A Data Sets Construction

The details of default CIFAR-20 and ImageNet-10 in our paper are in Table 4. For CIFAR-20, we sample 4 superclasses with all their subclasses randomly. For ImageNet-10, we sample 2 superclasses with all their subclasses randomly.

Table 4: The details of CIFAR-20 and ImageNet-10. We list coarse labels, in which all fine labels are included.

Data sets			Coarse Labels	
CIFAR-20 ImageNet-10	fish animal	flowers non-animal	household electrical devices	people

The details of a series of constructed data sets are in Table 5. As we study the domain adaption tasks on such data sets, we also divide them into training set and test set according to their subclasses randomly.

Table 5: The construction of CIFAR sub-datasets and TinyImageNet sub-datasets. The legend in format $A \star B$: A indicates the number of selected superclasses, B indicates the number of selected subclasses from each superclass for training. 'Diff' indicates the constructed CIFAR-20 with different coarse labels. 'Sim' indicates the constructed CIFAR-20 with similar coarse labels. 'Rand' indicates the constructed CIFAR-20 with random coarse labels. 'I-20' indicates the constructed ImageNet-20 from TinyImageNet. We list the coarse labels of sub-datasets.

Data sets	Coarse Labels					
Diff	fish	flowers	household electrical devices	people		
Sim	large	large omnivores	medium-sized	small		
JIII	carnivores	and herbivores	mammals	mammals		
Rand	fruit and	household	household	insects		
Kallu	vegetables	electrical devices	furniture	msects		
5 * 3	fruit and	household	household	insects	large	
5 * 5	vegetables	electrical devices	furniture	msects	carnivores	
5 * 4	fruit and	household	household	insects	large	
3*4	vegetables	electrical devices	furniture	msects	carnivores	
6 * 4	fruit and	household	household	insects	large	large man-made
0 * 4	vegetables	electrical devices	furniture	msects	carnivores	outdoor things
I-20	animals	houses and landscapes	foods	fruits		

B Attack Settings

The PGD attack settings used in Sec 4.1.3 are in Table 6. We adopt the following PGDs in adversarial training for diverse robustness levels.

Attack	Steps	Epsilon (ϵ)	Step size
PGD7_3	7	3/255	1/255
PGD5_2	5	2/255	1/255
PGD5_1.5	5	1.5/255	0.5/255
PGD3_1	3	1/255	0.5/255
PGD1_0.5	1	0.5/255	0.5/255

Table 6: The hyper-parameters of various PGD attack settings.

C More Results for Domain Adaption

Besides the numerical results for domain adaption experiments across different models in Sec. [4.1.1], we add more numerical results across different data sets and across different robustness levels in Table [7] and Table [8] respectively. In addition, we also evaluate on ImageNet-20 in Table [9]. The models trained with an enhanced clustering effect ('+C') show consistently better performances with/without finetuning ('FT') on target data, which is the same with Sec. [4.1].

Table 7: Accuracy (%) of ResNet-18 on various data sets. 'Coarse' and 'Fine' indicate the ground truth labels are coarse or fine respectively. 'FT' indicates the pre-trained models are finetuned on target data. 'R' indicates robust models (by adversarial training). 'NR' indicates non-robust models (by standard training). '+C' indicates the robust models with penalty following Eq. 10. The legend in format $A \star B$: A indicates the number of selected superclasses, B indicates the number of selected subclasses from each superclass for training.

		Source Domain		Target Domain	
		Coarse	Fine	Coarse	Coarse-FT
5 * 3	NR	87.20	79.06	59.40	85.40
	R	84.66	76.60	59.60	85.50
	R+C	86.86	78.60	<u>60.20</u>	<u>86.40</u>
4 * 4	NR	87.87	75.31	61.75	93.00
	R	85.62	73.81	63.00	93.50
	R+C	86.18	75.06	<u>64.75</u>	<u>93.75</u>
$5 \star 4$	NR	89.00	69.05	63.00	92.60
	R	87.40	68.45	68.40	95.20
	R+C	89.05	70.95	<u>70.20</u>	<u>96.40</u>
6 * 4	NR	87.29	75.20	56.50	92.00
	R	84.54	74.12	56.83	92.50
	R+C	85.37	73.37	<u>60.66</u>	<u>93.33</u>
Different	NR	90.93	70.62	80.75	94.25
	R	87.94	68.75	82.50	94.40
	R+C	88.25	69.62	<u>84.75</u>	<u>94.75</u>
Similar	NR	76.87	65.52	30.25	75.75
	R	74.00	62.75	28.00	77.25
	R+C	74.81	61.56	28.75	<u>77.50</u>

D Time Costs

We count the time costs with/without our clustering enhancement in Table 10. The additional time cost is negligible. Our clustering training strategy is well acceptable.

E More Robustness Evaluations

For a more comprehensive robustness evaluation, we apply additional attack methods with multiple run times. To be specific, we conduct the robustness evaluation on the best checkpoint for 5 times, using the following attack methods. The results are shown in Table 11.

F A Linear Model Example

The architecture of linear model is given as follows.

Table 8: Accuracy (%) of ResNet-18 on CIFAR-4*4 across various robustness levels. 'Coarse' and 'Fine' indicate the ground truth labels are coarse or fine respectively. 'FT' indicates the pre-trained models are finetuned on target data. 'R' indicates robust models (by adversarial training). 'NR' indicates non-robust models (by standard training). '+C' indicates the robust models with penalty following Eq. [10].

		Source Domain		Targe	t Domain
		Coarse	Fine	Coarse	Coarse-FT
PGD7_3	NR	87.87	75.31	61.75	93.00
	R	85.18	72.18	60.25	92.50
	R+C	85.31	71.87	<u>62.50</u>	<u>93.25</u>
PGD5_2	NR	87.87	75.31	61.75	93.00
	R	85.62	73.81	63.00	93.50
	R+C	86.18	75.06	<u>64.75</u>	<u>93.75</u>
PGD5_1.5	NR	87.87	75.31	61.75	93.00
	R	85.62	73.25	62.75	94.00
	R+C	86.87	73.93	<u>63.50</u>	<u>94.50</u>
PGD3_1	NR	87.87	75.31	61.75	93.00
	R	87.43	74.00	62.50	92.75
	R+C	87.68	74.12	<u>63.25</u>	<u>94.00</u>
PGD1_0.5	NR	87.87	75.31	61.75	93.00
	R	85.31	73.56	64.00	93.00
	R+C	87.00	73.87	<u>65.00</u>	<u>94.75</u>

Table 9: Accuracy (%) on ImageNet-20 of ResNet-18. 'Coarse' and 'Fine' indicate the ground truth labels are coarse or fine respectively. 'FT' indicates the pre-trained models are finetuned on target data. 'R' indicates robust models (by adversarial training). 'NR' indicates non-robust models (by standard training). '+C' indicates the robust models with penalty following Eq. [10]

ResNet-18	Source I	Domain	Target Domain		
	Coarse	Fine	Coarse	Coarse-FT	
NR	86.37	61.25	73.61	93.00	
R	84.37	59.25	75.11	94.50	
R+C	87.62	61.00	<u>77.88</u>	<u>95.00</u>	

Table 10: The time costs of various PGD attack settings. 'AT' indicates robust models by adversarial training. '+C' indicates the robust models with penalty following Eq. 10. The additional time cost is negligible.

Time Costs	PGD7_3	PGD5_2	PGD5_1.5	PGD3_1	PGD1_0.5
AT	25.45	21.43	21.46	17.44	13.42
AT+C	25.96	21.83	21.57	17.64	13.71

Table 11: Accuracy (%) on CIFAR-10, ResNet-18. We test on the best checkpoint and run for 5 times. 'AT' indicates robust models by adversarial training. '+C' indicates the robust models with penalty following Eq. [10] The clustering enhanced model ('+C') shows consistently better performances.

	PGD-20	DeepFool	JSMA	EAD
AT	50.12±0.34	61.63±0.12	92.40±0.10	57.20±1.90
AT+C	52.54±0.12	62.56±0.35	93.45±0.35	58.60±0.80

```
class Expression(nn.Module):
    def __init__(self, func):
        super(Expression, self).__init__()
        self.func = func
    def forward(self, input):
        return self.func(input)
class Model(nn.Module):
    def __init__(self, i_c=3, n_c=10):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(i_c, 32, 5, stride=1, padding=2, bias=True)
        self.pool1 = nn.AvgPool2d((2, 2), stride=(2, 2), padding=0)
        self.conv2 = nn.Conv2d(32, 64, 5, stride=1, padding=2, bias=True)
self.pool2 = nn.AvgPool2d((2, 2), stride=(2, 2), padding=0)
        self.flatten = Expression(lambda tensor: tensor.view(tensor.shape[0], -1))
        self.fc1 = nn.Linear(8 * 8 * 64, 1024, bias=True)
        self.fc2 = nn.Linear(1024, n_c)
    def forward(self, x_i):
        x_0 = self.conv1(x_i)
        x_o = self.pool1(x_o)
        x_0 = self.conv2(x_0)
        x_o = self.pool2(x_o)
        x_o = self.flatten(x_o)
        x_0 = self.fc1(x_0)
        self.train()
        return self.fc2(x_0)
```

Figure 8: The structure of our linear model.