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A DERIVATIONS OF ABC AND INCREMENTAL POSTERIORS OF HMM

A.1 JOINT DISTRIBUTION FOR HMM USING ABC

NLFI methods are designed to efficiently sample from the marginal distribution p(θ|y). In ABC
although the desired outcome often is the marginal distribution, however it is easy to show that for a
latent variable model, such as an implicit HMM, ABC does indeed target an approximation of the
joint distribution p(θ,x|y).
In ABC we rely upon simulation of a pseudo-data ŷ, when the likelihood p(y|θ) is intractable. The
operating principle of any standard ABC algorithm, based on rejection sampling (Pritchard et al.,
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1999), MCMC (Marjoram et al., 2003) or SMC (Toni et al., 2009; Del Moral et al., 2012), is to jointly
sample the parameters θ and the pseudo-data ŷ from their posterior density (Marin et al., 2012)

pϵ(θ, ŷ|y) =
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ|θ)p(θ)∫
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ|θ)p(θ)dθ

, (16)

where 1ϵ(·) is the indicator function, d(·) is a chosen distance metric, ϵ > 0 and we consider the
summary s(·) to be sufficient. The desired marginal posterior then follows as

pϵ(θ|y) =
∫

pϵ(θ, ŷ|y)dŷ. (17)

Note that the pseudo-data distribution p(ŷ|θ) appearing in equation 16 is not required analytically in
any of the ABC algorithms. This distribution is essentially the generative model under consideration.

For the HMM such a pseudo data is sampled from the distribution

p(ŷ,x|θ) =

(
M−1∏
t=0

g(ŷt|Xt,θ)

)(
M−1∏
t=1

f(Xt|Xt1 ,θ)

)
, (18)

where f(·), g(·) and thus p(ŷ,x|θ) need not be analytically tractable, just a sample ŷ of the pseudo-
data from this distribution is required. Sampling from this distribution is essentially the process
of forward sampling from the generative model of the HMM given by equation 1 (see main text).
Considering ŷ alone from the pair (ŷ,x) we have a sample of the pseudo-data drawn from its marginal
p(ŷ|θ). Thus, when ABC is applied to the HMM in equation 1 the joint density in equation 16 is
replaced by a density over the triplet (θ,x, ŷ) given by

pϵ(θ,x, ŷ|y) =
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ,x|θ)p(θ)∫
1ϵ {d(s(ŷ), s(y) < ϵ)} p(ŷ,x|θ)p(θ)dθ

, (19)

from which samples of the pair (θ,x) is distributed from pϵ(θ,x|y). And the corresponding ABC
marginal posterior is given by

pϵ(θ|y) =
∫

pϵ(θ,x, ŷ|y)dŷdx. (20)

From equation 19 it is evident that any ABC algorithm applied to the HMM will target the joint
distribution pϵ(θ,x|y). However, this distribution will only be an approximation to the true posterior
p(θ,x|y), since ϵ ̸= 0 (considering s(·) to be sufficient). Note that since x is sampled from its prior
thus if ϵ is set to zero (or a small value) then a practically infeasible amount of simulations is required
to produce an ABC posterior p(θ,x|y) that can approximate closely the true posterior.

A.2 DERIVING THE INCREMENTAL POSTERIOR

Consider the posterior distribution of the sample path and the parameters (including the initial values)
conditioned on the observations. We can write this density, upto a normalising constant, as follows

p(XM−1, . . . ,X1,θ|y) ∝

p(θ)

(
M−1∏
t=0

g(yt|Xt,θ)

)(
M−1∏
t=1

f(Xt|Xt−1,θ)

)
.

(21)

We can obtain from this the density of XM−1 conditioned on all other random variables by only
retaining the terms that involve it. So we have this conditional density, upto a normalising constant,
given by

p(XM−1|XM−2, . . . ,X1,θ,y) ∝ g(yM−1|XM−1,θ)f(XM−1|XM−2,θ)p(θ), (22)

which is simply the density p(XM−1|XM−2,yM−1,θ).

We can also write the conditional distribution of any intermediate sample point Xt as follows:
p(Xt|XM−1, . . . ,Xt+1,Xt−1, . . . ,X1,θ,y) ∝

p(θ)

(
M−1∏
t=0

g(yt|Xt,θ)

)(
M−1∏
i=1

f(Xt|Xt−1,θ)

)
∝

f(Xt+1|Xt,θ)f(Xt|Xt−1,θ)g(yt|Xt,θ)p(θ),

(23)

which is simply the density p(Xt|Xt−1,Xt+1,yt,θ).
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B ABC-SMC IMPLEMENTATION DETAILS

We applied the particular version of ABC-SMC algorithm, that was proposed in Toni et al. (2009),
using 1000 particles. Furthermore, we used an adaptive tolerance sequence where the tolerance ϵτ at
the τ -th step of the algorithm is selected as the 0.1-quantile of the distances of the accepted particles
in the τ − 1-th step. Moreover, we chose the perturbation kernel of ABC-SMC (see Toni et al. (2009))
as a multivariate Gaussian whose covariance is based on a k-nearest neighbours strategy, with k = 15,
proposed in Filippi et al. (2013). We terminated the ABC-SMC algorithm when a predetermined
number of simulations has been carried out. If that number is exceeded within the τ -th step, we then
considered the weighted particle system at the τ − 1-th step as the desired ABC posterior.

C MODEL DETAILS

C.1 STOCHASTIC LOTKA-VOLTERRA MODEL

The stochastic Lotka-Volterra model, a stochastic kinetic system, can be defined through the following
list of reactions:

R1 : Xprey c1−→ 2Xprey

R2 : Xprey +Xpred c2−→ 2Xpred

R3 : Xpred c2−→ ∅,

(24)

where we denote by Xprey, Xpred the prey and predator species respectively. We further denote the
corresponding numbers of the species as the system state Xt = (Xprey

t , Xpred
t ). The hazard vector

for this system is h(Xt, c) =
(
c1X

prey
t , c2X

prey
t Xpred

t , c3X
pred
t

)
. The stoichiometry matrix for

this system is given by

S =

(
1 −1 0
0 1 −1

)
. (25)

We set the initial values as X0 = (100, 100) and consider them known.

A MJP describing a stochastic kinetic system, like the one above or the PKY model, is characterised
by the transition probability p(t0,X0, t,Xt) := p(X, t) for the process arriving at state Xt at time t
conditioned on an initial state X0 at time t0. This is basically the density f(·) in equation 1 (main
text), in continuous time. Now this transition probability is given by the solution of the following
differential equation:

∂p(X, t)

∂t
=

v∑
i=1

= {hi(X − Si, ci)p(X − Si, t)− hi(X, ci)p(X, t)}, (26)

known as the chemical master equation (Golightly & Gillespie, 2013, and the references therein).
The CME only admits an analytical solution for a handful of simple models (not for the ones we have
used: LV and PKY). Thus f(·) in equation 1 (main text) cannot be evaluated. However, the seminal
work in Gillespie (1977) developed an algorithm, commonly referred to as the stochastic simulation
algorithm, that can simulate X exactly.

We generated simulated trajectories from this model using the stochastic simulation algorithm and
added Gaussian noise corruption, with variance 100, at 50 time points. We used the following
generative values of the parameters θ = (0.3, 0.0025, 0.5) to ensure that the model follows an
oscillatory regime. Moreover, following previous studies we considered the initial values to be known
and set at Xt0 = (100, 100). For running ABC-SMC and all the NLFI methods we downsampled
the generated time series by a factor of 5 to create a summary statistic s(y) ∈ R20 which is used in
place of the full data y. For further details of the model and simulations see Appendix C. We used the
following set of prior distributions: c1 ∼ Beta(1, 2), c2 × 103 ∼ U(15, 50) and c3 ∼ Beta(2, 1).

C.2 PROKARYOTIC AUTOREGULATORY GENE NETWORK

We considered the autoregulatory model used to benchmark the particle MCMC method in Golightly
& Wilkinson (2011). This is a simplified model that describes a mechanism for autoregulation
in prokaryotes based on a negative feedback mechanism of dimers of a protein coded by a gene
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repressing its own transcription. Essentially this is a stochastic kinetic model described by the
following set of reactions:

R1 : DNA+ P2 → DNA · P2

R2 : DNA · P2 → DNA+ P2

R3 : DNA → DNA+RNA

R4 : RNA → RNA+ P

R5 : 2P → P2

R6 : P2 → 2P

R7 : RNA → ∅
R8 : P → ∅.

(27)

We order the variables as X = (RNA,P, P2, DNA,DNA · P2) leading to a stoichiometry matrix
for the system:

S =


0 0 1 0 0 0 −1 0
0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0

 , (28)

and the associated hazard function is given by

h(X, c) = (c1DNA×P2, c2DNA ·P2, c3DNA, c4RNA, c5P (P − 1)/2, c6P2, c7RNA, c8P ).
(29)

This model has one conservation law (Golightly & Wilkinson, 2011)

DNA · P2 +DNA = k, (30)

where k is the number of copies of this gene in the genome. Following Golightly & Wilkinson
(2011) we use this relation to to remove DNA · P2 from the model, replacing any occurrences
of DNA · P2 in rate laws with k − DNA. This leads to a reduced full-rank model with species
X = (RNA,P, P2, DNA), stoichiometry matrix:

S =

 0 0 1 0 0 0 −1 0
0 0 1 −2 2 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

 , (31)

and associated hazard function

h(X, c) = (c1DNA×P2, c2(k−DNA), c3DNA, c4RNA, c5P (P −1)/2, c6P2, c7RNA, c8P ).
(32)

We consider k to be known and set to 10. Again we generated simulated trajectories from this model
using the stochastic simulation algorithm.

Following Golightly & Wilkinson (2011), we considered the observations as a linear combination of
the proteins P, P2 as follows:

yt = Pt + 2P2t + ϵt, (33)

where ϵ is assumed to be iid Gaussian noise. We generated 100 simulated observations from this model
at times t = [0 : .5 : 50] with generative rate constants θ = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1) and
ϵ ∼ N (0, 4). In this case also we consider the initial values Xt0 to be known and set to (8, 8, 8, 5).
We downsampled the simulated data by a factor of five to obtain the summary statistics s(y) ∈ R20.
Furthermore, we placed a Gamma(2, 3) prior on all the rate constants.

C.3 THE SIR COMPARTMENTAL MODEL

The stochastic version of the SIR model, for a population of Npop people, with states variables
Xt = (St, It) can be defined using an Itô SDE:

dXt = a(Xt,θ)dt+
√
B(Xt,θ)dWt, (34)
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driven by a two-dimensional Brownian motion Wt with the following drift and diffusion terms (see
Fuchs (2013) for derivation):

a(Xt,θ) =

[
−βStIt

βStIt − γIt

]
,

B(Xt,θ) =
1

Npop

[
βStIt −βStIt
−βStIt βStIt + γIt

]
,

(35)

where the β and γ are the unknown rate of infection and recovery. We generated simulated trajectories
by numerically solving this SDE using the Euler-Maruyama solver (Kloeden et al., 2012).

We simulated the SDE on a time interval t = [0 : 0.2, 14], with generative values of θ = (1.7, 0.6, 1−
0.05), to generate the state trajectory. We consider the observations to be the prevalence of the latent
infectious state It observed through a Poisson counting process. Thus, we have the observations as
p(yt|β, γ, s0) = Poisson(It), and placed the following priors: β ∼ U(0.5, 2), γ ∼ U(0.1, 1) and
1− s0 ∼ U(0.001, ). We then downsampled the observation time series and retain 14 values as the
summary statistics s(y) ∈ R14.

D PLOTS OF PARAMETER POSTERIORS

In the subsequent plots Figure 4, 5 and 6 we compare the parameter estimates of the three models
between NLFI based methods, SNLE/SRE, and ABC-SMC. Here we have considered the estimates
for one of the 10 different simulated datasets. Note that the parameter estimates are reasonably close
to each other and thus the estimate of the posterior predictive distribution is largely influenced by the
estimates of the hidden states.

D.1 LOTKA-VOLTERRA
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Figure 4: Posterior marginal densities of the parameters of the Lotka-Volterra model, inferred from
one of the 10 datasets.

D.2 SIR MODEL

D.3 PROKARYOTIC AUTOREGULATORY GENE NETWORK

E EVALUATIONS WITHOUT USING SUMMARY STATISTICS

All our evaluations on the three biological HMMs were based on the use of hand-crafted summary
statistics. Here we repeat the analysis for the PKY model without using summary statistics. For
ABC-SMC this means calculating a distance between the full observed data (considering all the
time points) and the simulated one. Note that the particular ABC-SMC algorithm that we have used
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Figure 5: Posterior marginal densities of the parameters of the SIR model, inferred from one of the
10 datasets.
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Figure 6: Posterior marginal densities of the parameters of the Prokaryotic autoregulatory model,
inferred from one of the 10 datasets.

(Toni et al., 2009) was originally designed to work with full data. For obtaining the hidden states
and subsequently the posterior predictive distribution using SMC, IDE and PrDyn we have used an
estimate of θ obtained using SRE trained on the full dataset. For this we extended the classifier neural
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Table 2: The sum of pathwise MMD (smaller the better, given by equation 15) for the PKY model,
when SRE and ABC-SMC are fitted to full data. Here the These MMDs are summarised by the
mean ± standard deviation across 10 different simulated datasests.

COMPARISON OF THE ESTIMATE OF p(yr|y) WITH SMC (BASELINE)

(WHEN p(θ|y) FOR SMC, IDE AND PRDYN OBTAINED USING SRE)

MODEL IDE PRDYN ABC-SMC

PKY 4.4506 ± 1.4192 17.0275± 1.7681 13.9841± 1.6488

network with a 2-layer LSTM, trained simultaneously with the classifier, to embed the data into a
smaller dimensional summary statistics. We used a LSTM with a 10-dimensional hidden state and
fed the hidden state, corresponding to the last time-step, into a fully connected layer consisting 8
hidden units and a ReLU activation function. Thus, we have a 8-dimensional summary statistics that
is learnt on the fly.

(a) (b)

Figure 7: (a) Posterior distributions of the latent sample path x summarised by the mean (solid lines)
and 95% credible intervals (broken lines), for the Prokaryotic autoregulator. The ABC-SMC is
using the full dataset. (b) Accuracy of parameter estimates for the Prokaryotic autoregulator model,
evaluated using the log probability of the true generative parameter vector, summarised across the 10
datasets. SRE and ABC-SMC is using the full dataset.

In Table 2 we furnish the pathwise MMDs. We again notice that the IDE producing an estimate of
the posterior predictive distribution that is closest to the baseline (SMC’s estimate). Additionally,
we notice a slight improvement of ABC-SMC’s performance in estimating the hidden states (see
also Figure 7 (a) where we have plotted the estimated hidden states for one dataset), however the
accuracy of the parameters estimates (summarised in Figure 7 (b)) does not improve significantly.
Note that the accuracy of the parameter estimates did not improve significantly for the SRE as well.
Despite having access to the full data the ABC-SMC’s proposal mechanism for the hidden states is
still too inefficient to significantly improve the accuracy of reconstructing the hidden states within a
practically feasible simulation budget.

F EVALUATIONS USING A NONLINEAR GAUSSIAN STATE-SPACE MODEL

Here we want to evaluate how well the IDE can approximate the true incremental posterior (True-
IP) p(Xt|Xt−1,yt,θ). This density is tractable for Gaussian state-space models. Thus, for this
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evaluation we have chosen the following state-space model:

Xt ∼ N (Aγ(Xt−1), σ
2
xI) t ≥ 1

yt ∼ N (BXt, σ
2
yI),

(36)

where γ(X) = sin(exp(Xt−1)), applied elementwise, A = IK×K , B = 2A and X0 = 0. We
consider the dimensionailty of Xt and yt to be the same, K. Moreover, we consider a relatively
high-dimensional state-space by setting K = 25. We also consider the parameters θ = (σx, σy,X0)
to be fixed and known. Thus, we only focus on this distribution p(Xt|Xt−1,yt). For the model
above this incremental posterior distribution is known analytically and happens to be a Gaussian:

p(Xt|Xt−1,yt) = N (Xt;m,Σ), (37)

where the mean and the covariance are given by

Σ−1 = Σ−1
x +BΣ−1

y B

m = Σ(Σ−1
x γ(Xt−1) +BΣ−1

y yt),
(38)

where Σx = σ2
xI and Σy = σ2

yI.

Our goal is to primarily compare the proposed IDE with the True-IP. However, for completeness
we also considered SMC for comparison. For this comparison we generated two sets of data
corresponding to M = 50 and M = 500 time points. We used σx = σy = 0.5 to generate the
simulated data. We then estimated the hidden states Xt using the IDE, the True-IP and SMC (that
uses the true-IP as the importance proposal). For the SMC we used 100 particles and correspondingly
we generated 100 samples from the True-IP and IDE. For the IDE’s MAF we have used J = 3
transformations and trained it on N = 500 samples generated from the model. We found such a
small sample size to be enough for learning a Gaussian density.

We compared the performance of all the methods using two metrics: (i) mean squared error (MSE)
and (ii) 90% empirical coverage (EC). We computed these metric per dimension and summarised
across them. In Figure 8 we summarise the metrics for the dataset consisting of M = 50 time points
and in Figure 9 we do the same for the dataset consisting of M = 500 time points.

(a) (b)

Figure 8: Comparison between True-IP, IDE and SMC in recovering the hidden states of a 25-
dimensional nonlinear Gaussian state-space model. Performance assessed in terms of (a) MSE and
(b) EC. The above plots show the performance metrics corresponding to a dataset with M = 50 time
points.

It is evident from both Figure 8 and 9 that the IDE produces a very close approximation of the True-IP,
in a high-dimensional model and for a long time series. Interestingly the SMC performs slightly
worse in terms of the coverage, which can be partially attributed to the difficulty of scaling importance
sampling to higher dimensions. Increasing the number of particles improves both the metric, but
usage of more particles require more model simulation in the context of our work. However, there are
various strategies that can be adopted to improve the SMC’s performance such as using an auxiliary
particle-filter (Pitt & Shephard, 1999) or using MCMC within the SMC (Gilks & Berzuini, 2001),
which we did not explore here.
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(a) (b)

Figure 9: Comparison between True-IP, IDE and SMC in recovering the hidden states of a 25-
dimensional nonlinear Gaussian state-space model. Performance assessed in terms of (a) MSE and
(b) EC. The above plots show the performance metrics corresponding to a dataset with M = 500
time points.

G JOINT INFERENCE OF THE SAMPLE PATH AND PARAMETERS USING A MAF

We have argued before (see the last paragraph of section 3) that NLFI methods cannot be used directly
for inferring the joint posterior p(x,θ|y). Next, we have shown results for an experiment, using
the LV model, that supports our argument. Note that due to the unavailability of p(x,θ), the only
strategy that can be applied is of using a normalizing-flow to directly emulate the joint posterior
p(x,θ|y) ≈ qψ(x,θ|y). We denote this approach as neural posterior estimation (NPE). We used
106 simulations from the model to train a MAF representing qψ(x,θ|y). Note that for the proposed
IDE approach we used 35× 103 (including inference of θ). We retained the same architecture and
optimisation settings that we used in other experiments. Once trained, we used one of the simulated
dataset for the LV model to carry out inference. This is the same dataset corresponding to the plot
shown in Figure 3(a).

In Figure 10 we plot components of the hidden state estimated by SMC, IDE, ABC-SMC and NPE.
Note that SMC, IDE are using same samples of θ estimated using SNLE. All methods use 500
samples from the posteriors of θ,x. In Figure 11 we show the corresponding parameter estimates.
Although NPE estimates the hidden state better than ABC-SMC, its estimation quality drops at those
time points where the concentration reaches a peak before decreasing again. This drop is much more
pronounced near the last peak. The parameter estimates are however significantly different than all
the other methods. From which it can be concluded that NPE performs worse than even ABC-SMC
to produce the posterior of the parameters when targeting x,θ jointly.
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(a) (b)

Figure 10: Comparison between methods that estimate jointly the parameters and hidden states of a
HMM (in this case the Lotka-Volterra model), such as ABC-SMC & NPE, with those that estimate
these quantities separately, such as SMC & IDE. The plot above shows the posteriors of the hidden
states summarised by the mean (solid lines) and 95% credible intervals (broken lines). The proposed
method IDE reduces the simulation burden by a large factor in comparison to NPE. Note that even
with a much larger simulation budget NPE fails to correctly estimate the hidden states as well as the
parameters (see Figure 11).
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Figure 11: Posterior marginal densities of the parameters of the Lotka-Volterra model obtained
using SNLE, SRE (both targeting the marginal p(θ|y)) with NPE, ABC-SMC (both targeting the
joint p(x,θ|y)). NPE failed to estimate θ correctly.
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