
Appendix

This is the appendix of the paper ”Quantification of Uncertainty with Adversarial Models”. It
consists of three sections. In view of the increasing influence of contemporary machine learning
research on the broader public, section A gives a societal impact statement. Following to this,
section B gives details of our theoretical results, foremost about the measure of uncertainty used
throughout our work. Furthermore, Mixture Importance Sampling for variance reduction is discussed.
Finally, section C gives details about the experiments presented in the main paper, as well as further
experiments.
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A Societal Impact Statement

In this work, we have focused on improving the predictive uncertainty estimation for machine
learning models, specifically deep learning models. Our primary goal is to enhance the robustness
and reliability of these predictions, which we believe have several positive societal impacts.

1. Improved decision-making: By providing more accurate predictive uncertainty estimates,
we enable a broad range of stakeholders to make more informed decisions. This could have
implications across various sectors, including healthcare, finance, and autonomous vehicles,
where decision-making based on machine learning predictions can directly affect human
lives and economic stability.

2. Increased trust in machine learning systems: By enhancing the reliability of machine
learning models, our work may also contribute to increased public trust in these systems.
This could foster greater acceptance and integration of machine learning technologies in
everyday life, driving societal advancement.

3. Promotion of responsible machine learning: Accurate uncertainty estimation is crucial
for the responsible deployment of machine learning systems. By advancing this area, our
work promotes the use of those methods in an ethical, transparent, and accountable manner.

While we anticipate predominantly positive impacts, it is important to acknowledge potential negative
impacts or challenges.

1. Misinterpretation of uncertainty: Even with improved uncertainty estimates, there is a
risk that these might be misinterpreted or misused, potentially leading to incorrect decisions
or unintended consequences. It is vital to couple advancements in this field with improved
education and awareness around the interpretation of uncertainty in AI systems.

2. Increased reliance on machine learning systems: While increased trust in machine
learning systems is beneficial, there is a risk it could lead to over-reliance on these systems,
potentially resulting in reduced human oversight or critical thinking. It’s important that
robustness and reliability improvements don’t result in blind trust.

3. Inequitable distribution of benefits: As with any technological advancement, there is a risk
that the benefits might not be evenly distributed, potentially exacerbating existing societal
inequalities. We urge policymakers and practitioners to consider this when implementing
our findings.

In conclusion, while our work aims to make significant positive contributions to society, we believe it
is essential to consider these potential negative impacts and take steps to mitigate them proactively.
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B Theoretical Results

B.1 Measuring Predictive Uncertainty

In this section, we first discuss the usage of the entropy and the cross-entropy as measures of predictive
uncertainty. Following this, we introduce the two settings (a) and (b) (see Sec. 2) in detail for the
predictive distributions of probabilistic models in classification and regression. Finally, we discuss
Mixture Importance Sampling for variance reduction of the uncertainty estimator.

B.1.1 Entropy and Cross-Entropy as Measures of Predictive Uncertainty

Shannon and Elwood [1948] defines the entropy H[p] = −
∑N

i=1 pi log pi as a measure of the amount
of uncertainty of a discrete probability distribution p = (p1, . . . , pN ) and states that it measures how
much ”choice” is involved in the selection of a class i. See also Jaynes [1957], Cover and Thomas
[2006] for an elaboration on this topic. The value − log pi has been called "surprisal" [Tribus, 1961]
(page 64, Subsection 2.9.1) and has been used in computational linguistics [Hale, 2001]. Hence, the
entropy is the expected or mean surprisal. Instead of ”surprisal” also the terms ”information content”,
”self-information”, or ”Shannon information” are used.

The cross-entropy CE[p , q] = −
∑N

i=1 pi log qi between two discrete probability distributions
p = (p1, . . . , pN ) and q = (q1, . . . , qN ) measures the expectation of the surprisal of q under distri-
bution p. Like the entropy, the cross-entropy is a mean of surprisals, therefore can be considered as a
measure to quantify uncertainty. The higher surprisals are on average, the higher the uncertainty. The
cross-entropy has increased uncertainty compared to the entropy since more surprising events are
expected when selecting events via p instead of q. Only if those distributions coincide, there is no ad-
ditional surprisal and the cross-entropy is equal to the entropy of the distributions. The cross-entropy
depends on the uncertainty of the two distributions and how different they are. In particular, high
surprisal of qi and low surprisal of pi strongly increase the cross-entropy since unexpected events are
more frequent, that is, we are more often surprised. Thus, the cross-entropy does not only measure
the uncertainty under distribution p, but also the difference of the distributions. The average surprisal
via the cross-entropy depends on the uncertainty of p and the difference between p and q:

CE[p , q] = −
N∑
i=1

pi log qi (9)

= −
N∑
i=1

pi log pi +

N∑
i=1

pi log
pi
qi

= H[p] + DKL(p ∥ q) ,
where the Kullback-Leibler divergence DKL(· ∥ ·) is

DKL(p ∥ q) =

N∑
i=1

pi log
pi
qi

. (10)

The Kullback-Leibler divergence measures the difference in the distributions via their average
difference of surprisals. Furthermore, it measures the decrease in uncertainty when shifting from the
estimate p to the true q [Seidenfeld, 1986, Adler et al., 2008].

Therefore, the cross-entropy can serve to measure the total uncertainty, where the entropy is used
as aleatoric uncertainty and the difference of distributions is used as the epistemic uncertainty. We
assume that q is the true distribution that is estimated by the distribution p. We quantify the total
uncertainty of p as the sum of the entropy of p (aleatoric uncertainty) and the Kullback-Leibler
divergence to q (epistemic uncertainty). In accordance with Apostolakis [1991] and Helton [1997], the
aleatoric uncertainty measures the stochasticity of sampling from p, while the epistemic uncertainty
measures the deviation of the parameters p from the true parameters q.

In the context of quantifying uncertainty through probability distributions, other measures such as the
variance have been proposed [Zidek and vanEeden, 2003]. For uncertainty estimation in the context
of deep learning systems, e.g. Gal [2016], Kendall and Gal [2017], Depeweg et al. [2018] proposed
to use the variance of the BMA predictive distribution as a measure of uncertainty. Entropy and
variance capture different notions of uncertainty and investigating measures based on the variance of
the predictive distribution is an interesting avenue for future work.
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B.1.2 Classification

Setting (a): Expected uncertainty when selecting a model. We assume to have training data D
and an input x. We want to know the uncertainty in predicting a class y from x when we first choose
a model w̃ based on the posterior p(w̃ | D) an then use the chosen model w̃ to choose a class for
input x according to the predictive distribution p(y | x, w̃). The uncertainty in predicting the class
arises from choosing a model (epistemic) and from choosing a class using this probabilistic model
(aleatoric).

Through Bayesian model averaging, we obtain the following probability of selecting a class:

p(y | x,D) =

∫
W

p(y | x, w̃) p(w̃ | D) dw̃ . (11)

The total uncertainty is commonly measured as the entropy of this probability distribution [Houlsby
et al., 2011, Gal, 2016, Depeweg et al., 2018, Hüllermeier and Waegeman, 2021]:

H[p(y | x,D)] . (12)

We can reformulate the total uncertainty as the expected cross-entropy:

H[p(y | x,D)] = −
∑
y∈Y

p(y | x,D) log p(y | x,D) (13)

= −
∑
y∈Y

log p(y | x,D)

∫
W

p(y | x, w̃) p(w̃ | D) dw̃

=

∫
W

−
∑
y∈Y

p(y | x, w̃) log p(y | x,D)

 p(w̃ | D) dw̃

=

∫
W

CE[p(y | x, w̃) , p(y | x,D)] p(w̃ | D) dw̃ .

We can split the total uncertainty into the aleatoric and epistemic uncertainty [Houlsby et al., 2011,
Gal, 2016, Smith and Gal, 2018]:∫

W
CE[p(y | x, w̃) , p(y | x,D)] p(w̃ | D) dw̃ (14)

=

∫
W

(H[p(y | x, w̃)] + DKL(p(y | x, w̃) ∥ p(y | x,D))) p(w̃ | D) dw̃

=

∫
W

H[p(y | x, w̃)] p(w̃ | D) dw̃ +

∫
W

DKL(p(y | x, w̃) ∥ p(y | x,D)) p(w̃ | D) dw̃

=

∫
W

H[p(y | x, w̃)] p(w̃ | D) dw̃ + I[Y ; W | x,D] .

We verify the last equality in Eq. (14), i.e. that the Mutual Information is equal to the expected
Kullback-Leibler divergence:

I[Y ; W | x,D] =

∫
W

∑
y∈Y

p(y, w̃ | x,D) log
p(y, w̃ | x,D)

p(y | x,D) p(w̃ | D)
dw̃ (15)

=

∫
W

∑
y∈Y

p(y | x, w̃) p(w̃ | D) log
p(y | x, w̃) p(w̃ | D)

p(y | x,D) p(w̃ | D)
dw̃

=

∫
W

∑
y∈Y

p(y | x, w̃) log
p(y | x, w̃)

p(y | x,D)
p(w̃ | D) dw̃

=

∫
W

DKL(p(y | x, w̃) ∥ p(y | x,D)) p(w̃ | D) dw̃ .
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This is possible because the label is dependent on the selected model. First, a model is selected, then
a label is chosen with the selected model. To summarize, the predictive uncertainty is measured by:

H[p(y | x,D)] =

∫
W

H[p(y | x, w̃)] p(w̃ | D) dw̃ + I[Y ; W | x,D] (16)

=

∫
W

H[p(y | x, w̃)] p(w̃ | D) dw̃

+

∫
W

DKL(p(y | x, w̃) ∥ p(y | x,D)) p(w̃ | D) dw̃

=

∫
W

CE[p(y | x, w̃) , p(y | x,D)] p(w̃ | D) dw̃ .

The total uncertainty is given by the entropy of the Bayesian model average predictive distribution,
which we showed is equal to the expected cross-entropy between the predictive distributions of
candidate models w̃ selected according to the posterior and the Bayesian model average predictive
distribution. The aleatoric uncertainty is the expected entropy of candidate models drawn from the
posterior, which can also be interpreted as the entropy we expect when selecting a model according
to the posterior. Therefore, if all models likely under the posterior have low surprisal, the aleatoric
uncertainty in this setting is low. The epistemic uncertainty is the expected KL divergence between
the the predictive distributions of candidate models and the Bayesian model average predictive
distribution. Therefore, if all models likely under the posterior have low divergence of their predictive
distribution to the Bayesian model average predictive distribution, the epistemic uncertainty in this
setting is low.

Setting (b): Uncertainty of a given, pre-selected model. We assume to have training data D, an
input x, and a given, pre-selected model with parameters w and predictive distribution p(y | x,w).
Using the predictive distribution of the model, a class y is selected based on x, therefore there is
uncertainty about which y is selected. Furthermore, we assume that the true model with predictive
distribution p(y | x,w∗) and parameters w∗ has generated the training data D and will also generate
the observed (real world) y∗ from x that we want to predict. The true model is only revealed later,
e.g. via more samples or by receiving knowledge about w∗. Hence, there is uncertainty about the
parameters of the true model. Revealing the true model is viewed as drawing a true model from
all possible true models according to their agreement with D. Note, to reveal the true model is not
necessary in our framework but helpful for the intuition of drawing a true model. We neither consider
uncertainty about the model class nor the modeling nor about the training data. In summary, there is
uncertainty about drawing a class from the predictive distribution of the given, pre-selected model
and uncertainty about drawing the true parameters of the model distribution.

According to Apostolakis [1991] and Helton [1997], the aleatoric uncertainty is the variability of
selecting a class y via p(y | x,w). Using the entropy, the aleatoric uncertainty is

H[p(y | x,w)] . (17)
Also according to Apostolakis [1991] and Helton [1997], the epistemic uncertainty is the uncertainty
about the parameters w of the distribution, that is, a difference measure between w and the true
parameters w∗. We use as a measure for the epistemic uncertainty the Kullback-Leibler divergence:

DKL(p(y | x,w) ∥ p(y | x,w∗)) . (18)
The total uncertainty is the aleatoric uncertainty plus the epistemic uncertainty, which is the cross-
entropy between p(y | x,w) and p(y | x,w∗):
CE[p(y | x,w) , p(y | x,w∗)] = H[p(y | x,w)] + DKL(p(y | x,w) ∥ p(y | x,w∗)) . (19)

However, we do not know the true parameters w∗. The posterior p(w̃ | D) gives us the likelihood of
w̃ being the true parameters w∗. We assume that the true model is revealed later. Therefore we use
the expected Kullback-Leibler divergence for the epistemic uncertainty:∫

W
DKL(p(y | x,w) ∥ p(y | x, w̃)) p(w̃ | D) dw̃ . (20)

Consequently, the total uncertainty is

H[p(y | x,w)] +

∫
W

DKL(p(y | x,w) ∥ p(y | x, w̃)) p(w̃ | D) dw̃ . (21)
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The total uncertainty can therefore be expressed by the expected cross-entropy as it was in setting (a)
(see Eq. (16)), but between p(y | x,w) and p(y | x, w̃):∫

W
CE[p(y | x,w) , p(y | x, w̃)] p(w̃ | D) dw̃ (22)

=

∫
W

(H[p(y | x,w)] + DKL(p(y | x,w) ∥ p(y | x, w̃))) p(w̃ | D) dw̃

= H[p(y | x,w)] +

∫
W

DKL(p(y | x,w) ∥ p(y | x, w̃)) p(w̃ | D) dw̃ .

B.1.3 Regression

We follow Depeweg et al. [2018] and measure the predictive uncertainty in a regression setting
using the differential entropy H[p(y | x,w)] = −

∫
Y p(y | x,w) log p(y | x,w)dy of the predictive

distribution p(y | x,w) of a probabilistic model. In the following, we assume that we are modeling a
Gaussian distribution, but other continuous probability distributions e.g. a Laplace lead to similar
results. The model thus has to provide estimators for the mean µ(x,w) and variance σ2(x,w) of the
Gaussian. The predictive distribution is given by

p(y | x,w) = (2π σ2(x,w))−
1
2 exp

{
− (y − µ(x,w))2

2 σ2(x,w)

}
. (23)

The differential entropy of a Gaussian distribution is given by

H[p(y | x,w)] = −
∫
Y

p(y | x,w) log p(y | x,w) dy (24)

=
1

2
log(σ2(x,w)) + log(2π) +

1

2
.

The KL divergence between two Gaussian distributions is given by

DKL(p(y | x,w) ∥ p(y | x, w̃)) (25)

= −
∫
Y

p(y | x,w) log

(
p(y | x,w)

p(y | x, w̃)

)
dy

=
1

2
log

(
σ2(x, w̃)

σ2(x,w)

)
+

σ2(x,w) + (µ(x,w) − µ(x, w̃))
2

2 σ2(x, w̃)
− 1

2
.

Setting (a): Expected uncertainty when selecting a model. Depeweg et al. [2018] consider
the differential entropy of the Bayesian model average p(y | x,D) =

∫
W

p(y | x, w̃)p(w̃ | D)dw̃,
which is equal to the expected cross-entropy and can be decomposed into the expected differential
entropy and Kullback-Leibler divergence. Therefore, the expected uncertainty when selecting a
model is given by∫

W
CE[p(y | x, w̃) , p(y | x,D)] p(w̃ | D) dw̃ = H[p(y | x,D)] (26)

=

∫
W

H[p(y | x, w̃)] p(w̃ | D) dw̃ +

∫
W

DKL(p(y | x, w̃) ∥ p(y | x,D)) p(w̃ | D) dw̃

=

∫
W

1

2
log(σ2(x, w̃)) p(w̃ | D) dw̃ + log(2π)

+

∫
W

DKL(p(y | x, w̃) ∥ p(y | x,D)) p(w̃ | D) dw̃ .
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Setting (b): Uncertainty of a given, pre-selected model. Synonymous to the classification setting,
the uncertainty of a given, pre-selected model w is given by∫

W
CE[p(y | x,w) , p(y | x, w̃)] p(w̃ | D) dw̃ (27)

= H[p(y | x,w)] +

∫
W

DKL(p(y | x,w) ∥ p(y | x, w̃)) p(w̃ | D) dw̃

=
1

2
log(σ2(x,w)) + log(2π)

+

∫
W

1

2
log

(
σ2(x, w̃)

σ2(x,w)

)
+

σ2(x,w) + (µ(x,w) − µ(x, w̃))
2

2 σ2(x, w̃)
p(w̃ | D) dw̃ .

Homoscedastic, Model Invariant Noise. We assume, that noise is homoscedastic for all inputs
x ∈ X , thus σ2(x,w) = σ2(w). Furthermore, most models in regression do not explicitly model the
variance in their training objective. For such a model w, we can estimate the variance on a validation
dataset Dval = {(xn, yn)}|Nn=1 as

σ̂2(w) =
1

N

N∑
n=1

(yn − µ(xn,w))2 . (28)

If we assume that all reasonable models under the posterior will have similar variances (σ̂2(w) ≈
σ2(w̃) for w̃ ∼ p(w̃ | D)), the uncertainty of a prediction using the given, pre-selected model w is
given by∫

W
CE[p(y | x,w) , p(y | x, w̃)] p(w̃ | D) dw̃ (29)

≈ 1

2
log(σ̂2(w)) + log(2π)

+

∫
W

1

2
log

(
σ̂2(w)

σ̂2(w)

)
+

σ̂2(w) + (µ(x,w) − µ(x, w̃))
2

2 σ̂2(w)
p(w̃ | D) dw̃

=
1

2
log(σ̂2(w)) +

1

σ̂2(w)

∫
W

(µ(x,w) − µ(x, w̃))
2
p(w̃ | D) dw̃ +

1

2
+ log(2π) .

B.2 Mixture Importance Sampling for Variance Reduction

The epistemic uncertainties in Eq. (1) and Eq. (2) are expectations of KL divergences over the
posterior. We have to approximate these integrals.

If the posterior has different modes, a concentrated importance sampling function has a high variance
of estimates, therefore converges very slowly [Steele et al., 2006]. Thus, we use mixture importance
sampling (MIS) [Hesterberg, 1995]. MIS uses a mixture model for sampling, instead of a unimodal
model of standard importance sampling [Owen and Zhou, 2000]. Multiple importance sampling
Veach and Guibas [1995] is similar to MIS and equal to it for balanced heuristics [Owen and Zhou,
2000]. More details on these and similar methods can be found in Owen and Zhou [2000], Cappé
et al. [2004], Elvira et al. [2015, 2019], Steele et al. [2006], Raftery and Bao [2010]. MIS has been
very successfully applied to estimate multimodal densities. For example, the evidence lower bound
(ELBO) [Kingma and Welling, 2014] has been improved by multiple importance sampling ELBO
[Kviman et al., 2022]. Using a mixture model should ensure that at least one of its components will
locally match the shape of the integrand. Often, MIS iteratively enrich the sampling distribution by
new modes [Raftery and Bao, 2010].

In contrast to iterative enrichment, which finds modes by chance, we are able to explicitly search for
posterior modes, where the integrand of the definition of epistemic uncertainty is large. For each of
these modes, we define a component of the mixture from which we then sample. We have the huge
advantage to have explicit expressions for the integrand. The integrand of the epistemic uncertainty
in Eq. (1) and Eq. (2) has the form

D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D) , (30)
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where D(· , ·) is a distance or divergence of distributions which is computed using the parameters that
determine those distributions. The distance/divergence D(· , ·) eliminates the aleatoric uncertainty,
which is present in p(y | x,w) and p(y | x, w̃). Essentially, D(· , ·) reduces distributions to
functions of their parameters.

Importance sampling is applied to estimate integrals of the form

s =

∫
X
f(x) p(x) dx =

∫
X

f(x) p(x)

q(x)
q(x) dx , (31)

with integrand f(x) and probability distributions p(x) and q(x), when it is easier to sample according
to q(x) than p(x). The estimator of Eq. (31) when drawing xn according to q(x) is given by

ŝ =
1

N

N∑
n=1

f(xn) p(xn)

q(xn)
. (32)

The asymptotic variance σ2
s of importance sampling is given by (see e.g. Owen and Zhou [2000]):

σ2
s =

∫
X

(
f(x) p(x)

q(x)
− s

)2

q(x) dx (33)

=

∫
X

(
f(x) p(x)

q(x)

)2

q(x) dx − s2 ,

and its estimator when drawing xn from q(x) is given by

σ̂2
s =

1

N

N∑
n=1

(
f(xn) p(xn)

q(xn)
− s

)2

(34)

=
1

N

N∑
n=1

(
f(xn) p(xn)

q(xn)

)2

− s2 .

We observe, that the variance is determined by the term f(x)p(x)
q(x) , thus we want q(x) to be proportional

to f(x)p(x). Most importantly, q(x) should not be close to zero for large f(x)p(x). To give an
intuition about the severity of unmatched modes, we depict an educational example in Fig. B.1.
Now we plug in the form of the integrand given by Eq. (30) into Eq. (31), to calculate the expected
divergence D(· , ·) under the model posterior p(w̃ | D). This results in

v =

∫
W

D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D)

q(w̃)
q(w̃) dw̃ , (35)

with estimate

v̂ =
1

N

N∑
n=1

D(p(y | x,w) , p(y | x, w̃n)) p(w̃n | D)

q(w̃n)
. (36)

The variance is given by

σ2
v =

∫
W

(
D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D)

q(w̃)
− v

)2

q(w̃) dw̃ (37)

=

∫
W

(
D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D)

q(w̃)

)2

q(w̃) dw̃ − v2 .

The estimate for the variance is given by

σ̂2
v =

1

N

N∑
n=1

(
D(p(y | x,w) , p(y | x, w̃n)) p(w̃n | D)

q(w̃n)
− v

)2

(38)

=
1

N

N∑
n=1

(
D(p(y | x,w) , p(y | x, w̃n)) p(w̃n | D)

q(w̃n)

)2

− v2 ,
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where w̃n is drawn according to q(w̃). The asymptotic (N → ∞) confidence intervals are given by

lim
N→∞

Pr

(
− a

σv√
N

⩽ v̂ − v ⩽ b
σv√
N

)
=

1√
2 π

∫ b

−a

exp(− 1/2 t2) dt . (39)

Thus, v̂ converges with σv√
N

to v. The asymptotic confidence interval is proofed in Weinzierl [2000]
and Hesterberg [1996] using the Lindeberg–Lévy central limit theorem which ensures the asymptotic
normality of the estimate v̂. The q(w̃) that minimizes the variance is

q(w̃) =
D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D)

v
. (40)

Thus we want to find a density q(w̃) that is proportional to D(p(y | x,w) , p(y | x, w̃)) p(w̃ | D).
Only approximating the posterior p(w̃ | D) as Deep Ensembles or MC dropout is insufficient to
guarantee a low expected error, since the sampling variance cannot be bounded, as σ2

v could get
arbitrarily big if the distance is large but the probability under the sampling distribution is very small.
For q(w̃) ∝ p(w̃ | D) and non-negative, unbounded, but continuous D(· , ·), the variance σ2

v given
by Eq. (37) cannot be bounded.

For example, if D(· , ·) is the KL-divergence and both p(y | x,w) and p(y | x, w̃) are Gaussians
where the means µ(x,w), µ(x, w̃) and variances σ2(x,w), σ2(x, w̃) are estimates provided by the
models, the KL is unbounded. The KL divergence between two Gaussian distributions is given by

DKL(p(y | x,w) ∥ p(y | x, w̃)) (41)

= −
∫
Y

p(y | x,w) log

(
p(y | x,w)

p(y | x, w̃)

)
dy

=
1

2
log

(
σ2(x, w̃)

σ2(x,w)

)
+

σ2(x,w) + (µ(x,w) − µ(x, w̃))
2

2 σ2(x, w̃)
− 1

2
.

For σ2(x, w̃) going towards zero and a non-zero difference of the mean values, the KL-divergence
can be arbitrarily large. Therefore, methods that only consider the posterior p(w̃ | D) cannot bound
the variance σ2

v if D(· , ·) is unbounded and the parameters w̃ allow distributions which can make
D(· , ·) arbitrary large.
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Figure B.1: Analysis of asymptotic variance of importance sampling for multimodal target distribution
p(x) and a unimodal sampling distribution q(x). The target distribution is a mixture of two Gaussian
distributions with means µp,1, µp,2 and variances σ2

p,1, σ
2
p,2. The sampling distribution is a single

Gaussian with mean µq and variance σ2
q . q(x) matches one of the modes of p(x), but misses the

other. Both distributions are visualized for their standard parameters µp,1 = µq = 0, µp,2 = 3 and
σ2
p,1 = σ2

p,2 = σ2
q = 1, where both mixture components of p(x) are equally weighted. We calculate

the asymptotic variance (Eq. (33) with f(x) = 1) for different values of σ2
p,2, µp,2 and σ2

q and show
the results in the top right, bottom left and bottom right plot respectively. The standard value for
the varied parameter is indicated by the black dashed line. We observe, that slightly increasing
the variance of the second mixture component of p(x), which is not matched by the mode of q(x),
rapidly increases the asymptotic variance. Similarly, increasing the distance between the center of the
unmatched mixture component of p(x) and q(x) strongly increases the asymptotic variance. On the
contrary, increasing the variance of the sampling distribution q(x) does not lead to a strong increase,
as the worse approximation of the matched mode of p(x) is counterbalanced by putting probability
mass where the second mode of p(x) is located. Note, that this issue is even more exacerbated if f(x)
is non-constant. Then, q(x) has to match the modes of f(x) as well.

26



C Experimental Details and Further Experiments

Our code is publicly available at https://github.com/ml-jku/quam.

C.1 Details on the Adversarial Model Search

During the adversarial model search, we seek to maximize the KL divergence between the prediction
of the reference model and adversarial models. For an example, see Fig. C.1. We found that
directly maximizing the KL divergence always leads to similar solutions to the optimization problem.
Therefore, we maximized the likelihood of a new test point to be in each possible class. The
optimization problem is very similar, considering the predictive distribution p(y | x,w) of a
reference model and the predictive distribution p(y | x, w̃) of an adversarial model, the model that is
updated. The KL divergence between those two is given by

DKL(p(y | x,w) ∥ p(y | x, w̃)) (42)

=
∑

p(y | x,w) log

(
p(y | x,w)

p(y | x, w̃)

)
=

∑
p(y | x,w) log (p(y | x,w))−

∑
p(y | x,w) log (p(y | x, w̃))

= −H[p(y | x,w)] + CE[p(y | x,w) , p(y | x, w̃)] .

Only the cross-entropy between the predictive distributions of the reference model parameterized by
w and the adversarial model parameterized by w̃ plays a role in the optimization, since the entropy
of pw stays constant during the adversarial model search. Thus, the optimization target is equivalent
to the cross-entropy loss, except that pw is generally not one-hot encoded but an arbitrary categorical
distribution. This also relates to targeted / untargeted adversarial attacks on the input. Targeted
attacks try to maximize the output probability of a specific class. Untargeted attacks try to minimize
the probability of the originally predicted class, by maximizing all other classes. We found that
attacking individual classes works better empirically, while directly maximizing the KL divergence
always leads to similar solutions for different searches. The result often is a further increase of the
probability associated with the most likely class. Therefore, we conducted as many adversarial model
searches for a new test point, as there are classes in the classification task. Thereby, we optimize the
cross-entropy loss for one specific class in each search.

Figure C.1: Illustrative example of QUAM. We illustrate quantifying the predictive uncertainty of a
given, pre-selected model (blue), a classifier for images of cats and dogs. For each of the input images,
we search for adversarial models (orange) that make different predictions than the given, pre-selected
model while explaining the training data equally well (having a high likelihood). The adversarial
models found for an image of a dog or a cat still make similar predictions (low epistemic uncertainty),
while the adversarial model found for an image of a lion makes a highly different prediction (high
epistemic uncertainty), as features present in images of both cats and dogs can be utilized to classify
the image of a lion.
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For regression, we add a small perturbation to the bias of the output linear layer. This is necessary to
ensure a gradient in the first update step, as the model to optimize is initialized with the reference
model. For regression, we perform the adversarial model search two times, as the output of an
adversarial model could be higher or lower than the reference model if we assume a scalar output.
We force, that the two adversarial model searches get higher or lower outputs than the reference
model respectively. While the loss of the reference model on the training dataset Lref is calculated on
the full training dataset (as it has to be done only once), we approximate Lpen by randomly drawn
mini-batches for each update step. Therefore, the boundary condition might not be satisfied on the
full training set, even if the boundary condition is satisfied for the mini-batch estimate.

As described in the main paper, the resulting model of each adversarial model search is used to
define the location of a mixture component of a sampling distribution q(w̃) (Eq. (6)). The epistemic
uncertainty is estimated by Eq. (4), using models sampled from this mixture distribution. The
simplest choice of distributions for each mixture distribution is a delta distribution at the location of
the adversarial model w̆k. While this performs well empirically, we discard a lot of information by not
utilizing predictions of models obtained throughout the adversarial model search. The intermediate
solutions of the adversarial model search allow to assess how easily models with highly divergent
predictive distributions to the reference model can be found. Furthermore, the expected mean squared
error (Eq. (5)) decreases with 1

N with the number of samples N and the expected variance of the
estimator (Eq. (38)) decreases with 1√

N
. Therefore, using more samples is beneficial empirically,

even though we potentially introduce a bias to the estimator.

Consequently, we utilize all sampled models during the adversarial model search as an empirical
sampling distribution for our experiments. This is the same as how members of an ensemble can
be seen as an empirical sampling distribution [Gustafsson et al., 2020] and conceptually similar to
Snapshot ensembling [Huang et al., 2017]. To compute Eq. (4), we use the negative exponential
training loss of each model to approximate its posterior probability p(w̃ | D). Note that the training
loss is the negative log-likelihood, which in turn is proportional to the posterior probability. Note
we temperature-scale the approximate posterior probability by p(w̃ | D)

1
T , with the temperature

parameter T set as a hyperparameter.

C.2 Simplex Example

We sample the training dataset D = {(xk,yk)}Kk=1 from three Gaussian distributions (21 datapoints
from each Gaussian) at locations µ1 = (−4,−2)T , µ2 = (4,−2)T , µ3 = (0, 2

√
2)T and the

same two-dimensional covariance with σ2 = 1.5 on both entries of the diagonal and zero on the
off-diagonals. The labels yk are one-hot encoded vectors, signifying which Gaussian the input xk

was sampled from. The new test point x we evaluate for is located at (−6, 2). To attain the likelihood

(a) HMC (b) Adversarial Model Search (c) Training data + new test point

Figure C.2: Softmax outputs (black) of individual models of HMC (a) as well as their average output
(red) on a probability simplex. Softmax outputs of models found throughout the adversarial model
search (b), colored by the attacked class. Left, right and top corners denote 100% probability mass at
the blue, orange and green class in (c) respectively. Models were selected on the training data, and
evaluated on the new test point (red) depicted in (c). The background color denotes the maximum
likelihood of the training data that is achievable by a model having equal softmax output as the
respective location on the simplex.
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for each position on the probability simplex, we train a two-layer fully connected neural network
(with parameters w) with hidden size of 10 on this dataset. We minimize the combined loss

L =
1

K

K∑
k=1

l(p(y | xk,w),yk) + l(p(y | x,w), y̆) , (43)

where l is the cross-entropy loss function and y̆ is the desired categorical distribution for the output
of the network. We report the likelihood on the training dataset upon convergence of the training
procedure for y̆ on the probability simplex. To average over different initializations of w and alleviate
the influence of potentially bad local minima, we use the median over 20 independent runs to calculate
the maximum.

For all methods, we utilize the same two-layer fully connected neural network with hidden size of 10;
for MC dropout we additionally added dropout with dropout probability 0.2 after every intermediate
layer. We trained 50 networks for the Deep Ensemble results. For MC dropout we sampled predictive
distributions using 1000 forward passes.

Fig. C.2 (a) shows models sampled using HMC, which is widely regarded as the best approximation
to the ground truth for predictive uncertainty estimation. Furthermore, Fig. C.2 (b) shows models
obtained by executing the adversarial model search for the given training dataset and test point
depicted in Fig. C.2 (c). HMC also provides models that put more probability mass on the orange
class. Those are missed by Deep Ensembles and MC dropout (see Fig. 2 (a) and (b)). The adversarial
model search used by QUAM helps to identify those regions.

C.3 Epistemic Uncertainty on Synthetic Dataset

We create the two-moons dataset using the implementation of Pedregosa et al. [2011]. All exper-
iments were performed on a three-layer fully connected neural network with hidden size 100 and
ReLU activations. For MC dropout, dropout with dropout probability of 0.2 was applied after the
intermediate layers. We assume to have a trained reference model w of this architecture. Results of
the same runs as in the main paper, but calculated for the epistemic uncertainty in setting (b) (see
Eq. (2)) are depicted in Fig. C.3. Again, QUAM matches the ground truth best.

Furthermore, we conducted experiments on a synthetic regression dataset, where the input feature
x is drawn randomly between [−π, π] and the target is y = sin(x) + ϵ, with ϵ ∼ N (0, 0.1). The
results are depicted in Fig. C.4. As for the classification results, the estimate of QUAM is closest to
the ground truth provided by HMC.

The HMC implementation of Cobb and Jalaian [2021] was used to obtain the ground truth epistemic
uncertainties. For the Laplace approximation, we used the implementation of Daxberger et al. [2021].
For SG-MCMC we used the python package of Kapoor [2023].

C.4 Epistemic Uncertainty on Vision Datasets

Several vision datasets and their corresponding OOD datasets are commonly used for benchmarking
predictive uncertainty quantification in the literature, e.g. in Blundell et al. [2015], Gal and Ghahra-
mani [2016], Malinin and Gales [2018], Ovadia et al. [2019], van Amersfoort et al. [2020], Mukhoti
et al. [2021], Postels et al. [2021], Band et al. [2022]. Our experiments focused on two of those:
MNIST [LeCun et al., 1998] and its OOD derivatives as the most basic benchmark and ImageNet1K
[Deng et al., 2009] to demonstrate our method’s ability to perform on a larger scale. Four types of
experiments were performed: (i) OOD detection (ii) adversarial example detection, (iii) misclassi-
fication detection and (iv) selective prediction. Our experiments on adversarial example detection
did not utilize a specific adversarial attack on the input images, but natural adversarial examples
[Hendrycks et al., 2021], which are images from the ID classes, but wrongly classified by standard
ImageNet classifiers. Misclassification detection and selective prediction was only performed for
Imagenet1K, since MNIST classifiers easily reach accuracies of 99% on the test set, thus hardly
misclassifying any samples. In all cases except selective prediciton, we measured AUROC, FPR at
TPR of 95% and AUPR of classifying ID vs. OOD, non-adversarial vs. adversarial and correctly
classified vs. misclassified samples (on ID test set), using the epistemic uncertainty estimate provided
by the different methods. For selective prediction, we utilized the epistemic uncertainty estimate to
select a subset of samples on the ID test set.

29



(a) Ground Truth - HMC (b) cSG-HMC (c) Laplace

(d) MC dropout (e) Deep Ensembles (f) Our Method - QUAM

Figure C.3: Epistemic uncertainty as in Eq. (2). Yellow denotes high epistemic uncertainty. Purple
denotes low epistemic uncertainty. The black lines show the decision boundary of the reference
model w. HMC is considered to be the ground truth epistemic uncertainty. The estimate of QUAM is
closest to the ground truth. All other methods underestimate the epistemic uncertainty in the top left
and bottom right corner, as all models sampled by those predict the same class with high confidence
for those regions.
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Figure C.4: Variance between different models found by different methods on synthetic sine dataset.
Orange line denotes the empirical mean of the averaged models, shades denote one, two and three
standard deviations respectively. HMC is considered to be the ground truth epistemic uncertainty.
The estimate of QUAM is closest to the ground truth. All other methods fail to capture the variance
between points as well as the variance left outside the region ([−π, π]) datapoints are sampled from.
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Table C.1: Additional baseline MoLA: AUROC using the epistemic uncertainty of a given, pre-
selected model as a score to distinguish between ID (MNIST) and OOD samples. Results for
additional baseline method MoLA, comparing to Laplace approximation, Deep Ensembles (DE) and
QUAM. Results are averaged over three independent runs.

Dood Laplace MoLA DE QUAM
FMNIST .978±.004 .986±.002 .988±.001 .994±.001

KMNIST .959±.006 .984±.000 .990±.001 .994±.001

EMNIST .877±.011 .920±.002 .924±.003 .937±.008

OMNIGLOT .963±.003 .979±.000 .983±.001 .992±.001

C.4.1 MNIST

OOD detection experiments were performed on MNIST with FashionMNIST (FMNIST) [Xiao et al.,
2017], EMNIST [Cohen et al., 2017], KMNIST [Clanuwat et al., 2018] and OMNIGLOT [Lake
et al., 2015] as OOD datasets. In case of EMNIST, we only used the ”letters” subset, thus excluding
classes overlapping with MNIST (digits). We used the MNIST (test set) vs FMNIST (train set) OOD
detection task to tune hyperparameters for all methods. The evaluation was performed using the
complete test sets of the above-mentioned datasets (n = 10000).

For each seed, a separate set of Deep Ensembles was trained. Ensembles with the size of 10
were found to perform best. MC dropout was used with a number of samples set to 2048. This
hyperparameter setting was found to perform well. A higher sampling size would increase the
performance marginally while increasing the computational load. Noteworthy is the fact, that with
these settings the computational requirements of MC dropout surpassed those of QUAM. Laplace
approximation was performed only for the last layer, due to the computational demand making it
infeasible on the full network with our computational capacities. Mixture of Laplace approximations
Eschenhagen et al. [2021] was evaluated as well using the parameters provided in the original work.
Notably, the results from the original work suggesting improved performance compared to the Deep
Ensembles on these tasks could not be reproduced. Comparison is provided in Table C.1. SG-HMC
was performed on the full network using the Python package from Kapoor [2023]. Parameters were
set in accordance with those of the original authors [Zhang et al., 2020]. For QUAM, the initial
penalty parameter found by tuning was c0 = 6, which was exponentially increased (ct+1 = ηct) with
η = 2 every 14 gradient steps for a total of two epochs through the training dataset. Gradient steps
were performed using Adam [Kingma and Ba, 2014] with a learning rate of 5.e-3 and weight decay
of 1.e-3, chosen equivalent to the original training parameters of the model. A temperature of 1.e-3
was used for scaling the cross-entropy loss, an approximation for the posterior probabilities when
calculating Eq. (4). Detailed results and additional metrics and replicates of the experiments can be
found in Tab. C.2. Experiments were performed three times with seeds: {42, 142, 242} to provide
confidence intervals. Histograms of the scores on the ID dataset and the OOD datasets for different
methods are depicted in Fig. C.5.

C.4.2 ImageNet

For ImageNet1K [Deng et al., 2009], OOD detection experiments were performed with ImageNet-O
[Hendrycks et al., 2021], adversarial example detection experiments with ImageNet-A [Hendrycks
et al., 2021], and misclassification detection as well as selective prediction experiments on the official
validation set of ImageNet1K. For each experiment, we utilized a pre-trained EfficientNet [Tan and
Le, 2019] architecture with 21.5 million trainable weights available through PyTorch [Paszke et al.,
2019], achieving a top-1 accuracy of 84.2% as well as a top-5 accuracy of 96.9%.

cSG-HMC was performed on the last layer using the best hyperparameters that resulted from a
hyperparameter search around the ones suggested by the original authors [Zhang et al., 2020]. The
Laplace approximation with the implementation of [Daxberger et al., 2021] was not feasible to
compute for this problem on our hardware, even only for the last layer. Similarly to the experiments
in section C.4.1, we compare against a Deep Ensemble consisting of 10 pre-trained EfficientNet
architectures ranging from 5.3 million to 66.3 million trainable weights (DE (all)). Also, we retrained
the last layer of 10 ensemble members (DE (LL)) given the same base network. We also compare
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Table C.2: Detailed results of MNIST OOD detection experiments, reporting AUROC, AUPR and
FPR@TPR=95% for individual seeds.

OOD dataset Method Seed ↑ AUPR ↑ AUROC ↓ FPR@TPR=95%

EMNIST

cSG-HMC
42 0.8859 0.8823 0.5449
142 0.8714 0.8568 0.8543
242 0.8797 0.8673 0.7293

Laplace
42 0.8901 0.8861 0.5273
142 0.8762 0.8642 0.7062
242 0.8903 0.8794 0.6812

Deep Ensembles
42 0.9344 0.9239 0.4604
142 0.9325 0.9236 0.4581
242 0.9354 0.9267 0.4239

MC dropout
42 0.8854 0.8787 0.5636
142 0.8769 0.8630 0.6718
242 0.8881 0.8751 0.6855

QUAM
42 0.9519 0.9454 0.3405
142 0.9449 0.9327 0.4538
242 0.9437 0.9317 0.4325

FMNIST

cSG-HMC
42 0.9532 0.9759 0.0654
142 0.9610 0.9731 0.0893
242 0.9635 0.9827 0.0463

Laplace
42 0.9524 0.9754 0.0679
142 0.9565 0.9739 0.0788
242 0.9613 0.9824 0.0410

Deep Ensembles
42 0.9846 0.9894 0.0319
142 0.9776 0.9865 0.0325
242 0.9815 0.9881 0.0338

MC dropout
42 0.9595 0.9776 0.0644
142 0.9641 0.9748 0.0809
242 0.9696 0.9848 0.0393

QUAM
42 0.9896 0.9932 0.0188
142 0.9909 0.9937 0.0210
242 0.9925 0.9952 0.0132

KMNIST

cSG-HMC
42 0.9412 0.9501 0.2092
142 0.9489 0.9591 0.1551
242 0.9505 0.9613 0.1390

Laplace
42 0.9420 0.9520 0.1915
142 0.9485 0.9617 0.1378
242 0.9526 0.9640 0.1165

Deep Ensembles
42 0.9885 0.9899 0.0417
142 0.9875 0.9891 0.0458
242 0.9884 0.9896 0.0473

MC dropout
42 0.9424 0.9506 0.2109
142 0.9531 0.9618 0.1494
242 0.9565 0.9651 0.1293

QUAM
42 0.9928 0.9932 0.0250
142 0.9945 0.9952 0.0194
242 0.9925 0.9932 0.0260

OMNIGLOT

cSG-HMC
42 0.9499 0.9658 0.1242
142 0.9459 0.9591 0.1498
242 0.9511 0.9637 0.1222

Laplace
42 0.9485 0.9647 0.1238
142 0.9451 0.9597 0.1345
242 0.9526 0.9656 0.1077

Deep Ensembles
42 0.9771 0.9822 0.0621
142 0.9765 0.9821 0.0659
242 0.9797 0.9840 0.0581

MC dropout
42 0.9534 0.9663 0.1248
142 0.9520 0.9619 0.1322
242 0.9574 0.9677 0.1063

QUAM
42 0.9920 0.9930 0.0274
142 0.9900 0.9909 0.0348
242 0.9906 0.9915 0.0306
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Figure C.5: MNIST: Histograms of uncertainty scores calculated for test set samples of the specified
datasets.
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Table C.3: Calibration: expected calibration error (ECE) based on the weighted average predictive
distribution. Reference refers to the predictive distribution of the given, pre-selected model. Experi-
ment was performed on three distinct splits, each containing 7000 ImageNet-1K validation samples.

Reference cSG-HMC MCD DE QUAM
.159±.004 .364±.001 .166±.004 .194±.004 .096±.006

(a) Reference (b) cSG-HMC (c) MCD (d) DE (e) QUAM

Figure C.6: Calibration: confidence vs. accuracy based on (weighted) average predictive distribution
of different uncertainty quantification methods. Point size indicates number of samples in the bin.

against MC dropout used with 2048 samples with a dropout probability of 20%. The EfficientNet
architectures utilize dropout only before the last layer. The adversarial model search for QUAM
was performed on the last layer of the EfficientNet, which has 1.3 million trainable parameters. To
enhance the computational efficiency, the output of the second-to-last layer was computed once for
all samples, and this output was subsequently used as input for the final layer when performing the
adversarial model search. We fixed c0 to 1 and exponentially updated it at every of the 256 update
steps. Also, weight decay was fixed to 1.e-4 for the Adam optimizer [Kingma and Ba, 2014].

Two hyperparameters have jointly been optimized on ImageNet-O and ImageNet-A using a small
grid search, with learning rate α ∈ {5.e-3, 1.e-3, 5.e-4, 1.e-4} and the exponential schedule update
constant η ∈ {1.15, 1.01, 1.005, 1.001}. The hyperparameters α = 1.e-3 and η = 1.01 resulted in
the overall highest performance and have thus jointly been used for each of the three experiments.
This implies that c0 increases by 1% after each update step. We additionally searched for the best
temperature and the best number of update steps for each experiment separately. The best temperature
for scaling the cross-entropy loss when calculating Eq. (4) was identified as 0.05, 0.005, and 0.0005,
while the best number of update steps was identified as 50, 100, and 100 for ImageNet-O OOD
detection, ImageNet-A adversarial example detection, and ImageNet1K misclassification detection,
respectively. Selective prediction was performed using the same hyperparameters as misclassification
detection. We observed that the adversarial model search is relatively stable with respect to these
hyperparameters.

The detailed results on various metrics and replicates of the experiments can be found in C.4.
Histograms of the scores on the ID dataset and the OOD dataset, the adversarial example dataset and
the correctly and incorrectly classified samples are depicted in Fig. C.7 for all methods. ROC curves,
as well as accuracy over retained sample curves, are depicted in Fig. C.8. To provide confidence
intervals, we performed all experiments on three distinct dataset splits of the ID datasets, matching
the number of OOD samples. Therefore we used three times 2000 ID samples for Imagenet-O and
three times 7000 ID samples for Imagenet-A and misclassification detection as well as selective
prediction.

Calibration. Additionally, we analyze the calibration of QUAM compared to other baseline
methods. Therefore, we compute the expected calibration error (ECE) [Guo et al., 2017] on the
ImageNet-1K validation dataset using the expected predictive distribution. Regarding QUAM, the
predictive distribution was optained using the same hyperparameters as for misclassification detection
reported above. We find that QUAM improves upon the other considered baseline methods, although
it was not directly designed to improve the calibration of the predictive distribution. Tab. C.3 states
the ECE of considered uncertainty quantification methods and in Fig. C.6 the accuracy and number
of samples (depicted by the size) for specific confidence bins is depicted.
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Table C.4: Detailed results of ImageNet OOD detection, adversarial example detection and misclassi-
fication experiments, reporting AUROC, AUPR and FPR@TPR=95% for individual splits.

OOD dataset / task Method Split ↑ AUPR ↑ AUROC ↓ FPR@TPR=95%

ImageNet-O

Reference
I 0.615 0.629 0.952
II 0.600 0.622 0.953
III 0.613 0.628 0.954

cSG-HMC
I 0.671 0.682 0.855
II 0.661 0.671 0.876
III 0.674 0.679 0.872

MC dropout
I 0.684 0.681 0.975
II 0.675 0.677 0.974
III 0.689 0.681 0.972

Deep Ensembles (LL)
I 0.573 0.557 0.920
II 0.566 0.562 0.916
III 0.573 0.566 0.928

Deep Ensembles (all)
I 0.679 0.713 0.779
II 0.667 0.703 0.787
III 0.674 0.710 0.786

QUAM
I 0.729 0.758 0.766
II 0.713 0.740 0.786
III 0.734 0.761 0.764

ImageNet-A

Reference
I 0.779 0.795 0.837
II 0.774 0.791 0.838
III 0.771 0.790 0.844

cSG-HMC
I 0.800 0.800 0.785
II 0.803 0.800 0.785
III 0.799 0.798 0.783

MC dropout
I 0.835 0.828 0.748
II 0.832 0.828 0.740
III 0.826 0.825 0.740

Deep Ensembles (LL)
I 0.724 0.687 0.844
II 0.723 0.685 0.840

IIII 0.721 0.686 0.838

Deep Ensembles (all)
I 0.824 0.870 0.385
II 0.837 0.877 0.374
III 0.832 0.875 0.375

QUAM
I 0.859 0.875 0.470
II 0.856 0.872 0.466
III 0.850 0.870 0.461

Misclassification

Reference
I 0.623 0.863 0.590
II 0.627 0.875 0.554
III 0.628 0.864 0.595

cSG-HMC
I 0.478 0.779 0.755
II 0.483 0.779 0.752
III 0.458 0.759 0.780

MC dropout
I 0.514 0.788 0.719
II 0.500 0.812 0.704
III 0.491 0.788 0.703

Deep Ensembles (LL)
I 0.452 0.665 0.824
II 0.421 0.657 0.816
III 0.425 0.647 0.815

Deep Ensembles (all)
I 0.282 0.770 0.663
II 0.308 0.784 0.650
III 0.310 0.786 0.617

QUAM
I 0.644 0.901 0.451
II 0.668 0.914 0.305
III 0.639 0.898 0.399
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Figure C.7: ImageNet: Histograms of uncertainty scores calculated for test set samples of the
specified datasets.
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(a) OOD detection (b) Adversarial example detection

(c) Misclassification (d) Selective prediction

Figure C.8: ImageNet-1K OOD detection results on ImageNet-O, adversarial example detection
results on ImageNet-A, misclassification detection and selective prediction results on the validation
dataset. ROC curves using the epistemic uncertainty of a given, pre-selected model (as in Eq. (2)) to
distinguish between (a) the ImageNet-1K validation dataset and ImageNet-O, (b) the ImageNet-1K
validation dataset and ImageNet-A and (c) the reference model’s correctly and incorrectly classified
samples. (d) Accuracy of reference model on subset composed of samples that exhibit lowest
epistemic uncertainty.
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C.5 Comparing Mechanistic Similarity of Deep Ensembles vs. Adversarial Models

The experiments were performed on MNIST, EMNIST, and KMNIST test datasets, using 512 images
of each using Deep Ensembles, and the reference model w, trained on MNIST. Results are depicted in
Fig. C.9. For each image and each ensemble member, gradients were integrated over 64 steps from 64
different random normal sampled baselines for extra robustness [Sundararajan et al., 2017]. Since the
procedure was also performed on the OOD sets as well as our general focus on uncertainty estimation,
no true labels were used for the gradient computation. Instead, predictions of ensemble members for
which the attributions were computed were used as targets. Principal Component Analysis (PCA)
was performed for the attributions of each image separately, where for each pixel the attributions
from different ensemble members were treated as features. The ratios of explained variance, which
are normalized to sum up to one, are collected from each component. If all ensemble members would
utilize mutually exclusive features for their prediction, all components would be weighted equally,
leading to a straight line in the plots in the top row in Fig. C.9. Comparatively high values of the first
principal component to the other components in the top row plots in Fig. C.9 indicate low diversity in
features used by Deep Ensembles.

The procedure was performed similarly for an ensemble of adversarial models. The main difference
was that for each image an ensemble produced as a result of an adversarial model search on that
specific image was used. We observe, that ensembles of adversarial models utilize more dissimilar
features, indicated by the decreased variance contribution of the first principal component. This is
especially strong for ID data, but also noticeable for OOD data.

C.6 Prediction Space Similarity of Deep Ensembles and Adversarial Models

In the following, ensembles members and adversarial models are analyzed in prediction space. We
used the same Deep Ensembles as the one trained on MNIST for the OOD detection task described
in Sec. C.4.1. Also, 10 adversarial models were retrieved from the reference model w and a single
OOD sample (KMNIST), following the same procedure as described in Sec. C.4.1.

For the analysis, PCA was applied to the flattened softmax output vectors of each of the 20 models
applied to ID validation data. The resulting points represent the variance of the model’s predictions
across different principal components [Fort et al., 2019]. The results in Fig. C.10 show, that the convex
hull of blue points representing adversarial models, in general, is much bigger than the convex hull
of orange points representing ensemble members across the first four principal components, which
explain 99.99% of the variance in prediction space. This implies that even though adversarial models
achieve similar accuracy as Deep Ensembles on the validation set, they are capable of capturing more
diversity in prediction space.

C.7 Computational Expenses

Experiments on Synthetic Datasets The example in Sec. C.2 was computed within half an hour on
a GTX 1080 Ti. Experiments on synthetic datasets shown in Sec. C.3 were also performed on a single
GTX 1080 Ti. Note that the HMC baseline took approximately 14 hours on 36 CPU cores for the
classification task. All other methods except QUAM finish within minutes. QUAM scales with the
number of test samples. Under the utilized parameters and 6400 test samples, QUAM computation
took approximately 6 hours on a single GPU and under one hour for the regression task, where the
number of test points is much smaller.

Experiments on Vision Datasets Computational Requirements for the vision domain experiments
depend a lot on the exact utilization of the baseline methods. While Deep Ensembles can take a long
time to train, depending on the ensemble size, we utilized either pre-trained networks for ensembling
or only trained last layers, which significantly reduces the runtime. Noteworthy, MC-dropout can
result in extremely high runtimes depending on the number of forward passes and depending on the
realizable batch size for inputs. The same holds for SG-HMC. Executing the QUAM experiments
on MNIST (Sec. C.4.1) took a grand total of around 120 GPU-hours on a variety of mostly older
generation and low-power GPUs (P40, Titan V, T4), corresponding to roughly 4 GPU-seconds per
sample. Executing the experiments on ImageNet (Sec. C.4.2) took about 100 GPU-hours on a mix
of A100 and A40 GPUs, corresponding to around 45 GPU-seconds per sample. The experiments
presented in Sec.C.5 and C.6 took around 2 hours each on 4 GTX 1080 Ti.
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Figure C.9: The differences between significant component distribution are marginal on OOD
data but pronounced on the ID data. The ID data would be subject to optimization by gradient
descent during training, therefore the features are learned greedily and models are similar to each
other mechanistically. We observe, that the members of Deep Ensembles show higher mechanistic
similarity than the members of ensembles obtained from adversarial model search.

Figure C.10: Convex hull of the down-projected softmax output from 10 Ensemble Members (orange)
as well as 10 adversarial models (blue). PCA is used for down-projection, all combinations of the
first four principal components (99.99% variance explained) are plotted against each other. Softmax
outputs are obtained on a batch of 10 random samples from the ID validation dataset. The black cross
marks the given, pre-selected model w.
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