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Introduction Generative Model

The generator G(r, z), given sensor readings r, can sample different possible reconstruc-

= This work tackles reconstruction of Computed Tomography (CT) images in the presence . . . L
P graphy (CT) 5 P fions by varying z. It is composed of two U-nets connected by Radon backprojection (A7)

of large amount of noise.

= Our goal is to infer an image z, given a noisy sinogram ys ~ n(Ax), where A is the

discrete Radon transform and n(-) is the noise distribution.
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= We design an end-to-end differentiable architecture that directly maps a noisy
sinogram to a denoised reconstruction.

= By combining reconstruction and denoising, we allow the model to mitigate the
reconstruction errors caused by the ill-conditioning of the Radon transform.

= \We train a generative model to sample from the posterior over tomographic images
given a noisy sinogram.

Noise Model

We simulate noisy readings taking into consideration shot and electronic noise, and quan-
tization errors as follows

z ~ Pois(exp(s —y)) + N (0, ¢€)
r = clamp(round(z/k), 0,2" — 1)

where exp(s) is the X-ray intensity, b is the number of bits used by the detector and k is a
scaling parameter.

We assume that, given readings r (that are integer values), sinograms are distributed as
ylr ~ N(u(r), diag(a?(r))), where u(-) and o(-) can be modelled by CNNs. We train pu(-)
and o(-) networks to minimize the negative log-likelihood.

Reconstruction Model
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Figure 1:Reconstruction results using FBP compared with 4 samples generated by the proposed GAN. Notice
that, as signal increases, GAN reconstructions become more similar to one another.
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Figure 2:Progress of our iterative algorithm on two candidate reconstructions
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The input z is fed near the end of the model to make the computation of V,.G(r, z) efficient.
The structure of the block that receives z is depicted in Figure 3.

Training

We build on the WGAN]1] framework and train G' to minimize (z uniformly distributed over
the sphere):
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Simultaneously, we train a discriminator D to minimize E;|D(z)]
enforcing || D||; < c using Spectral Normalization [2].

Avoiding mode collapse

To avoid mode collapse, we push the distribution of AG(r, z) towards N (u(r), diag(a?(r))).
We generate two different reconstructions for each noisy reading and project them into
sinograms y; = AG(r,z1) and yo = AG(r,z9). Then, we fit a normal distribution with
diagonal covariance and compare it against N (u(r), diag(a?(r))) using the Kullback-Leibler
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Our model is composed of two U-nets[3] connected by Radon backprojection (A*): A Cony bl Sptit b Concat bl Res Blocks g1 | g2 | SSIM  Parameters| FPS divergence:
T T FBP| L |76.6% 6.30-10° |211 . - . - (
6 1ty a\r Y 1 —
@_) Embedding » Conv 2D f AT 3 Pos Features 3 Conv 2D —— =P X F8b) XL 76.7%) 9.37- 10 178 Hy : + Z 2log (—> i (—p> where 229 :
— — T FBP| XXL | 76.9% 1.56-107 121 op o(r))
= = Upscale XXS|S-64176.7% 2.63-10° 239 Using this in place of the first term of (1) solves mode collapse without reducing training
U-net Block —{ U-net Block U-net Block —1{ U-net Block XS | M 1 769% 4.12-10° 1187 stability
[ T [ T @ S | L |774% 6.93-10° |152
X X Iterative improvement of reconstructions
Wity el )= Yot LElloeis Whaueetp Lokl )= Joets LBllores Figure 3:Structure of the modified U-net block used ~ Figure 4:Comparison of denoising results using FBP P
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= The first U-net (g1) denoises and filters the sinogram while the second (¢9) denoises the
reconstruction.

= Sensor readings (r) are converted into floating point features using an embedding layer.

= The first layer of g9 uses positional embeddings (which are concatenated to the input)
to encode pixel coordinates.

= U-net blocks use strided convolutions for down-sampling and bilinear interpolation for
up-sampling.

to insert z into the generator. based models (top) and end-to-end models (bottom).

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML17, page 214-223. JMLR.org, 2017.

[2] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks.
In International Conference on Learning Representations, 2018.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention, pages 234--2471. Springer, 2015.

The reconstruction produced by our generator can be iteratively improved using projected
gradient to minimize ||AG(r, z) — u(r)Hg(T) + AD(G(r, z)) subject to ||z]| = 1.

Results

Reconstruction quality of our model is compared against model based on FBP using struc-
tured similarity (SSIM) on the Deeplesion dataset. Table 4 reports the results of different
model sizes together with inference speed measured in frames per second (FPS). From the
table it can be noticed that end-to-end models achieve a more accurate reconstruction
than FBP based models while being faster.
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