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APPENDIX

A DERIVATIONS

Variational lower bound Here we derive the variational lower bound Eq. (2)) for the log-likelihood
objective Eq. . For each i € [K],

K
DZ7ZZ7®
IOg Z p(DZ7 Z“ ].Og Z ZZ : (Z ) ) (9)
z;i=1 z;i=1 3
p(D;, 2i; @)]
= logE, ., | Bu 2 =) (10)
& Pal) [ q(z;)
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where ¢ is an alternative distribution, the inequality is due to Jensen’s Inequality and the last term
Eq(z,)[log (z;)] is constant independent of the parameter ©.

Derivations of the EM steps Given the assumptions in the main text about p;(y|x) and p;(x), we
know that

Uz
—logp(Dilzi = j; ®) =Y _ (g, (x:)",y{") —log p(x{") + c. (13)

« E-step: Find the best ¢ for each client given the current parameters ©(*—1):

w%) = q(t)(zi =j)=p(z = j‘Di;@(tﬂ)) (14

~ plz =40 - p(Dylz = j; @) (15)

Zlep(zi = J/|TI¢E=D) . p(D;|z; = j; @)
MY . p(Dyfz; = j; BD)

i Y (D = g e )

o 11! exp[ Zz(h o (x0), ygw)]. (17)

Then the variational lower bound becomes

L, 0) =~ ZZw logp(Di, zi = j:©) + C (1%

(16)

Zzw(t) (logp(zi = j; 1) +log p(Ds|z; = j; ®) )+ C (19)

fZZw (logIl;; 4+ log p(D;|z; = ;@) ) + C. (20)

* M-step: Given the posterior wz(]) from the E-step, we need to maximize £ w.r.t. © = (<I> IT). For

the priors II, we can optimize each row ¢ of II individually since they are decoupled in Eq. (20).
Note that each row of 1I is also a probability distribution, so the optimum solution is given by
H(-t-) = w(t-). This is because the first term of Eq. for each i is the negative cross entropy,
which is maximized when I1;; matches w(t).

Optimizing Eq. 20) w.r.t. ® gives

oM ¢ arginax L(q?,0) = argmm - Z Zw(t) i:é (hd,j (x), ygi)) . (1)
-1

lljl
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Posterior and accumulative loss Here we show an alternative implementation for Eq. using
s=1

accumulative loss. To shorten notations, let EE;-) =54 (h Ao (xgi)), yﬁ”) Combining Eq. |I
and Eq. (@) gives ’

wi = p(z; = j|D; 047Y) (22)
x wg_l) exp [_4;—1)} (23)
x wg-*z) exp [— (EZ(-;*Z) + qu))} . (24)

We can see that it is accumulating the losses of previous models (e.g., ¢§t_2), (ﬁ;t_l) and so on)

inside the exponential. Therefore, assuming the uniform prior HZ(,?) = 1/K,Vj, w® is the softmax
t—1 ,(7)
I

transformation of the negative of the accumulative loss LZ(;) =y i

up until round t¢.
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B THE FEDERICO ALGORITHM

Algorithm [1|describes our proposed FedeRiCo algorithm.

Algorithm 1: FedeRiCo: Federating with the Right Collaborators

Input: Client local datasets {D; }X |, number of communication rounds 7, number of
neighbors M, e-greedy sampling probability e, momentum for exponential moving
average loss tracking 3, learning rate 7).
Output: Client models {¢; }/ ;| and client weights w;;.
// Initialization
1 Randomly initialize {¢; } X |;
2 for client C; in {C;}K | do
3 Initialize L(O) = O,ég)) =0, w(o) f
4 end
s for iterationst =1...T do
s | for client C; in {C;}E | do

7 Sample M neighbors of this round B* according to e-greedy selection w.r.t. w(; 1),
8 Send ¢; to other clients that sampled C};
9 Receive ¢, from sampled neighbors B;

// E-step
10 EE;) = 65271) ; // Keep the loss from previous round
1 for b in Bt do
12 ZZ(.Z) = Z:’;lﬁ (hd)m (Xgi)) y@) ; // Update the sampled ones
13 end '
14 Zg) =(1 B)Ll; Dy 55” ; // Update exponential moving averages
15 wz(j) = Kexp(—L(ﬂzm;

: o exp(=L;)

// M-step

16 for Cy in B* do
// Could also do multiple gradient steps instead

17 Compute and send gp; = wlb)Vd,b Sl (h¢b (x), ygi)) to Cy;
18 end
19 for C; that sampled C’ do
20 ‘ Receive g;; = w Z 1 Vel ( (xgj))7 ygj));
21 end
2 ol = (f 2 772 gij s // Or any other gradient-based method
23 end
24 end
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C ADDITIONAL EXPERIMENTAL RESULTS

Dirichlet data split Here we compare FedeRiCo with the other baselines with Office-Home dataset
using a different data split approach. Specifically, we firstly partition the data labels into 4 clustersm
and then distribute data within the same clusters across different clients using a symmetric Dirichlet
distribution with parameter of 0.4, as in FedEM Marfoq et al.[ (2021 ﬂ As a result, each client
contains a slightly different mixture of the 4 distributions. The results are reported over a single run.

Method FedAvg FedAvg+  Local Training Clustered FL FedEM FedFomo  FedeRiCo
Accuracy 69.73 £1102 71.20 2441 68.32 + 1943 69.73 £1102 4715 12543 75.78 620 83.90 a1

Table 2: Accuracy of different algorithms with Office-Home dataset and Dirichlet distribution.

Client collaboration Here we include more client weight plots of our proposed FedeRiCo on CI-
FAR100 with four client distributions using different data partition and training seeds. As shown in
Fig.[8]and Fig.[9 clients from the same distribution collaborates has more client weights and more
collaboration.
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Figure 8: Client weights over time of FedeRiCo with CIFAR100 data and four different client dis-
tributions. Clients are color coded by their private data’s distribution.

>We use the implementation from https: //github.com/omarfoq/FedEM
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Figure 9: Client weights over time of FedeRiCo with CIFAR100 data and four different client dis-
tributions. Clients are color coded by their private data’s distribution.

D ADDITIONAL EXPERIMENT DETAILS

Dataset To speed up training, we take 10%, and 15% of the training data from CIFAR-10, and
CIFAR-100 respectively. For the Office-Home dataset, we merge images from all domains to get the
training dataset, and use the features extracted from the penultimate layer of ResNet-18 pretrained
on ImageNet.

Models and Methods For CIFAR-10, we use the CNN2 from |Shen et al.| (2020) with three 3x3
convolution layers (each with 128 channels followed with 2x2 max pooling and ReLu activation)
and one FC layer. For CIFAR-100, we use ResNet-18 as in |[Marfoq et al.| (2021). For Office-Home,
the model is an MLP with two hidden layers (1000 and 200 hidden units). The batch size is 50 for
CIFAR, and 100 for Office-Home. For FedFomo, we use 5 local epochs in CIFAR-100 to adapt to
the noisiness of training and 1 local epoch per communication round for all other experiments.

Settings CIFAR experiments use 8 clients and Office-Home experiments use 10 clients.

Computational resources and software We summarize the computational resources used for the
experiments in Table [3|and software versions in Table[d]

Table 3: Summary of computational resource

Operating System  Memory CPU GPU
Ubuntu 18.04.5 700GB  Intel(R) Xeon(R) Platinum 8168 @2.70GHz 8 Tesla V100-SXM2

Table 4: Software versions

Python Pytorch mpidpy
39 1.9.0 3.1.2
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E CONVERGENCE PROOF

We adapt assumptions 2 to 7 of Marfoq et al.|(2021) to our setting as follows:
Assumption E.1. Vi € [K],p;(z) = p(z).
Assumption E.2. The conditional probability p;(y|z) satisfies

—log pi(y|z) = l(hg: (2),y) +c, (25)

for some parameters ¢ € R, loss function £ : Y x Y — R and normalization constant c.

Let f(®,1I) := X log p(D; ®,1I) be the log-likelihood objective as in Eq. .
Assumption E.3. f is bounded below by f* € R.

Assumption E.4 (Smoothness and bounded gradient). For all x,y, the function ¢ — {(he(x),y)
is L-smooth, twice continuously differentiable and has bounded gradient: there exists B < oo such
that ||V ¢ £(he (), y)|| < B.

Assumption E.5 (Unbiased gradients and bounded variance). Each client i € [K] can sam-
ple a random batch & and compute an unbiased estimator gi(cﬁ &) of the local gradient

with bounded variance, i.e., E¢[gi(¢,§)] = ni Sont Ve(hg(x; )) 7(g)) and B0 (6.) -
LS Vihe(x),57)
Assumption E.6 (Bounded dissimilarity). There exist 3 and G such that any set of weights v € AX:

2 2
n; K

K K n; K
S LSS Vel ), 4| < 6242 zzz X))

i=1 ts=1j=1

(26)

Theorem 3.1. [Convergence] Under Assumptions IE.0| when the clients use SGD with learning
rate n = %, and after sufficient rounds T, the iterates of our algorithm satisfy

T
1 Tty 12 1 t ot 1
T§E|V¢f(@,ﬂ)lp<0(ﬁ>, —ZAnfcb M) <O @)
where the expectation is over the random batch samples and A f(®¢ 1Y) = f(®! 1I) —

f(®L T > 0.

Proof: Ata high level, we apply the generic convergence result from|Marfoq et al. (2021, Thm.3.2")
for the proof. Whereas other conditions can be easily verified, we need to find partial first-order
surrogates (Marfoq et al.l[2021} Def.1) g; and g for f; and f, respectively, where

1
fi(©) = fi(®,mi) = = — logp(D;|®, ;) :——Zlogp D ye,m), @D
is the local objective function. In the following, we will verify that
9" (®,10) := g (@, ™) (28)
- ,ZZ 1 (g, (@), 90 ) = Togp; (o)) = log mi; +loga” — ], (29)
i s=1j=1
K
g (@,11) := #gfﬂ(q),m), (30)

i=1

satisfy the three conditions of partial first-order surrogates near (&~ TI(*=1): (similarly defined
for ¢ and f)

1. ¢!"(®,10) > f;(®,10),Vt, ®,1I;
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2. rl@(fb,l’[) = gl(t)(q),l'[) — fi(®,10) is differentiable and L-smooth w.r.t. ® (for some
L < 00). Moreover, 7" (&1 TIt=1)) = 0 and Vr; (@t~ TI¢-1) = 0;

3. gz(t)(iy D) — g;(®, 1) = d(I1¢~Y, TI) for all ® and IT € argming, g(®P, II') where d
is non-negative and d(IT, IT") = 0 iff IT = IT".

To simplify notations, define the following (the dependency on round ¢ is ignored when it is clear
from context)

q; = qi(zi = j), (3D
].sz(h@ (=)0, (32)
v = pi(zi = j|D;, ®, ;). (33)

(1) To start Verifying the first condition,

gi(®,m;) = o ZZQJ 5 (hlbj (xﬁs)),yf)) —logp;(x{”)) — log mi; + log ¢ — C} (34)
vs= 15=1

== ZZ% —log (pj(yi(S)|xz('S)a b;) () pilzi = j)) +log Qj} (39)

s=1 j
= *ZZ% —logp; (wg LT *j‘fb,m) JFlOng] (36)

s=1 j
= *ZQJ IngL D,z = ]|(I) 771) +10gQJ] (37)

Then

Ti((b >_gl( ) fz( z) (38)

= ;’%(qc) | pe(-|Ds, ®,77) ), (39)

where KCL is the KL-divergence. This verifies the first condition of partial first-order surrogates
since the KL-divergence is non-negative.

(2) Now we verify the second condition. Note that r; is twice continuously differentiable due to
Assumption[E.4} With Assumption

exp [—L; + log m;;]
> exp[—=Lj +log ]’
(= +)VL; i =

Vo= {\ eV @)
G T vy VL if G # 5,
where VL is shorthand for Vg, L;. Then

v; = pi(z = j|Ds, ®,7;) = (40)

Ve, ri= V¢ Z(—qj log ;) Definition of KL (42)

]_ .
= > <(17V¢j,7j) (43)
) j ’Y]

_ 1 . . . ) Y . .
— g (L —50) = Z 4y | VL When j = j' vs j # j (44)
i3
1
= lay (X =25) = (L= ay) ] VL d =1 (45)
1
= (4 —)VLj (46)
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The Hessian of r;, H(r;) € RE*4K wrt @, is a block matrix, with blocks given by

_ o gy =) H(L)) + (3 = v (VL)(VE)T]
S {—mmvcj)(vcjff when j # “

where H(L;) € R?*? is the Hessian of L, (D;) w.rt. ¢;. Introduce block matrices H, H €
RAK xdEK

0. — (= VVLHVL) T
! — - (VL) (VL) T whenj #

P EACTEET)) (V)
7 0 whenj #j.

(48)

Since ¢;,v; € [0, 1] and ¢ is L-smooth by Assumption wehave —L- Iy < H < L-Iyx. Using
Lemma (see below), we have 0 < H < B? - I;x (note that VL; is the sum of n; individual
gradients and H(r;) has 1/n;). Asaresult, —L- Iy < H(r¢) < L- Ik (where L = L+ B? < 00)

and therefore r; is L-smooth.

Finally, qét) = pi(z; = j|D;, Plt=1) ﬂgt_l)), Vt > 0 by the algorithm, which means
T/L(t)(q)(tq)?l—l(tfl)) _ rz(t)(q)(tfl)’ﬁl(t—l)) —0 (49)

Additionally, from Eq. 1) we know that r(t)(@,m) is a (non-negative) KL-divergence for all

@, II. Recall that Tgt) is differentiable. It follows that ®(*~1) is a minimizer of the function {®
ri(®,m{""")} and
Varl (@), (") = 0. (50)

This verifies the second condition of the partial first-order surrogate.

(®)

i

(

(3) Note that ﬂgt) = argmin_g it) by the algorithm. Then for any

m; and i € [K],

(@, 7r) due to the choice of ¢

0@, ) — o0, 70) = 3 og Y ~logmy)
J
= Z ngt-) (log WE;) — logm;j) (51)
J
= KL |m),

which is non-negative and equals zero iff 71'?)

first-order surrogate.

= ;. This verifies the third condition of partial

At last, g, f are convex combinations of {g;}/< , {f;},, respectively, thus the same properties
hold between g and f. This completes the proof. |

LemmaE.7. Supposeg,...,gx € Riand~y = (v1,...,7Kx) € AK. The block matrix H € R~ ;

(v —)gs8,
H‘ L — - J 79 . . (52)
! {—vm/gjg} when j # j',

is positive semi-definite (PSD). If in addition ||g;|| < B < 00,Vj € [K], then H < B? - Ik
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Proof: Letx = [x,...,Xx]| € R¥ then
x"Hx = Z x) Hj jx; (53)
J:3'=1
K
= x Hx; + ) x]H e (54)
i=1 7%
K K
= Z('Yj _'YJ)Z (X g] Z Z'YJ'YJ X g]) (x }gj’) (55)
Jj=1 J=1 \J'#Jj

K K
=> =) (%) g)* - (’Yj(X]ng) > v (x)gi) (56)

K K
=S Do | ) =D ) D v () e) (57)

J=1 J3'#i J=1 J'#7
K
= vilxig) - Y v (%8 —x)85) (58)
j=1 3%
K K
= Z%‘(Xjng) ' Z Vi (%] g —x)gj0) (59)
j=1 j'=1
2
K K
=D i(xg)’ Z%X g (60)
j=1
2
= Ejury[(x] 8)%] — (Ejuy[x] &) (61)
= Vjury[x/ 8] 2 0, (62)

where we have repeatedly applied > v; = 1 and E,V denote expectation and variance, treating
x;-r g; as arandom variable. As a result, H is PSD.

Suppose in addition ||g;|| < B < o0,V € [K]. Using the Cauchy-Schwarz inequality, we have
=B - |lx;] < =l - llggll < %) g5 < Il - llggll < B - Ix;]l- (63)

Since [|x;|| < [|x|[,Vj € [K], we have

~B- x|l < x/g; < B-|x|. (64)
Finally, with the Popoviciu’s inequality on variances, we have
1
x THx = Vjy[x;) g] < 2 (B[] + B - [Ix[)* = B[], (65)
which means H < B?I . [ |
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