change of the generating process and
brings no additional inference cost.

B ABLATION STUDY

Non-informative segmentation mask. There are cases where all pixels in a training sample belongs
to the same segmentation area because of the patch-splitting scheme used during training. Two
schemes are considered to cope with such non-informative segmentation mask: directly using the
original mask, or adopting a special mask filled with fixed values, i.e., zeros. Table 6 presents the
comparison results of the above two schemes. Based on the results, it is advantageous to convert
non-informative segmentation masks into an all-zero matrix. Our speculation is that the model may
be confused by various values in non-informative segmentation masks across different samples, if
no reduction is applied to unify such scenarios.

Table 6: Comparison of two schemes for handling non-informative masks. ”Reduce” indicates that
the mask is replaced with a zero-filled matrix when all pixels belong to the same segmentation area.
Otherwise, the original mask is used.

Urban100 DIV2K

PSNR SSIM FID PSNR SSIM FIDReduce
(↑) (↑) (↓) (↑) (↑) (↓)

✗ 25.40 0.7687 4.7149 29.18 0.8064 0.4673
✓ 25.54 0.7721 4.5276 29.34 0.8109 0.3809

Model performance at different super-resolution scales. We conducted experiments on the X2
setting, and the results show that our method has a significant performance improvement over the
baseline on the reference metric, while maintaining the same level on the unreferenced metric.

Table 7: X2 scale results on test sets of several public benchmarks. (↑) and (↓) indicate that a larger
or smaller corresponding score is better, respectively.

Urban100 BSDS100 Manga109 General100 DIV2K

PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FID PSNR SSIM MANIQA FIDMethod
(↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓) (↑) (↑) (↑) (↓)

SRDiff (X2) 30.84 0.9080 0.5265 0.2067 36.87 0.9667 0.4176 0.0679 30.05 0.8541 0.4545 10.2967 36.43 0.9431 0.4852 6.2866 34.05 0.9178 0.3853 0.0292
SAN-Diff (X2) 30.88 0.9095 0.5246 0.2145 37.08 0.9679 0.4192 0.0692 30.36 0.8628 0.4346 10.4271 36.69 0.9458 0.4824 6.4630 34.33 0.9230 0.3832 0.0287

C DISCUSSION

C.1 EXTENSION TO OTHER DIFFUSION TASKS

Our framework has the flexibility to accommodate such tasks seamlessly, as the SAM informa-
tion functions like a plugin without necessitating alterations to the original diffusion framework.
Previous works [1] have demonstrated the efficacy of diffusion-based frameworks across various
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low-level tasks such as inpainting and deblurring. We are confident that our framework can simi-
larly excel in these areas. However, it’s worth noting that our method modifies the diffusion process,
which means that simple fine-tuning of pretrained models using parameter efficient approaches like
LoRA is not suitable. Instead, retraining the model becomes necessary, which poses computational
challenges due to resource constraints. Given these limitations, our paper primarily focuses on the
image SR task. Nonetheless, we are committed to expanding our method to encompass a broader
range of tasks in the future. We eagerly anticipate collaboration with the computer vision community
to further explore these possibilities.

C.2 REALISTIC FINE-GRAINED TEXTURES

In the field of Image SR, models sometimes generate images with seemingly fine-grained textures,
even though the LR images do not contain recognizable textures to the human eye. Defining the cor-
rectness of generated texture in such cases presents a challenge. In addressing this issue, we believe
that exploring how to generate realistic fine-grained textures within our framework by integrating
other kinds of prior information into the model would be a valuable research direction.

C.3 LIMITATION FROM THE ABILITY OF THE SEGMENTATION MODEL

Compared to the original diffusion model without structural guidance, masks generated by existing
SAM models can improve performance, as demonstrated in our experimental results.

However, the performance of our model does depend on the quality of the segmentation masks, as
they capture the structural information of the corresponding image. Our model benefits from SAM’s
fine-grained segmentation capability and its strong generalization ability across diverse objects and
textures in the real world. Nevertheless, the performance of our model is also limited by the ca-
pabilities of the segmentation model itself. For instance, SAM may struggle to identify structures
with low resolution in certain scenes. While the model can partially mitigate this issue by learn-
ing from a large amount of data during training, it is undeniable that higher segmentation precision
(e.g., SAM2) and finer segmentation granularity would significantly enhance the performance of our
approach.

C.4 SOCIETAL IMPACT

Although our work focuses on improving the performance of diffusion models in super-resolution
tasks, the proposed framework can be applied to any task based on diffusion models. This may result
in generative models producing higher-quality and more difficult-to-detect deepfakes.

C.5 SAM INFERENCE RESULT VISUALIZATION

Figure 7: We visualized the results obtained by applying SAM inference to the original images in
Figure 1(B). These results are not involved in the inference process. It is only used as a reference
for analyzing the super-resolution result.
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Figure 8: We compared the metrics MANIQA, FID, PSNR, and Artifact across different datasets. In
this context, higher values of MANIQA and PSNR are better, while lower values of FID and Artifact
are preferred.
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Figure 9: We compared the metrics LPIPS, FID, PSNR, and Artifact across different datasets. In
this context, higher values of PSNR is better, while lower values of LPIPS, FID and Artifact are
preferred.
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