
A A Note on 1× 1 point-wise convolutions

In the case when a certain CNN use 3 × 3 convolution only, one can split it to two convolution,
a depthwise-3 × 3 and a 1 × 1 [60, 58]. Assuming no strides, the depthwise conv involves with
Cin · 3 · 3 ·NW ·NH MAC operations, while the 1× 1 conv includes Cin · Cout ·NW ·NH MAC
operations (Cout/9 times more expensive than depthwise). Meaning, for a large enough Cout, the
3× 3 convolution has about 8-9 times more MAC operations than the depthwise-3× 3 convolution
and 1× 1 convolution.

Some models, such as the ones referenced in section 4, are defined based on that concept. For
example, MobilenetV2 consists of residual blocks that perform 1 × 1, depthwise-3 × 3, and an
additional 1× 1, and for an image input of size 1024× 2048 (e.g., cityscapes), the 1× 1-conv has a
MAC count of 18,022M, while the 3× 3-conv has a MAC count of 1,056M (see Appendix C).

A recent paper [42], which shows the impact of Resnet50 modifications, explores the idea of separable
convolutions in sections 2.3 and 2.4 and demonstrate the effectiveness of it. For another example, in
our Monodepth2 experiment (subsection 5.4), converting to separable convolutions resulted in a 70%
drop in BOPs, while AbsRel stayed at 0.093 and RMSE went up from 3.97 to 4.02.

In cases where one might not want to use separable convolutions. We note that the 3× 3 convolution
is internally implemented as a matrix-matrix multiplication using different shifts of the image. Hence,
the wavelet transform can be adapted to transform the shifted images as well, with a specialized
implementation. This implementation might hurt the effectiveness of the joint shrinkage, although
for high-resolution images we expect it to behave similarly to the separable convolutions, as large
smooth areas are consistent between slightly shifted copies of the same image.

B Explicit WCC algorithm

In Alg. 1 below we present a pseudo-code for performing the WCC layer. We note that the Haar
wavelet transform can be obtained in-place and there is no real need to allocate new memory for the
large intermediate feature maps X0

ll and Y 0
ll during WCC. Only the 1× 1 conv operation requires a

memory allocation, but it is applied on the shrunken vectors. That is another advantage of WCC as
standard conv cannot be applied in-place and needs an allocation of both the large feature maps.

Algorithm 1 Wavelet Compressed Convolution

Input: feature map X ∈ Rnw×nh×C of spatial size nw × nh and C channels, convolution kernel
K1×1, wavelet-transform level d, compression rate γ
X0
ll = X

for i = 1 to d do
Xi
ll, X

i
lh, X

i
hl, X

i
hh = HWT(Xi−1

ll )
end for
Let Xwt be a concatenation of Xi

lh, X
i
hl, X

i
hh for i = 1 . . . d and Xd

ll as in (6)
Calculate vector norm along the channel dimension of Xwt.
Define I as the set of indices of the top dγnwnhe vectors by norm.
Ywt = Conv(K1×1, X[I])
Initialize a zeroed Y 0

ll ∈ Rnw×nh×C , and set Y 0
ll [I] = Ywt.

for i = d− 1 to 0 do
Y ill = iHWT(Y i+1

ll , Y i+1
lh , Y i+1

hl , Y i+1
hh ).

end for
Return Y 0

ll

16



C MobilenetV2 MACs

A full breakdown of MobilenetV2 MAC operations for a single Cityscapes’ image input is provided
in Table 5.

Table 5: In depth breakdown of MobilenetV2 (as a backbone for deeplabv3+) for a single 1024×2048
input. K and S refer to the size of the symmetric kernels and strides respectively. The first convolution
of the network is omitted, since it is a common practice to avoid quantizing it.

Module id Cin Cout K Groups S Dilation H W MAC

InvRes1 conv1 32 32 3 32 1 1 513 1025 150,552,864
InvRes1 conv2 32 16 1 1 1 1 511 1023 267,649,536
InvRes2 conv1 16 96 1 1 1 1 513 1025 807,667,200
InvRes2 conv2 96 96 3 96 2 1 513 1025 112,914,648
InvRes2 conv3 96 24 1 1 1 1 256 512 301,989,888
InvRes3 conv1 24 144 1 1 1 1 258 514 458,307,072
InvRes3 conv2 144 144 3 144 1 1 258 514 169,869,312
InvRes3 conv3 144 24 1 1 1 1 256 512 452,984,832
InvRes4 conv1 24 144 1 1 1 1 258 514 458,307,072
InvRes4 conv2 144 144 3 144 2 1 256 514 42,467,328
InvRes4 conv3 144 32 1 1 1 1 128 256 150,994,944
InvRes5 conv1 32 192 1 1 1 1 130 258 206,069,760
InvRes5 conv2 192 192 3 192 1 1 130 258 56,623,104
InvRes5 conv3 192 32 1 1 1 1 128 256 201,326,592
InvRes6 conv1 32 192 1 1 1 1 130 258 206,069,760
InvRes6 conv2 192 192 3 192 1 1 130 258 56,623,104
InvRes6 conv3 192 32 1 1 1 1 128 256 201,326,592
InvRes7 conv1 32 192 1 1 1 1 130 258 206,069,760
InvRes7 conv2 192 192 3 192 2 1 130 258 14,155,776
InvRes7 conv3 192 64 1 1 1 1 64 128 100,663,296
InvRes8 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes8 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes8 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes9 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes9 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes9 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes10 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes10 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes10 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes11 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes11 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes11 conv3 384 96 1 1 1 1 64 128 301,989,888
InvRes12 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes12 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes12 conv3 576 96 1 1 1 1 64 128 452,984,832
InvRes13 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes13 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes13 conv3 576 96 1 1 1 1 64 128 452,984,832
InvRes14 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes14 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes14 conv3 576 160 1 1 1 1 64 128 754,974,720
InvRes15 conv1 160 960 1 1 1 1 68 132 1,378,713,600
InvRes15 conv2 960 960 3 960 1 2 68 132 70,778,880
InvRes15 conv3 960 160 1 1 1 1 64 128 1,258,291,200
InvRes16 conv1 160 960 1 1 1 1 68 132 1,378,713,600
InvRes16 conv2 960 960 3 960 1 2 68 132 70,778,880
InvRes16 conv3 960 160 1 1 1 1 64 128 1,258,291,200
InvRes17 conv1 160 960 1 1 1 1 68 132 1,378,713,600
InvRes17 conv2 960 960 3 960 1 2 68 132 70,778,880
InvRes17 conv3 960 320 1 1 1 1 64 128 2,516,582,400

Total of 1× 1 18,022,413,312
Total of 3× 3 1,056,190,968

17



D Computational Costs in Bit Operations (BOPs)

To evaluate the computational cost involved in WCC we use the measure of Bit-Operations (BOPs)
[61, 43]. First, the number of Multiply-And-Accumulate (MAC) operations in a convolutional layer
is given by

MAC(conv) = Cin · Cout ·NW ·NH ·KW ·KH · 1
SW ·SH

, (13)

where Cin and Cout are the number of input and output channels, (NW , NH) is the size of the input,
(KW ,KH) is the size of the kernel, and (SW , SH) is the stride value. The BOPs count is then

BOPs(conv) = MAC(conv) · bw · ba, (14)

where bw and ba denote the number of bits used for weight and activations.

As described in section 3, the Haar transform is separable between the input channels, and can
be viewed as four 2 × 2 convolutions with stride (2, 2) and binary weights. Hence, the one-level
transform requires 4·Cin ·W ·H ·ba BOPs. The transform can be used with more levels of compression
explained in section 3, on down-scaled inputs, resulting in a total of∑L

l=1 4 · Cin ·NW ·NH · 1
4l−1 · ba (15)

BOPs, where L is the level of compression. Similarly, the inverse-transform result in the same
calculation, only withCout in place ofCin. To demonstrate the relatively small cost of the compression,
consider a 1× 1 convolution with Cin = 160, Cout = 960, input size of (34, 34), and quantization
bw = ba = 8 (which is part of a network used in section 5). This layer costs 11, 364M BOPs. Using
a 3 levels wavelet transform and its inverse for this layer results in 54M BOPs, a negligible cost
which allows for better compression, as we demonstrate next.

E Full Segmentation Results

Table 6 shows the performance and BOPs of each model trained by us in the experiments described in
subsection 5.3. In our experience, quantizing with 4bit activations resulted in a sharp drop in results.
While other more sophisticated methods experience less of a decline, it is still significant. Using said
methods for 8bit with our approach will also result in improved scores for WCC.

Table 6: Validation results for semantic segmentation task using DeepLabV3plus with MobileNetV2
as the backbone. Segmentation performance is measured by mean intersection over union (mIoU)

Precision Wavelet Cityscapes Pascal VOC
(W/A) shrinkage BOPs (B) mIoU BOPs (B) mIoU

FP32 None 36,377 0.717 4,534 0.715

8bit / 8bit None 2,273 0.701 283 0.712
8bit / 6bit None 1,705 0.683 212 0.678
8bit / 4bit None 1,136 0.173 141 0.095

8bit / 8bit 50% 1,213 0.681 150 0.675
8bit / 8bit 25% 673 0.620 82 0.611
8bit / 8bit 12.5% 403 0.552 48 0.519

4bit / 8bit None 1,136 0.682 141 0.675
4bit / 6bit None 852 0.669 106 0.657
4bit / 4bit None 568 0.190 70 0.099

4bit / 8bit 50% 616 0.667 76 0.661
4bit / 8bit 25% 346 0.621 42 0.583
4bit / 8bit 12.5% 211 0.549 24 0.515

18



F WCC with Different Wavelets

When considering different wavelets for compression, the added computational cost should also be
weighted. Calculating the MAC operations for the transform as explained in Appendix D, a 2k × 2k
kernel represented in bw bits results in k2bw times the BOPs for the same input compared to the
Haar transform. Table 7 compares different WCC layer configurations using several wavelets for
Cityscapes semantic segmentation task, bw was set to 32-bit floating-point for all options.

Table 7: Validation results for semantic segmentation task using DeepLabV3plus with MobileNetV2
as the backbone. All experiments are using 8bit/8bit quantization.

Wavelet Type Filter Size 50% Shrinkage 25% Shrinkage 12.5% Shrinkage
mIoU mIoU mIoU

Haar 2× 2 0.681 0.620 0.552
Daubechies 2 (db2) 4× 4 0.680 0.630 0.561
Daubechies 3 (db3) 6× 6 0.678 0.629 0.560
Coiflets 1 (coif1) 6× 6 0.676 0.637 0.562
Biorthogonal 1.3 (bior1.3) 6× 6 0.684 0.637 0.564
Biorthogonal 2.2 (bior2.2) 6× 6 0.677 0.638 0.566
Symlets 4 (sym4) 8× 8 0.675 0.629 0.565

G Depth Prediction Qualitative Results

Qualitive results for subsection 5.4 are presented in Figure 6.

(a) Input image (b) WCC 8/8 50%

(c) Quantization 8bit / 4bit (d) WCC 8/8 25%

(e) Quantization 8bit / 2bit (f) WCC 8/8 12.5%

Figure 6: Kitti depth estimation prediction examples on Monodepth2. All networks use weight
quantization of 8-bits. (c), (e) show results for activation quantization of 4bit and 2bit respectively.
(b), (d), (f) show results for WCC with 50%, 25% & 12.5% compression factor respectively.

19



H Inference Times on a GPU using a Custom Implementation

In this paper we followed the common practice of measuring the theoretical speedup of our approach
in terms of BOPs, as commonly done in quantization works (e.g., [67]). That is because our aim
is to speed up inference times on low-resource devices where BOPs are the main computational
bottleneck. However, WCC includes several operations done in tandem which are not straightforward
to implement efficiently using existing CNN frameworks. These include the forward and inverse
Haar transforms, gather and scatter operations using a single index list, and top-k selection on the
pixel-wise norms across channels. To demonstrate that our approach can be effective in practice on
typical GPUs, we also developed a custom CUDA implementation for the ingredients of WCC. On
top of that, having a custom implementation allows for several opportunities to further speed up the
process, and keep the memory bandwidth low in certain common scenarios, as we detail below.

The key ingredients of our custom implementation are as follows:

1. An in-place implementation of the forward and inverse Haar transforms, using a single
memory read and write for all levels. This results in an inference time for the transforms,
which is comparable to double the one of average pooling.

2. A custom gather and scatter kernels that use a single index list for all channels.
3. A kernel for a fused depthwise convolution and Haar transform. Since our framework rely

on the idea of separable depthwise convolutions, it is natural to fuse together consecutive
separable operations like depthwise convolution and the Haar transform that typically follows
it. This saves memory read and write, as well as several computations that are joint for both
operations (because both are separable).

To demonstrate the effectiveness of our implementation, we compare the inference time of an inverted
bottleneck residual block used in modern architectures like MobileNets [50, 27], ConvNext [42], and
EfficientNets [52, 53]. The inverted residual block that we test for timing purposes reads

x(l+1) = x(l) +Kl3
1×1

(
Kl2
dw

(
Kl1

1×1x
(l)
))

, (16)

where Kl3
1×1,K

l1
1×1 are 1 × 1 convolutions and Kl2

dw which is typically applied on a much larger
channel dimension than that of x(l) (the factor between the channel sizes if often called expansion).
We note that for the purpose of timings, we omit the non-linear activations which are typically
fused into the convolution kernels are are applied at negligible cost, if simple. The timings were
obtained using PyTorch, that is bounded to CUDA kernels using the package ctypes, and is run on
an NVIDIA 1080ti GPU on an isolated Linux machine. All runs are applied using the maximal batch
size possible, and are averaged over 100 trials.

Table 8 summarizes the results for different parameters. It is clear, as expected, that the speedup
is better for lower shrinkage rates, and when the number of channels is higher. The latter is a key
theoretical aspect of the speedup - the complexity of 1× 1 convolutions is quadratic in the number
of channels, while the complexity of the WCC additional operations is linear. Hence, we expect
more speedup as the number of channels grows in the future. We would like to stress that (1) our
implementation can probably be further optimized and (2) server GPUs may be far from the typical
prototype low-resource edge device in common scenarios.

Memory bandwidth and traffic: The most complicated and optimized operation of CNNs is the
dense matrix-matrix multiplication, i.e., the 1×1 convolution. Typically, a tile (part of an image) from
all channels has to be read by each group of threads to compute a tile of an output channel. That is in
addition to reading the relevant weights. In our work, we ease these memory reads by simply reducing
the dimensions of the feature maps. The other operations in the network are separable (activations,
Haar, gather/scatter, depthwise convolutions) and are of linear complexity in their memory reads.
Hence, as more channels are used, the relative memory traffic using WCC compared to a standard
convolution will decrease. Furthermore, considering a common inverted residual block as in (16)
with a large expansion, the peak memory lies in the input and output of Kl2

dw. Using our method, we
may apply the Haar transforms, depthwise convolutions, and scatter/gather separately and in parts
using relatively small intermediate allocated memory and write the full result in a compressed form.
This way, we only store the full result in a compressed manner towards the input of Kl3

1×1, which
needs to be complete before the 1 × 1 convolution. Other scenarios for memory savings can be
obtained for different architectures, devices, and scenarios.

20



Table 8: Inference timing results.
Image size cin Expansion Batch Comp. rate Standard [s] Ours [s] Speedup

96× 96 512 2 48 0.25 1.82 · 10−1 1.19 · 10−1 ×1.52
96× 96 512 2 48 0.5 1.82 · 10−1 1.52 · 10−1 ×1.20
96× 96 512 4 24 0.25 1.78 · 10−1 1.04 · 10−1 ×1.71
96× 96 512 4 24 0.5 1.76 · 10−1 1.36 · 10−1 ×1.29
96× 96 1024 2 12 0.25 1.38 · 10−1 7.11 · 10−2 ×1.94
96× 96 1024 2 12 0.5 1.38 · 10−1 1.00 · 10−1 ×1.38
96× 96 1024 4 6 0.25 1.36 · 10−1 6.36 · 10−2 ×2.13
96× 96 1024 4 6 0.5 1.36 · 10−1 9.20 · 10−2 ×1.47
128× 128 128 4 80 0.25 1.67 · 10−1 1.39 · 10−1 ×1.20
128× 128 128 6 64 0.25 1.99 · 10−1 1.56 · 10−1 ×1.28
128× 128 256 4 32 0.125 1.65 · 10−1 0.91 · 10−2 ×1.81
128× 128 256 4 32 0.25 1.66 · 10−1 1.08 · 10−1 ×1.53
128× 128 256 4 32 0.5 1.66 · 10−1 1.31 · 10−1 ×1.27
256× 256 256 4 8 0.125 1.72 · 10−1 9.27 · 10−2 ×1.85
256× 256 256 4 8 0.25 1.72 · 10−1 1.09 · 10−1 ×1.57
256× 256 256 4 8 0.5 1.69 · 10−1 1.31 · 10−1 ×1.29
256× 256 256 8 4 0.125 1.68 · 10−1 8.45 · 10−2 ×1.99
256× 256 256 8 4 0.25 1.68 · 10−1 1.00 · 10−1 ×1.68
256× 256 256 8 4 0.5 1.68 · 10−1 1.21 · 10−1 ×1.39
512× 512 128 6 4 0.25 2.13 · 10−1 1.51 · 10−1 ×1.41
512× 512 128 6 2 0.5 1.04 · 10−1 9.21 · 10−2 ×1.12
512× 512 256 4 2 0.125 1.74 · 10−1 9.85 · 10−2 ×1.77
512× 512 256 4 2 0.25 1.73 · 10−1 1.14 · 10−1 ×1.52
512× 512 256 4 2 0.5 1.72 · 10−1 1.43 · 10−1 ×1.20

21


