Under review as a conference paper at ICLR 2025

A EXPERIMENT SETUP IN DETAIL

We describe the experimental setup used to evaluate our input-adaptive inference mechanism in detail.
We implemented our strategy on top of the codebases provided by the authors of the HAMT (Chen
et al., 2021) and DUET (Chen et al., 2022). During inference, instead of using cached image features,
we integrate a ViT-B/16 (Dosovitskiy et al., 2021) model to process the images directly.

Hardware and software. We run our experiments on a machine equiped with an Intel Xeon processor
with 48 cores, 64GB of DRAM, and 8 NVIDIA A40 GPUs, with all inference tasks performed on a
single GPU using a batch size of 1. Following the original HAMT study, we use Python v3.8.5 and
PyTorch v1.7.1, along with CUDA v10.1. For GFLOPs calculations, we use the Python library thop.

Datasets. We describe the benchmarking datasets we use in detail:

* R2R (Anderson et al., 2018) is based on Matterport3D (Chang et al., 2017), containing 10,567
panorama views taken from 90 photo-realistic houses. The dataset includes 7,189 shortest-path
trajectories, and each of them is associated with 3 natural language instructions. The training,
validation (seen), validation (unseen), and test (unseen) sets include 61, 56, 11, and 18 houses,
respectively. The validation (seen) set consists of houses in the training set, typically used to
check the generalization status of a model during training, while the sets marked as ‘unseen’ are
the houses not in the training set.

* R2R-Back (Chen et al., 2021) requires the agent to return to its starting point after reaching
the destination. To complete the task, the agent must remember its navigation history. A return
command is appended to each R2R instruction, and the reversed path is provided as guidance for
the return trip.

¢ R2R-Last (Chen et al., 2021) uses only the last sentence from the original R2R instructions to
describe the destination.

« REVERIE (Qi et al., 2020) provides high-level instructions, closer to those given by humans,
replacing the step-by-step instructions of R2R. Instead of navigating to a target location, the agent
is required to identify and localize the target object upon arrival, making the task more complex
and realistic. The dataset includes 4,140 target objects, which are categorized into 489 distinct
groups.

* CVDN (Thomason et al., 2020) requires the agent to navigate based on long, potentially unclear
instructions. The agent interacts with a navigator through question and answer dialog to clarify
and complete the task. In total, it has 2,050 human-human navigation dialogues, consisting of
over 7,000 navigation trajectories accompanied by question-answer interactions, covering 83
matterport3D houses.

¢ SOON (Zhu et al., 2021) is similar to REVERIE but contains longer and more detailed instructions.
The average length of these instructions is 47 words, with path lengths varying from 2 to 21
steps. It requires the agent to navigate by understanding the relationship between objects in the
environment to accurately locate the target object.

B OPTIMAL HYPERPARAMETER CHOICE FOR ADAPTING MUE TO OUR WORK

To best evaluate MuE on VLN tasks, we perform a hyperparameter sweep over the threshold used
for early-exiting. Figure 7 presents the performance (in SR) and GFLOPs across different early exit
thresholds applied to the MuE version of ViT used in the HAMT agent, tested on the R2R dataset.
The lowest threshold we report is 0.99, as lower thresholds caused a dramatic drop in performance
(more than 50%). As the threshold increases, the success rate of the MuE agent increases substantially
but at the cost of computational savings. Even for thresholds close to 1, meaning that the ViT is using
a majority of its layers for each input, we still see a large performance drop compared to the baseline
agent. As we discuss in Sec 4.2, this is likely because MuE statically applies early-exits, causing it to
under-process important components of the panorama such as navigable views.

Why does MuE underprocess important views? The intuition behind MuE (Tang et al., 2023) is that
the activations of Transformer-based vision models saturate, where their similarity between layers
peaks early on, and is maintained at future stages of computation, suggesting a lack of new/useful
information. MuE then exploits this property to skip the later layers without a significant loss in
performance. So, for MuE to be successful, the similarity of activations must sufficiently saturate and

15

Under review as a conference paper at ICLR 2025

4,450 ! S A O e
m 0.95 /
14,400 09
=4 'j;eo.ss /
% i = 08 A /
@ 4,350 » & i \ |
g 8 HFom | \ -/
& 40 — o) / v/
g [N = f i/
g 14300 S 2 J V
Be O 0.65 /
2 38 X /
,/ ‘—Performa.nce (SR) 06 |
‘ 4,250 [
K --- GFLOPs 055 |
36|, ¢
p =~ % 5 5 & 7 %5 5 8 O O
7777777777777777777777777777777 -l 4’200 &”" x“% 3/5 ~\J4F x‘m %4‘9 o i _;.;“\ B \3 £
0.99 0992 0994 0996 0.998 « M
Threshold Layer Comparison

Figure 7: Comparison of performance (in SR) and Figure 8: Cosine similarity between adja-
GFLOPs in MuE across different thresholds. cent layers of ViT used in HAMT.

not decrease at later layers. However, as shown in Figure 8, the necessary saturation pattern is not
observed in the VLN setting. The cosine similarity peaks between layers 7 and 8 but then decreases
for all future layers. This explains the significant performance drop when MuE is directly applied to
VLN agents, as it consistently early-exits despite saturation not being achieved.

C OUR LSH ALGORITHM IN DETAIL

A core mechanism we introduce in Sec 4.2.3 is our SimHash algorithm, used to avoid reprocessing
previously seen or near-identical images. Algorithm 2 covers our implementation in detail.

(line 1-9) Hashing RGB vectors. Given an image, we first hash the raw RGB vector into a short
binary encoding using random projection Charikar (2002); Andoni & Indyk (2008). The algorithm
calculates the dot product between the image vector and each hyperplane. If the dot product is
positive, it assigns a binary value of 1, otherwise it assigns 0. These binary values are sequentially
appended to form a complete binary hash key. The length of the hash key is determined by the
number of hyperplanes used in the projection.

(line 10-14) Adding embeddings to the hash table. This function is used to insert processed images
and their corresponding embeddings into the hash table for future use.

(line 15-32) Retrieving a similar embedding. This function takes an image we have not yet processed
and tries to find a suitable embedding candidate. We first obtain all embeddings with images similar
to the current image by hashing it into its binary encoding and accessing the corresponding bucket in
the hash table. We then loop through all images associated with the similar embeddings and find the
one yielding the highest similarity score (in our main experiments, the score is computed using cosine
similarity). If this score exceeds our threshold hyperparameter, we return the associated embedding;
otherwise, we return nothing.

Running the algorithm. We employ the above three functions to run SimHash on an arbitrary
panorama. For each extended navigable view (other views are omitted and explained in Algorithm 1),
we attempt to use a high-similarity embedding from the hash table. If it exists, we reuse this
embedding for the current view and continue to the next. If not, we need to process the view using the
ViT adapted for MuE, and then add the image and its embedding to the hash table. After processing
the entire panorama, we return the set of final embeddings to be used for agent navigation.

Storage overhead analysis. Here, we consider the storage overhead necessary to deploy our hashing
algorithm on VLN agents. Our LSH technique stores pairs of images and embeddings. In the
benchmarks we consider, these images are of size 3x224x224. The embedding size depends on the
model, which for HAMT and DUET is 197x768 (the number of ViT patches times the model’s hidden
dimension). These are stored in full-precision floating-point format (32 bits per value), resulting in
(3 x 224 x 224 4+ 197 x 768) x 32 bits of storage per cached pair, approximately 1.2 MB. In our
experiments, the longest navigation route was roughly 12 steps (from R2R-Back), and if we assume

16

Under review as a conference paper at ICLR 2025

Algorithm 2 SimHash Algorithm

Input: a current view v;

Output: a binary hash key

1: function HASH(v;)

2: key «— @

3 for each hp in Hyperplanes do

4: sign < DotProduct (hp,v;)

5: hash_val < (sign > 0) = converts to binary
6

7

key < key + hash_val
end for

8: return key

9: end function

Input: a hash table h, a current view v;, an embedding e;
Output: a hash table h
10: function ADDTOHASHTABLE(h, v;, €;)
11: key < Hash(v;)
12: h <« InsertToHashTable(key,v;,€;)
13: return h
14: end function

Input: a hash table h, a current view v;

Output: an embedding e;

15: function FINDSIMILAR(A, v;)

16: Smaz < —1

17: key — Hash(v;)

18: bucket — h.get(key)

19: for each (Veandidate, €candidate) in bucket do
20: s «— CosineSimilarity(v;, Veandidate)

21: if s > S0 then

22: Smax < S

23: €best <~ €candidate

24: end if

25: end for
26: if s,,,0c > threshold then

27: €i < €hest
28: else

29: e — I
30: end if

31: return e;

32: end function

all 36 images per panorama are cached, we obtain a worst-case overhead of 522.7 MB. In practice,
however, we find that most tasks are 5-7 steps, and we cache at most 14 images per step, producing a
more typical overhead of 84.7—118.6 MB. Considering that modern VLN agents Chen et al. (2021;
2022) are orders of magnitude larger, this is not a limiting factor to practical deployment.

D FULL EVALUATION RESULTS

Table 7 complements our main evaluation in Sec 5.1 with additional benchmarks: R2R-Back (Chen
et al., 2021), REVERIE (Qi et al., 2020), R2R-Last (Chen et al., 2021), CVDN (Thomason et al.,
2020), and SOON (Zhu et al., 2021). For CVDN, we report the additional evaluation metric Goal
Progress (GP), which assigns a higher score as the agent moves closer to the goal, indicating better
performance (Chen et al., 2021). For REVERIE and SOON, in addition to image features, object
features are required during navigation. We were unable to find the original implementation for object
feature extraction, so for these benchmarks we use cached object features and apply our strategy only
to image feature extraction. To accommodate this in the performance calculations, we report the
GFLOPs necessary for image feature processing and treat the computational cost of object feature
extraction as a constant (the +C in Table 7). Note that this prevents us from being able to report

17

Under review as a conference paper at ICLR 2025

Performance

Agent Task Method GFLOPs
TL OSR SR SPL GP

Base 2056 - 5543 5234 - 818155

RZR-Back () C(Al) 2053 - 4921 4647 - 3331.80

Base 1407 3573 3181 29.17 - 543471+C

HAMT REVERIE ' C(AIl) 1370 2675 2496 2313 - 273590+C
RORLast B 1228 5424 4785 4227 - 498268

Ours (All) 1236 49.72 4193 3697 - 258944

Base - - - C 488 11022.03

CVDN Guscamy -) ; . 445 477334

Base 2249 5146 47.09 3354 - 6185.154C

REVERIE — \C(AIl) 2159 4644 4132 2890 - 335031+C

DUET soon Bae 3587 5038 3619 2267 - 9997.814+C
Ours (All) 4236 5422 3643 2037 - 4533.83+C

Table 7: Comparison of the performance and efficiency of the baseline agents versus our improved-
efficiency agents across multiple benchmarks. Here, we denote the cost of object feature extraction
as C.

percentage-wise changes in total performance, so we consider the raw reduction in GFLOPs in these
cases.

The upper section of the table compares the performance and efficiency of the baseline HAMT
agent against our efficient HAMT agent. For R2R-Back, our strategy achieves a 60% reduction
in computation with an 11% decrease in SR. For REVERIE, our efficient VLN model reduces
computation by 2698.81 GFLOPs, with a 20% drop in SR. For R2R-Last, our method reduces
computation by 48%, with a 12% reduction in SR. Finally, for the CVDN evaluation, our efficient
model reduces computation by 57%, with only a 9% decrease in GP. The lower section of the table
presents a comparison of the performance and efficiencies of the DUET agents. For REVERIE, our
strategy saved 2834.84 GFLOPs with a 12% decrease in SR. For SOON, we observed a marginal
increase in SR accompanied by a 10% drop in SPL, while saving 5463.98 GFLOPs. Despite the
more significant performance drop in the REVERIE task using the HAMT agent, these results
demonstrate that our efficiency strategies are applicable across different benchmarks, achieving
substantial computational savings while maintaining an acceptable trade-off in performance.

Robustness to navigation length. It

. . . Agent Task Average Path Length ANE AGFLOPs
is possible that the errors introduced g g g w “

by our method propagate, resulting R2R 6.0 +0.53 -2845.63
. . A for 1 HAMT R2R-Last 6.0 +0.45 -2393.24
In worse agent nav1gat19n or longer R2R-Back 12.0 +0.54 -5463.98
trajectories. WPj study if thlS is the - RZR 60 10,68 297170
case by considering the navigation er- SOON 926 20.44 -5463.98

ror (NE)—the distance of an agent’s
final position to the target position (in
meters)—on benchmarks with vary-
ing path lengths. We deploy all of our

Table 8: Performance of our efficient HAMT agent on bench-
marks with different path lengths. ANE and AGFLOPs are
proposed methods (simultaneously) the changeg in navigation error (NE) gnd GFLQPS compared
on the HAMT agent and report the to the baseline agent. The path length is the minimum number
changes in NE and GFLOPs com- of navigation actions needed to reach the target destination.

pared to the baseline in Table 8.

We find our method is largely robust to longer path lengths. The NE does not increase for longer
trajectories, and we even see a decrease for the SOON benchmark, which has an average path length
3.6 more steps than R2R. The results also show that our efficient VLN agent sees roughly proportional
computational savings for longer paths. For example, the average path length in R2R-Back is double
R2R, and we achieve a 1.92x larger reduction in GFLOPs for the HAMT agent.

18

Under review as a conference paper at ICLR 2025

Method TL(|) OSR(?) SR(f) SPL(f) GFLOPs(|)
None (Base) 11.53 74.29 66.16 61.49 4763.24
k-extension 12.52 71.86 61.30 55.79 2,408.99
thresholds 12.33 72.46 62.62 57.39 3,867.46
LSH 11.53 74.20 66.11 61.47 3,894.76
k-extension+LSH 12.52 71.90 61.17 55.63 2,013.48
k-extension+thresholds 12.89 71.95 60.41 54.57 2,294.23
thresholds+LSH 12.33 72.41 62.49 57.33 3,190.66
All 12.87 71.95 60.41 54.50 1,917.61

Table 10: Performance of all combinations of our speed-up techniques (k-extensions, early-exiting,
and LSH) with the HAMT agent on the R2R benchmark.

Runtime comparison. To validate that our approach Task Agent Method Wall-time (s)
improves efficiency in the real world, we report the 8

wall-time comparison between our efficient VLN HAMT Base 200811
model and the baseline VLN for both HAMT and R2R Ours 119514
DUET agents, tested on the R2R validation unseen

L . . Base 268962
split, in Table 9. Evidently, our efficient strategy ap- DUET Ours 170464

plied to the VLN agents results in significant runtime
savings, with an approximate 40% reduction. It is
important to note that the disparity between the 60% Table 9: Wall-time comparison between the
GFLOPs savings and the 40% runtime reduction can baseline agent and our efficient agent on the
be attributed to various hardware and software related R2R task.

factors.

E PER-MECHANISM ANALYSIS

In most experiments, we treat our proposed mechanisms as a single unit by applying all three
simultaneously. While this is the most flexible and offers the best trade-off between performance
and efficiency, analyzing each mechanism independently can provide valuable insights into its
effectiveness and robustness. Here, we present results on a per-mechanism basis.

Effectiveness. In Sec 5.1, we apply our k-extension technique and then add adaptive thresholding
early-exiting (denoted thresholds in Table 2) and locality-sensitive hashing (LSH) as we found those
combinations of techniques offer the most computational savings. Here, we study all combinations of
three efficiency mechanisms. To use early-exiting and LSH without k-extension, we treat every non-
navigable view as one that can be early-exited or hashed. Navigable views are still fully processed.
We report results for the HAMT agent on the R2R benchmark in Table 10.

The results show that between individual techniques, k-extension offers the best computational
savings with a 49% reduction compared to the baseline agent. Early-exiting and LSH only reduce
GFLOPs by ~18% because early-exiting still requires processing every view, and LSH reuses only a
minority of cached image embeddings. We find that LSH provides better performance than the other
two individual mechanisms, with an SR only 0.05 lower than the baseline. This is likely because the
cached embeddings reused by LSH are near-identical, having a negligible impact on performance
when interchanged. However, it is far less efficient than when combined with our other techniques.

The combination we do not present in Table 2, early-exiting and LSH (thresholds+LSH), provides
slightly better performance than combinations using k-extension but at the cost of 39-66% more
GFLOPs. Like the individual mechanisms, this suggests that retaining and partially processing/reusing
the non-navigable views mitigates performance drop but is not nearly as efficient as k-extension.
Overall, we find that all combinations of our techniques fare well, offering different trade-offs between
performance and efficiency.

Robustness to natural corruptions. Now, we complement Sec 5.3 and study the robustness of
each of our proposed mechanisms to visual corruption. We select the Low Lighting and Motion
Blur corruptions based on their varying impact on performance and being more likely to occur in

19

Under review as a conference paper at ICLR 2025

Corruption = Method TL(|!) OSR(1) SR(1) SPL(1) GFLOPs(])

None (Base) 12.15 71.31 62.58 57.23 4903.06

Low Lighting k-extension 13.86 71.14 57.34 50.78 2571.06
thresholds 13.63 70.29 58.79 52.16 4099.21
LSH 12.95 71.43 61.47 55.19 2444.05

None (Base) 12.41 68.20 59.13 54.01 4996.64

Motion Blur k-extension 14.03 65.13 53.77 48.01 2588.06
thresholds 13.81 68.20 57.51 51.05 4073.04
LSH 12.39 68.03 59.30 54.04 4030.52

Table 11: Performance under visual corruption of our methods applied independently to the HAMT
agent on the R2R benchmark.

real-world VLN systems. We apply our methods to the HAMT agent and report results on the R2R
benchmark in Table 11.

Our methods appear more robust to Low Lighting than Motion Blur, which corroborates our findings
in Sec 5.3. Across both corruptions, k-extension and early-exiting see a slight increase of 150-200
GFLOPs compared to the results in Table 10. This can likely be attributed to the increased trajectory
length, and for early-exiting, we also find that the OOD samples require more ViT layers before
sufficiently saturating. Both mechanisms result in significant drops in performance, though less
than when we apply all simultaneously (results shown in Table 6). Early-exiting is slightly more
robust, achieving a 2—7% higher SR, which makes sense as it processes strictly more images than
k-extension.

Interestingly, LSH functions extremely well when Low Lighting is applied. It offers a ~49% reduction
in GFLOPs, compared to just 18% when no corruption is present. We hypothesize that the reduced
lighting makes more images similar, causing our algorithm to find more matches and reuse more
embeddings. It also offers significant robustness, only incurring a 1% point drop in SR. It seems like
our caching mechanism is better suited for this environment, a finding we hope to explore in future
work. For Motion Blur, LSH is less successful, being more robust than our other mechanisms but
with minimal computational savings.

F RELATED WORK ON MODEL COMPRESSION

Research has proposed an orthogonal approach to reduce the computational demands and memory
footprint of deep-learning models: model compression. Quantization and pruning are the leading
practice in model compression. Quantization (Jacob et al., 2018; Choi et al., 2018; Louizos et al.,
2018; Bhalgat et al., 2020; Uhlich et al., 2019; Banner et al., 2019; Choukroun et al., 2019; Li et al.,
2021; Nagel et al., 2020) transforms the memory representation of model parameters from 32-bit
floating point numbers to a lower-bit integers (e.g., 4-bit integers), thereby making it more storage
efficient and lowering memory usage. Pruning (Molchanov et al., 2016; Fan et al., 2019; Fang et al.,
2023; Nova et al., 2023; Han et al., 2015b;a; Hoang & Liu, 2023) aims to create sparse models by
removing parameters that are less important for maintaining performance, effectively reducing model
size and computation.

While quantization and pruning have been demonstrated in simpler unimodal encoder settings for
image and text, they are much more challenging in vision-language model(VLM) settings (Wang
et al., 2022; Sun et al., 2024) and largely unexplored in VLN. (Wang et al., 2022) highlighted the
challenges of pruning VLMs due to the unequal weighting of visual and linguistic modalities. They
mitigated this by using a modal-adaptive approach, adjusting pruning ratios across different model
components based on downstream task sensitivity. Similarly, (Sun et al., 2024) demonstrated that
naively applying post-training quantization to CLIP caused significant performance degradation,
which they addressed by introducing prompt tuning and alignment modules.

We expect similar challenges to be exhibited by VLN agents, if not exacerbated. VLN models, in
addition to processing language and visual modalities, involve sequential decision-making dependent

20

Under review as a conference paper at ICLR 2025

on actions taken at each time step. We anticipate the complex interactions between these information
sources to require careful consideration while adapting model compression techniques. Future
research on such techniques can be superposed along with our input-adaptive inference method to
develop highly efficient models with an acceptable performance trade-off.

G COMPARISON OF ADDITIONAL SIMILARITY METRICS

A .

1]

i

B N

Figure 9: Two sets of example views (A and B)
demonstrating non-identical but similar views that
have been slightly shifted during navigation.

Simiarlity Metrics Set A

Set B

SSIM (Wang et al., 2004) 0.24
FSIM (Zhang et al., 2011) 0.26
LPIPS (Zhang et al., 2018) 0.55

0.32
0.27
0.62

SURF (Bay et al., 2006) 0.31
SIFT (Lowe, 2004) 0.45
ORB (Rublee et al., 2011) 0.07

0.32
0.37
0.19

Figure 10: Similarity scores measured on Set A
and B. We test 6 different similarity metrics.

Other than the three similarity metrics we use,
we test three additional metrics for comparison:
SUREF (Bay et al., 2006), SIFT (Lowe, 2004),
and ORB (Rublee et al., 2011). These are feature
detection and description algorithms designed
to identify and match keypoints in images. The
similarity scores are computed by dividing the
number of matching keypoints by the minimum
number of keypoints detected in the two images.
We test all six algorithms on two sets of scenes,
reflecting shifts caused by an agent’s changing
perspectives during navigation.

Figure 9 illustrates the two sets of scenes, and
Table 10 summarizes the quantitative compari-
son. Among the three metrics we employ for our
main evaluation, LPIPS demonstrates a higher
similarity measure of approximately 60% for
both sets. In contrast, SSIM and FSIM are
less effective at capturing the similarity between
views in Sets A and B. The three additional met-
rics (SURF, SIFT, and ORB) are also ineffective
in providing reliable similarity scores for both
image sets A and B. Our qualitative compari-
son of different similarity metrics applied to sets
of similar scenes highlight the challenges these
metrics face in accurately identifying true visual
similarity. We believe that an accurate measure
of scene similarity is crucial for further reducing
the computational demands of a VLN agent, and
we leave this for future work.

H ANALYZING PERFORMANCE-EFFICIENCY TRADE-OFF IN OUR METHOD

In order to illustrate our tunable performance-efficiency 2,750

trade-off, we show that even when limiting the perfor- 2,650 | |
mance drop to under 5%, our input adaptive inference &

method applied to the HAMT agent achieves significant 8 2,550 |- n
computational savings. For reference, the baseline HAMT 5 2,450 |- =

model achieves a SR of 66.16 with a computational cost 2350 |
of 4763.24 GFLOPs. Figure 11 shows that with a 3-5% ’ ‘ ‘ ‘
drop in SR, we still manage to achieve 43—-50% savings in
GFLOPs. These results were tested on the R2R validation

unseen dataset.

21

62.5 63 635 64 64.5

Figure 11: Trade-off Between Perfor-
mance (SR) and GFLOPs

