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1 SUPPLEMENTARY MATERIAL

1.1 OVERESTIMATION, INACCURACIES AND INCONSISTENCIES IN ADVERSARIAL TRAINING:
RADIAL

Performance drop P2(p) Performance drop P2(p) Performance drop Pw(p)

Figure 1: Left: Performance drop P2(p) with respect to action modification a2 for RADIAL adver-
sarially trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for BankHeist.
Center: Performance drop P2(p) with respect to action modification a2 for RADIAL adversarially
trained deep neural policies Oikarinen et al. (2021) and vanilla trained policies for RoadRunner.
Right: Performance drop Pw(p) with respect to action modification aw for the RADIAL adversarially
trained deep neural policy and the vanilla trained deep neural policy.

Figure 2: Q-value of the best action a∗ over the states for the RADIAL adversarially trained deep
neural policy proposed by Oikarinen et al. (2021) and vanilla trained deep neural policy.

The left and center column of Figure 1 demonstrate the performance drop P2(p) with respect to action
modification a2 for the RADIAL adversarially trained deep reinforcement learning policy proposed
by Oikarinen et al. (2021) and the vanilla trained deep reinforcement learning policy in BankHeist and
RoadRunner respectively. The right column of the Figure 1 demonstrates the performance drop Pw(p)
with respect to action modification aw for the RADIAL adversarially trained deep reinforcement
learning policy proposed by Oikarinen et al. (2021) and the vanilla trained deep reinforcement
learning policy in RoadRunner. Again the results in Figure 1 demonstrate that the vanilla training
technique has better estimates for state-action values compared to the adversarial training method
RADIAL, quite recently proposed by Oikarinen et al. (2021).

In particular, the curve for P2(p) for RADIAL in RoadRunner lies well above the corresponding
vanilla training curve. This implies that, while taking the second best action has a relatively mild effect
on the vanilla-trained policy, it causes a dramatic loss in performance for RADIAL. Similarly, the
Pw(p) curve for RADIAL in RoadRunner lies above the corresponding curve for the vanilla-trained
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policy. This again implies that the vanilla-trained policy has a better estimate for which action will
lead to lowest rewards than the RADIAL adversarially trained policy. The results reported in Figure
1 again demonstrate the loss of information in the state-action value function due to adversarial
regulation of the temporal difference loss.

Figure 2 demonstrates that the overestimation bias discussed in the main body of our paper is again
an issue for a newer adversarial training technique quite recently published in NeurIPS 2021. Fur-
thermore, exactly as the previous adversarial training methods, RADIAL also learns inaccurate,
inconsistent and overestimated state-action value functions. Hence, these results once more demon-
strate the loss of information in the state-action value function as a novel fundamental trade-off
intrinsic to adversarial training.

1.2 SUPPLEMENTARY RESULTS ON INCONSISTENCIES IN ACTION RANKING IN
ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

As we mentioned in Section 6.1 of the main body of the paper the inaccuracies of the state-action
value function reach a high enough level for the state-of-the-art adversarially trained deep neural
policies such that the ranking of the sub-optimal actions is not correct anymore. This can be seen
in Figure 3 in the P2 and Pw results. Note that P2 represents the performance drop (Definition 4.2)
with action modification a2, and Pw (Definition 4.2) represents the action modification with aw.

Thus, it can be observed from Figure 3 that the performance drop P2 with action modification a2

is higher than the performance drop Pw with action modification aw. In more detail P2 0.18257-
dominates Pw in BankHeist (Definition 4.3). This demonstrates that the state-of-the-art adversarially
trained deep neural policies are not ranking the sub-optimal actions correctly. Note that as we
discussed in the main body of the paper in Section 6.1 this poses a problem for learning optimal
state-action value functions Lin & Zhou (2020); Alshiekh et al. (2018).

Figure 3: Consistency results for ranked actions via performance drop P2 and Pw for the state-of-the-
art adversarially trained deep neural policies.

1.3 OVERESTIMATION OF STATE-ACTION VALUES

In this section we provide supplementary results for the overestimation bias caused by state-of-
the-art adversarially trained deep neural policies. In particular, in Section 6.3 of the main body
of the paper we explained the problem of overestimation of state-action values. Furthermore, in
Section 6.2 we empirically demonstrate that state-of-the-art adversarially trained deep neural policies
overestimate the state-action values. In this section we further provide results on state-action values
of the optimal action for vanilla and adversarially trained deep neural policies when pa2 is equal to
0.1, 0.2 and 0.3 respectively. Note that in the main body of the paper we claim that the reason for
this overestimation lies in the fact that the state-of-the-art deep neural policy adversarial training is
solely an extension of adversarial training in image classification tasks, which is based on penalizing
the wrong “label”. However, this approach does not directly correspond to deep neural policies. The
correct label in image classification can be connected to the optimal action in deep neural policies
in this analogy. However, the wrong label does not correspond to sub-optimal actions. An optimal
Q-function represents the discounted expected cumulative rewards received when taking an action a
in state s. Hence, the sub-optimal actions have much more meaning in collecting rewards than solely
misclassifying an image.
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Figure 4: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.1.

Figure 5: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.2.

Figure 6: State-action values of the best action Q(s, a∗) for vanilla trained deep neural policies and
adversarially trained deep neural policies when pa2 is 0.3.

1.4 SUPPLEMENTARY RESULTS ON ACTION GAP

In Section 6.4 of the main body of our paper we discuss the action gap phenomenon introduced
by Farahmand (2011). Note that the action gap is defined as κ(Q, s) = maxa′∈AQ(s, a′) −
maxa/∈arg maxa′∈AQ(s,a′)Q(s, a). Further, we argue that both the existence of overestimation of state
action values and the higher action gap in state-of-the-art adversarially trained deep neural policies
demonstrates that the hypothesis of Bellemare et al. (2016) cannot be true.

Figure 7: The action gap Q(s, a∗)−Q(s, a2) for the state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.
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In this section we provide supplementary results on the action gap without the normalization
Q(s, a)/

∑
a |Q(s, a)|. In particular, Figure 7, Figure 8 and Figure 9 show the action gap for

the vanilla trained deep neural policies and state-of-the-art adversarial deep neural policies when pa2
is 0, 0.1 and 0.2 respectively. Hence, the action gap for adversarially trained deep neural policies is
higher than for vanilla trained deep neural policies.

Figure 8: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.1.

Figure 9: The action gap Q(s, a∗)−Q(s, a2) for state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies for pa2 is 0.2.

1.5 SUPPLEMENTARY RESULTS ON ACTION GAP WITH NORMALIZED STATE-ACTION VALUES

In the remainder of this section we provide additional results on normalized state-action values for
adversarially trained and vanilla trained deep neural policies.

Figure 10: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.01. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.
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In more detail, Figure 10 and Figure 11 show the normalized state-action values of the optimal action,
second best action a2 and worst action aw for vanilla trained deep neural policies and adversarially
trained deep neural policies when pa2 is 0.01 and 0.1 respectively. Thus, Figure 10 and Figure 11
demonstrate that the action gap is higher for the state-of-the-art adversarially trained deep neural
policies compared to vanilla trained deep neural policies. Note that the state-action values in Figure
10 and Figure 11 are normalized Q-values (i.e. normalized via Q(s, a)/

∑
a |Q(s, a)|).

Figure 11: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states when pa2 is 0.1. Row1: Vanilla trained deep neural policies. Row2: State-of-
the-art adversarially trained deep neural policies.

1.6 COMPLETE PROOF OF THEOREM 3.4.

Theorem 1.1. There is an MDP with linearly parameterized state-action values, optimal state-action
value parameters θ∗, and a parameter vector θ such that: L(θ) < L(θ∗), and the parameter vector θ
overestimates the optimal state-action value and re-orders the sub-optimal ones.

Proof. Let M be the MDP in the setting of Proposition 3.3 and define θ as in Proposition 3.3 by
setting θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 , and θ3 = (1− λ)θ∗3 . The overall regularized loss has the
form

L(θ) = T D(θ) +R(θ).

Where T D(θ) is the standard temporal difference loss. For the MDP M and parameters θ we can
explicitly calculate this loss:

T D(θ) =
1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k
〈θk, s3−i〉 − 〈θj , si〉)2

≤ 1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k

(1 + λ)〈θ∗k, s3−i〉 − (1− λ)〈θ∗j , si〉)2

=
1

6

2∑
i=1

3∑
j=1

(r(si, aj) + γmax
k
〈θ∗k, s3−i〉 − 〈θ∗j , si〉+ λγmax

k
〈θ∗k, s3−i〉+ λ〈θ∗j , si〉)2

=
1

6

2∑
i=1

3∑
j=1

(λγmax
k
〈θ∗k, s3−i〉+ λ〈θ∗j , si〉)2

where the final equality follows from the optimality of the paramters θ∗. Using the fact that 〈θ∗j , si〉 ≤
1 for all i, j we conclude that

T D(θ) ≤ (γλ+ λ)2 < 4λ2.
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So for λ < 1
4 we have by Proposition 3.3

T D(θ) ≤ 4λ2 < λ < R(θ∗)−R(θ).

Therefore L(θ) < L(θ∗). Clearly, θ overestimates the optimal state-action values in both s1 and s2

by a factor of 1 + λ. Furthermore, setting λ such that 1+λ
1−λ > δ

η implies that a3 will be the third
ranked action in both states s1 and s2 i.e. that θ leads to re-ordering of the suboptimal actions.

1.7 THE FUNDAMENTAL TRADE-OFF BETWEEN ACCURATE ESTIMATION OF Q-VALUES AND
ADVERSARIAL ROBUSTNESS

In this section we will prove that there is a fundamental trade-off between accurate estimation of
Q-values and adversarial robustness. In particular, note that the goal of adversarial training is to
ensure that a perturbation of magnitude ε to a state s will not result in a change to the action receiving
the highest Q-value. Thus, a state-action value function Qθ(s, a) is ε-robust if, for all s′ such that
‖s− s′‖2 < ε,

argmaxaQ(s, a) = argmaxaQ(s′, a).

We will next construct an example in the setting of MDPs with linear function approximation where
the optimal state-action value function Q∗ is not robust, but there is a robust state-action value
function Qθ that overestimates the optimal state-action values.

Theorem 1.2. Let ε > 0. In the linear function approximation setting, there is an MDP such that
all linear-state action value functions matching the optimal state-action values Q∗ are not ε-robust.
Furthermore, there is a linear state-action value function Qθ that is ε-robust, but overestimates the
optimal state-action values while maintaining the correct optimal action.

Let there be two states s1 and s2 such that ‖s1 − s2‖2 = 1. Further suppose that the optimal state-
action values satisfy Q∗(s1, a1) = ε/10, Q∗(s1, a2) = 0, Q∗(s2, a1) = 0.8, and Q∗(s2, a2) = 1.0.
Next let Qθ(s, a) be any linearly parameterized state-action value function that agrees with Q∗(s, a)
on the states s1 and s2. Consider the one-dimensional functions f1(x) = Qθ((1−x) · s1 +x · s2, a1)
and f2(x) = Qθ((1−x) ·s1 +x ·s2, a2) which are the restriction ofQθ(s, a) to the line segment from
s1 to s2. By linearity of Qθ we also have that both f1 and f2 are linear. Furthermore, since Qθ agrees
with Q∗ at s1 and s2, we know the values of both functions at two points i.e. f1(0) = Q∗(s1, a1),
f1(1) = Q∗(s2, a1), f2(0) = Q∗(s1, a2), and f2(1) = Q∗(s2, a2). As f1 and f2 are linear functions
on R, the values at two points are sufficient to uniquely determine the functions. In particular we have

f1(x) = (0.8− ε/10)x+ ε/10

f2(x) = x

Note that these two lines intersect at the point x̂ = ε
2+ε . Let ŝ = (1−x̂)·s1+x̂·s2. Since the lines of f1

and f2 intersect at x̂, we conclude that Qθ(ŝ, a2) ≥ Qθ(ŝ, a1). However, Qθ(s1, a1) > Qθ(s1, a2).
Furthermore, ‖s1 − ŝ‖ = ε

2+ε < ε. Thus, Qθ is not ε-robust.

However, if we instead choose new parameters θ′ for the state-action value function so that
Qθ′(s1, a1) = 0.8 and Qθ′(s1, a2) = 0.7 one can easily check that Qθ′ is ε-robust for all ε < 0.1.
Furthermore, observe that Qθ′ gives the correct ranking of actions in state s1, but overestimates the
optimal state-action value by a factor of 8/ε.

1.8 FURTHER EXPERIMENTS ON THE LINEARLY PARAMETRIZED MDP

To complement the theoretical results, we numerically optimized both the regularized and un-
regularized loss function for the example MDP with linearly parameterized state-action values
constructed in Section 3. Figure 12 demonstrates the state-action value function for each of the states
the best action a∗, second best action a2 and worst action aw for the actions a1, a2, a3. Note that
the numerical optimization of the un-regularized (i.e. vanilla training) loss converges to the true
optimal state-action values computed analytically in Section 3. Thus, the results reported in Figure
12 further demonstrate that the addition of the certified training regularizer leads to overestimation of
the optimal state-action value function, and re-ordering of the suboptimal actions.
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Figure 12: State-action values for the best action a∗, second best action a2 and worst action aw for
the adversarially trained and vanilla trained deep neural policy loss function for the example MDP
with linearly parameterized state-action values constructed in Section 3.

1.9 WHAT DOES IT ENTAIL TO LEARN INACCURATE, OVERESTIMATED AND INCONSONANT
STATE-ACTION VALUES?

The fact that our paper explicitly theoretically and empirically demonstrates that certified adversarially
trained policies learn inconsonant and inaccurate state-action values further implies significant
concerns on the alignment with human decisions. The claim made in our paper regarding alignment
with human decisions implies that human decision-making can allocate correct values for the sub-
optimal actions. For concrete evidence on the human decision making process and the fact that
humans have a better than random perception of actions that they do not take, please see (Wunderlich
et al., 2009; Phillips et al., 2019; Hoeck et al., 2015).

Also further note that, as also initially described in the main body of our paper in Section 2.3, recent
work demonstrated vulnerabilities of certified robust reinforcement learning policies from black-box
adversarial attacks (Korkmaz, 2022) to natural attacks that revealed the generalization problems
of adversarially trained deep reinforcement learning policies when compared to straightforward
reinforcement learning (Korkmaz). While these studies highlight the safety and security problems
in certified adversarially trained policies, our paper dives into and explains the particular reasons
why adversarial training experiences these safety problems. We believe it is crucial to understand
the root causes of these problems regarding AI-safety, because releasing models with guaranteed
safety certifications with undiscovered non-robustness and vulnerabilities will in fact have serious
consequences in the real world (Post, 2023; Guardian, 2022; Times, 2023).

1.10 IMPLEMENTATION DETAILS

Note that to be able to provide a fair comparison State-Adversarial Double Deep Q-Network and
Double Deep Q-Network are the exact same implementations described in the SA-DDQN paper
described in Section 3 and Wang et al. (2016) respectively. In more detail for Double Deep Q-
Network the batch size is 32, discount factor γ is 0.99, buffer size 50000, learning rate is 5× 10−5

for the Adam optimizer, and random action probability is 0.02. Note that experience replay Schaul
et al. (2016) is utilized. More details can be found in Dhariwal et al. (2017) and Wang et al.
(2016) on Double Deep Q-Networks. The state-of-the-art adversarial deep neural policy is the exact
same implementation as in the SA-DDQN paper. Adversarial deep neural policies are trained via
experience replay as well Schaul et al. (2016). Note that State-Adversarial Double Deep Q-Network
is trained via the regularizerR(θ) =

∑
s

(
maxs̄∈Dε(s) maxa 6=a∗(s)Qθ(s̄, a)−Qθ(s̄, a∗(s))

)
where

a∗(s) = arg maxaQ(s, a) inside ε-ball Dε(s) = {s̄ : ‖s − s̄‖∞ ≤ ε}. Hence, this ε is set to
1/255. Note that the regularization is added to the temporal difference loss in the Q-update. The
regularization parameter of state-adversarial is κ ∈ {0.005, 0.01, 0.02}. The initial 1.5× 106 frames
are trained without regularization.
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