
Under review as a conference paper at ICLR 2023

APPENDIX

A DERIVATIONS

Variational lower bound Here we derive the variational lower bound Eq. (2) for the log-likelihood
objective Eq. (1). For each i ∈ [K],

log

K∑
zi=1

p(Di, zi; Θ) = log

K∑
zi=1

q(zi) ·
p(Di, zi; Θ)

q(zi)
(9)

= logEq(zi)

[
p(Di, zi; Θ)

q(zi)

]
(10)

≥ Eq(zi)

[
log

p(Di, zi; Θ)

q(zi)

]
(11)

= Eq(zi) [log p(Di, zi; Θ)]− Eq(zi)[log q(zi)], (12)

where q is an alternative distribution, the inequality is due to Jensen’s Inequality and the last term
Eq(zi)[log q(zi)] is constant independent of the parameter Θ.

Derivations of the EM steps Given the assumptions in the main text about pi(y|x) and pi(x), we
know that

− log p(Di|zi = j; Φ) =

ni∑
s=1

ℓ(hϕj (xs)
(i), y(i)s)− log p(x(i)

s) + c. (13)

• E-step: Find the best q for each client given the current parameters Θ(t−1):

w
(t)
ij := q(t)(zi = j) = p(zi = j|Di; Θ

(t−1)) (14)

=
p(zi = j|Π(t−1)) · p(Di|zi = j; Φ(t−1))∑K

j′=1 p(zi = j′|Π(t−1)) · p(Di|zi = j′; Φ(t−1))
(15)

=
Π

(t−1)
ij · p(Di|zi = j; Φ(t−1))∑K

j′=1 Π
(t−1)
ij′ · p(Di|zi = j′; Φ(t−1))

(16)

∝ Π
(t−1)
ij exp

[
−

ni∑
s=1

ℓ
(
h
ϕ

(t−1)
j

(x(i)
s), y(i)s

)]
. (17)

Then the variational lower bound becomes

L(q(t),Θ) =
1

n

∑
i

∑
j

w
(t)
ij · log p(Di, zi = j; Θ) + C (18)

=
1

n

∑
i

∑
j

w
(t)
ij · (log p(zi = j; Π) + log p(Di|zi = j; Φ)) + C (19)

=
1

n

∑
i

∑
j

w
(t)
ij · (logΠij + log p(Di|zi = j; Φ)) + C. (20)

• M-step: Given the posterior w(t)
ij from the E-step, we need to maximize L w.r.t. Θ = (Φ,Π). For

the priors Π, we can optimize each row i of Π individually since they are decoupled in Eq. (20).
Note that each row of Π is also a probability distribution, so the optimum solution is given by
Π

(t)
ij = w

(t)
ij . This is because the first term of Eq. (20) for each i is the negative cross entropy,

which is maximized when Πij matches w(t)
ij .

Optimizing Eq. (20) w.r.t. Φ gives

Φ(t) ∈ argmax
Φ

L(q(t),Θ) = argmin
Φ

1

n

K∑
i=1

K∑
j=1

w
(t)
ij

ni∑
s=1

ℓ
(
hϕj

(x(i)
s), y(i)s

)
. (21)

13

Under review as a conference paper at ICLR 2023

Posterior and accumulative loss Here we show an alternative implementation for Eq. (3) using
accumulative loss. To shorten notations, let ℓ(t)ij :=

∑ni

s=1 ℓ
(
h
ϕ

(t)
j
(x

(i)
s), y

(i)
s

)
. Combining Eq. (3)

and Eq. (4) gives

w
(t)
ij = p(zi = j|Di; Θ

(t−1)) (22)

∝ w
(t−1)
ij exp

[
−ℓ

(t−1)
ij

]
(23)

∝ w
(t−2)
ij exp

[
−
(
ℓ
(t−2)
ij + ℓ

(t−1)
ij

)]
. (24)

We can see that it is accumulating the losses of previous models (e.g., ϕ(t−2)
j , ϕ(t−1)

j and so on)

inside the exponential. Therefore, assuming the uniform prior Π(0)
ij = 1/K,∀j, w(t) is the softmax

transformation of the negative of the accumulative loss L(t)
ij :=

∑t−1
τ=1 ℓ

(τ)
ij up until round t.

14

Under review as a conference paper at ICLR 2023

B THE FEDERICO ALGORITHM

Algorithm 1 describes our proposed FedeRiCo algorithm.

Algorithm 1: FedeRiCo: Federating with the Right Collaborators

Input: Client local datasets {Di}Ki=1, number of communication rounds r, number of
neighbors M , ϵ-greedy sampling probability ϵ, momentum for exponential moving
average loss tracking β, learning rate η.

Output: Client models {ϕi}Ki=1 and client weights wij .
// Initialization

1 Randomly initialize {ϕi}Ki=1;
2 for client Ci in {Ci}Ki=1 do
3 Initialize L̂

(0)
ij = 0, ℓ

(0)
ij = 0, w

(0)
ij = 1

K ;
4 end
5 for iterations t = 1 . . . T do
6 for client Ci in {Ci}Ki=1 do
7 Sample M neighbors of this round Bt according to ϵ-greedy selection w.r.t. w(t−1)

ij ;
8 Send ϕi to other clients that sampled Ci;
9 Receive ϕj from sampled neighbors Bt;

// E-step

10 ℓ
(t)
ij = ℓ

(t−1)
ij ; // Keep the loss from previous round

11 for b in Bt do
12 ℓ

(t)
ib =

∑ni

s=1 ℓ
(
h
ϕ

(t)
b

(x
(i)
s), y

(i)
s

)
; // Update the sampled ones

13 end
14 L̂

(t)
ij = (1− β)L̂

(t−1)
ij + βℓ

(t)
ij ; // Update exponential moving averages

15 w
(t)
ij =

exp(−L̂
(t)
ij)∑K

j′=1
exp(−L̂

(t)

ij′)
;

// M-step
16 for Cb in Bt do

// Could also do multiple gradient steps instead

17 Compute and send gbi = w
(t)
ib ∇ϕb

∑ni

s=1 ℓ
(
hϕb

(x
(i)
s), y

(i)
s

)
to Cb;

18 end
19 for Cj that sampled Ci do
20 Receive gij = w

(t)
ji

∑nj

s=1 ∇ϕi
ℓ
(
hϕi

(x
(j)
s), y

(j)
s

)
;

21 end
22 ϕt

i = ϕ
(t−1)
i − η

∑
j gij ; // Or any other gradient-based method

23 end
24 end

15

Under review as a conference paper at ICLR 2023

C ADDITIONAL EXPERIMENTAL RESULTS

Dirichlet data split Here we compare FedeRiCo with the other baselines with Office-Home dataset
using a different data split approach. Specifically, we firstly partition the data labels into 4 clustersm
and then distribute data within the same clusters across different clients using a symmetric Dirichlet
distribution with parameter of 0.4, as in FedEM Marfoq et al. (2021)5. As a result, each client
contains a slightly different mixture of the 4 distributions. The results are reported over a single run.

Method FedAvg FedAvg+ Local Training Clustered FL FedEM FedFomo FedeRiCo

Accuracy 69.73 ± 11.02 71.20 ± 24.41 68.32 ± 19.43 69.73 ± 11.02 47.15 ± 25.43 75.78 ± 6.20 83.90 ± 4.11

Table 2: Accuracy of different algorithms with Office-Home dataset and Dirichlet distribution.

Client collaboration Here we include more client weight plots of our proposed FedeRiCo on CI-
FAR100 with four client distributions using different data partition and training seeds. As shown in
Fig. 8 and Fig. 9, clients from the same distribution collaborates has more client weights and more
collaboration.

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cl
ie

nt
 W

ei
gh

ts

Client 0 (distribution 3)

client 0
client 1
client 2
client 3
client 4
client 5
client 6
client 7

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ie

nt
 W

ei
gh

ts

Client 1 (distribution 1)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 2 (distribution 2)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 3 (distribution 2)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 4 (distribution 0)

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Cl
ie

nt
 W

ei
gh

ts

Client 5 (distribution 3)

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Cl
ie

nt
 W

ei
gh

ts

Client 6 (distribution 3)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 7 (distribution 0)

Figure 8: Client weights over time of FedeRiCo with CIFAR100 data and four different client dis-
tributions. Clients are color coded by their private data’s distribution.

5We use the implementation from https://github.com/omarfoq/FedEM

16

https://github.com/omarfoq/FedEM

Under review as a conference paper at ICLR 2023

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 0 (distribution 0)

client 0
client 1
client 2
client 3
client 4
client 5
client 6
client 7

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 1 (distribution 0)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 2 (distribution 1)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 3 (distribution 1)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ie

nt
 W

ei
gh

ts

Client 4 (distribution 3)

0 50 100 150
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 5 (distribution 2)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 6 (distribution 1)

0 50 100 150
Rounds

0.0

0.2

0.4

0.6

0.8

Cl
ie

nt
 W

ei
gh

ts

Client 7 (distribution 2)

Figure 9: Client weights over time of FedeRiCo with CIFAR100 data and four different client dis-
tributions. Clients are color coded by their private data’s distribution.

D ADDITIONAL EXPERIMENT DETAILS

Dataset To speed up training, we take 10%, and 15% of the training data from CIFAR-10, and
CIFAR-100 respectively. For the Office-Home dataset, we merge images from all domains to get the
training dataset, and use the features extracted from the penultimate layer of ResNet-18 pretrained
on ImageNet.

Models and Methods For CIFAR-10, we use the CNN2 from Shen et al. (2020) with three 3x3
convolution layers (each with 128 channels followed with 2x2 max pooling and ReLu activation)
and one FC layer. For CIFAR-100, we use ResNet-18 as in Marfoq et al. (2021). For Office-Home,
the model is an MLP with two hidden layers (1000 and 200 hidden units). The batch size is 50 for
CIFAR, and 100 for Office-Home. For FedFomo, we use 5 local epochs in CIFAR-100 to adapt to
the noisiness of training and 1 local epoch per communication round for all other experiments.

Settings CIFAR experiments use 8 clients and Office-Home experiments use 10 clients.

Computational resources and software We summarize the computational resources used for the
experiments in Table 3 and software versions in Table 4.

Table 3: Summary of computational resource

Operating System Memory CPU GPU

Ubuntu 18.04.5 700GB Intel(R) Xeon(R) Platinum 8168@2.70GHz 8 Tesla V100-SXM2

Table 4: Software versions

Python Pytorch mpi4py

3.9 1.9.0 3.1.2

17

Under review as a conference paper at ICLR 2023

E CONVERGENCE PROOF

We adapt assumptions 2 to 7 of Marfoq et al. (2021) to our setting as follows:
Assumption E.1. ∀i ∈ [K], pi(x) = p(x).
Assumption E.2. The conditional probability pi(y|x) satisfies

− log pi(y|x) = ℓ(hϕ∗
i
(x), y) + c, (25)

for some parameters ϕ∗
i ∈ Rd, loss function ℓ : Y × Y 7→ R+ and normalization constant c.

Let f(Φ,Π) := 1
n log p(D; Φ,Π) be the log-likelihood objective as in Eq. (1).

Assumption E.3. f is bounded below by f∗ ∈ R.
Assumption E.4 (Smoothness and bounded gradient). For all x, y, the function ϕ 7→ ℓ(hϕ(x), y)
is L-smooth, twice continuously differentiable and has bounded gradient: there exists B < ∞ such
that ∥∇ϕℓ(hϕ(x), y)∥ ≤ B.
Assumption E.5 (Unbiased gradients and bounded variance). Each client i ∈ [K] can sam-
ple a random batch ξ and compute an unbiased estimator gi(ϕ, ξ) of the local gradient
with bounded variance, i.e., Eξ[gi(ϕ, ξ)] = 1

ni

∑ni

s=1 ∇ℓ(hϕ(x
(s)
i), y

(s)
i) and Eξ∥gt(ϕ, ξ) −

1
ni

∑ni

s=1 ∇ℓ(hϕ(x
(s)
i), y

(s)
i)∥ ≤ σ2.

Assumption E.6 (Bounded dissimilarity). There exist β and G such that any set of weights γ ∈ ∆K:

K∑
i=1

ni

n

∥∥∥∥∥∥ 1

ni

ni∑
s=1

K∑
j=1

γj∇ℓ(hϕ(x
(s)
i), y

(s)
i)

∥∥∥∥∥∥
2

≤ G2 + β2

∥∥∥∥∥∥ 1n
K∑
i=1

ni∑
s=1

K∑
j=1

γj∇ℓ(hϕ(x
(s)
i), y

(s)
i)

∥∥∥∥∥∥
2

.

(26)

Theorem 3.1. [Convergence] Under Assumptions E.1-E.6, when the clients use SGD with learning
rate η = a0√

T
, and after sufficient rounds T , the iterates of our algorithm satisfy

1

T

T∑
t=1

E∥∇Φf(Φ
t,Πt)∥2F ≤ O

(
1√
T

)
,

1

T

T∑
t=1

∆Πf(Φ
t,Πt) ≤ O

(
1

T 3/4

)
, (7)

where the expectation is over the random batch samples and ∆Πf(Φ
t,Πt) := f(Φt,Πt) −

f(Φt,Πt+1) ≥ 0.

Proof: At a high level, we apply the generic convergence result from Marfoq et al. (2021, Thm.3.2’)
for the proof. Whereas other conditions can be easily verified, we need to find partial first-order
surrogates (Marfoq et al., 2021, Def.1) gi and g for fi and f , respectively, where

fi(Θ) = fi(Φ, πi) := − 1

ni
log p(Di|Φ, πi) = − 1

ni

ni∑
s=1

log p(x
(s)
i , y

(s)
i |Φ, πi), (27)

is the local objective function. In the following, we will verify that

g
(t)
i (Φ,Π) := g

(t)
i (Φ,πi) (28)

:=
1

ni

ni∑
s=1

K∑
j=1

q
(t)
j

[
ℓ
(
hϕj (x

(s)
i), y

(s)
i

)
− log pj(x

(s)
i)− log πij + log q

(t)
j − c

]
, (29)

g(t)(Φ,Π) :=

K∑
i=1

ni

n
g
(t)
i (Φ,πi), (30)

satisfy the three conditions of partial first-order surrogates near (Φ(t−1),Π(t−1)): (similarly defined
for g(t) and f)

1. g
(t)
i (Φ,Π) ≥ fi(Φ,Π),∀t,Φ,Π;

18

Under review as a conference paper at ICLR 2023

2. r
(t)
i (Φ,Π) := g

(t)
i (Φ,Π) − fi(Φ,Π) is differentiable and L̃-smooth w.r.t. Φ (for some

L̃ < ∞). Moreover, r(t)i (Φ(t−1),Π(t−1)) = 0 and ∇Φri(Φ
(t−1),Π(t−1)) = 0;

3. g
(t)
i (Φ,Π(t−1))− gi(Φ,Π) = d(Π(t−1),Π) for all Φ and Π ∈ argminΠ′ g(Φ,Π′) where d

is non-negative and d(Π,Π′) = 0 iff Π = Π′.

To simplify notations, define the following (the dependency on round t is ignored when it is clear
from context)

qj := qi(zi = j), (31)

Lj :=

ni∑
s=1

ℓ
(
hϕj (x

(s)
i), y

(s)
i

)
, (32)

γj := pi(zi = j|Di,Φ,πi). (33)

(1) To start verifying the first condition,

gi(Φ,πi) =
1

ni

ni∑
s=1

K∑
j=1

qj

[
ℓ
(
hϕj

(x
(s)
i), y

(s)
i

)
− log pj(x

(s)
i)− log πij + log qj − c

]
(34)

=
1

ni

ni∑
s=1

∑
j

qj

[
− log

(
pj(y

(s)
i |x(s)

i ,ϕj) · pj(x(s)
i) · pi(zi = j)

)
+ log qj

]
(35)

=
1

ni

ni∑
s=1

∑
j

qj

[
− log pi

(
x
(s)
i , y

(s)
i , zi = j

∣∣∣Φ,πi

)
+ log qj

]
(36)

=
1

ni

∑
j

qj [− log pi (Di, zi = j|Φ,πi) + log qj] . (37)

Then
ri(Φ,πi) = gi(Φ,πi)− fi(Φ,πi) (38)

=
1

ni
KL (q(·) ∥ pt(·|Di,Φ,πi)) , (39)

where KL is the KL-divergence. This verifies the first condition of partial first-order surrogates
since the KL-divergence is non-negative.

(2) Now we verify the second condition. Note that rt is twice continuously differentiable due to
Assumption E.4. With Assumption E.1

γj = pi(zi = j|Di,Φ,πi) =
exp [−Lj′ + log πij]∑
j′ exp [−Lj′ + log πij′]

, (40)

∇ϕj′γj =

{
(−γj + γ2

j)∇Lj if j′ = j

γjγj′∇Lj′ if j′ ̸= j,
(41)

where ∇Lj is shorthand for ∇ϕj
Lj . Then

∇ϕj′ ri =
1

ni
∇ϕj′

∑
j

(−qj log γj) Definition of KL (42)

=
1

ni

∑
j

(
− qj
γj

∇ϕj′γj

)
(43)

=
1

ni

qj′(1− γj′)−
∑
j ̸=j′

qjγj′

∇Lj′ When j = j′ vs j ̸= j′ (44)

=
1

ni
[qj′(1− γj′)− (1− qj′)γj′]∇Lj′

∑
j

qj = 1 (45)

=
1

ni
(qj′ − γj′)∇Lj′ . (46)

19

Under review as a conference paper at ICLR 2023

The Hessian of ri, H(ri) ∈ RdK×dK w.r.t. Φ, is a block matrix, with blocks given by

(
H(rt)

)
j,j′

=

{
1
ni

[
(qj − γj)H(Lj) + (γj − γ2

j)(∇Lj)(∇Lj)
⊤]

− 1
ni
γjγj′(∇Lj)(∇Lj′)

⊤ when j ̸= j′,
(47)

where H(Lj) ∈ Rd×d is the Hessian of Lϕj
(Dt) w.r.t. ϕj . Introduce block matrices H̃, Ĥ ∈

RdK×dK as

H̃j,j′ =

{
1
ni
(γj − γ2

j)(∇Lj)(∇Lj)
⊤

− 1
ni
γjγj′(∇Lj)(∇Lj′)

⊤ when j ̸= j′,

Ĥj,j′ =

{
1
ni
(qj − γj)H(Lj)

0 when j ̸= j′.

(48)

Since qj , γj ∈ [0, 1] and ℓ is L-smooth by Assumption E.4, we have −L·IdK ≼ Ĥ ≼ L·IdK . Using
Lemma E.7 (see below), we have 0 ≼ H̃ ≼ B2 · IdK (note that ∇Lj is the sum of ni individual
gradients and H(rt) has 1/ni). As a result, −L̃ ·IdK ≼ H(rt) ≼ L̃ ·IdK (where L̃ = L+B2 < ∞)
and therefore rt is L̃-smooth.

Finally, q(t)j = pi(zi = j|Di,Φ
(t−1),π

(t−1)
i),∀t > 0 by the algorithm, which means

r
(t)
i (Φ(t−1),Π(t−1)) = r

(t)
i (Φ(t−1),π

(t−1)
i) = 0. (49)

Additionally, from Eq. (39) we know that r(t)i (Φ,πi) is a (non-negative) KL-divergence for all
Φ,Π. Recall that r(t)i is differentiable. It follows that Φ(t−1) is a minimizer of the function {Φ 7→
r
(t)
i (Φ,π

(t−1)
i)} and

∇Φr
(t)
i (Φ(t−1),π

(t−1)
i) = 0. (50)

This verifies the second condition of the partial first-order surrogate.

(3) Note that π(t)
i = argminπ g

(t)
i (Φ,π) due to the choice of q(t)i by the algorithm. Then for any

πi and i ∈ [K],

g
(t)
i (Φ,πi)− g

(t)
i (Φ,π

(t)
i) =

∑
j

q
(t)
j (log π

(t)
ij − log πij)

=
∑
j

π
(t)
ij (log π

(t)
ij − log πij)

= KL(π(t)
i ∥πi),

(51)

which is non-negative and equals zero iff π(t)
i = πi. This verifies the third condition of partial

first-order surrogate.

At last, g, f are convex combinations of {gi}Ki=1, {fi}Ki=1, respectively, thus the same properties
hold between g and f . This completes the proof. ■

Lemma E.7. Suppose g1, . . . ,gK ∈ Rd and γ = (γ1, . . . , γK) ∈ ∆K . The block matrix H ∈ RdK:

Hj,j′ =

{
(γj − γ2

j)gjg
⊤
j

−γjγj′gjg
⊤
j′ when j ̸= j′,

(52)

is positive semi-definite (PSD). If in addition ∥gj∥ ≤ B < ∞,∀j ∈ [K], then H ≼ B2 · IdK

20

Under review as a conference paper at ICLR 2023

Proof: Let x = [x1, . . . ,xK] ∈ RdK , then

x⊤Hx =

K∑
j,j′=1

x⊤
j Hj,j′xj (53)

=

K∑
j=1

x⊤
j Hj,jxj +

∑
j′ ̸=j

x⊤
j Hj,j′xj′

 (54)

=

K∑
j=1

(γj − γj)
2 · (x⊤

j gj)
2 −

K∑
j=1

∑
j′ ̸=j

γjγj′ · (x⊤
j gj) · (x⊤

j′gj′)

 (55)

=

K∑
j=1

γj(1− γj) · (x⊤
j gj)

2 −
K∑
j=1

γj(x
⊤
j gj) ·

∑
j′ ̸=j

γj′ · (x⊤
j′gj′)

 (56)

=

K∑
j=1

γj

∑
j′ ̸=j

γj′

 · (x⊤
j gj)

2 −
K∑
j=1

γj(x
⊤
j gj) ·

∑
j′ ̸=j

γj′ · (x⊤
j′gj′)

 (57)

=

K∑
j=1

γj(x
⊤
j gj) ·

∑
j′ ̸=j

γj′
(
x⊤
j gj − x⊤

j′gj′
)

(58)

=

K∑
j=1

γj(x
⊤
j gj) ·

K∑
j′=1

γj′
(
x⊤
j gj − x⊤

j′gj′
)

(59)

=

K∑
j=1

γj(x
⊤
j gj)

2 −

 K∑
j=1

γjx
⊤
j gj

2

(60)

= Ej∼γ [(x
⊤
j gj)

2]−
(
Ej∼γ [x

⊤
j gj]

)2
(61)

= Vj∼γ [x
⊤
j gj] ≥ 0, (62)

where we have repeatedly applied
∑

γj = 1 and E,V denote expectation and variance, treating
x⊤
j gj as a random variable. As a result, H is PSD.

Suppose in addition ∥gj∥ ≤ B < ∞,∀j ∈ [K]. Using the Cauchy-Schwarz inequality, we have

−B · ∥xj∥ ≤ −∥xj∥ · ∥gj∥ ≤ x⊤
j gj ≤ ∥xj∥ · ∥gj∥ ≤ B · ∥xj∥. (63)

Since ∥xj∥ ≤ ∥x∥,∀j ∈ [K], we have

−B · ∥x∥ ≤ x⊤
j gj ≤ B · ∥x∥. (64)

Finally, with the Popoviciu’s inequality on variances, we have

x⊤Hx = Vj∼γ [x
⊤
j gj] ≤

1

4
(B · ∥x∥+B · ∥x∥)2 = B2∥x∥2, (65)

which means H ≼ B2IdK . ■

21

