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Introduction

This work tackles reconstruction of Computed Tomography (CT) images in the presence

of large amount of noise.

Our goal is to infer an image x, given a noisy sinogram yδ ∼ n(Ax), where A is the

discrete Radon transform and n(·) is the noise distribution.

Contributions

We design an end-to-end differentiable architecture that directly maps a noisy

sinogram to a denoised reconstruction.

By combining reconstruction and denoising, we allow the model to mitigate the

reconstruction errors caused by the ill-conditioning of the Radon transform.

We train a generative model to sample from the posterior over tomographic images

given a noisy sinogram.

Noise Model

We simulate noisy readings taking into consideration shot and electronic noise, and quan-

tization errors as follows

z ∼ Pois(exp(s − y)) + N(0, ε)
r = clamp(round(z/k), 0, 2b − 1)

where exp(s) is the X-ray intensity, b is the number of bits used by the detector and k is a

scaling parameter.

We assume that, given readings r (that are integer values), sinograms are distributed as

y|r ∼ N (µ(r), diag(σ2(r))), where µ(·) and σ(·) can be modelled by CNNs. We train µ(·)
and σ(·) networks to minimize the negative log-likelihood.

Reconstruction Model

Our model is composed of two U-nets[3] connected by Radon backprojection (AT ):
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The first U-net (g1) denoises and filters the sinogram while the second (g2) denoises the
reconstruction.

Sensor readings (r) are converted into floating point features using an embedding layer.

The first layer of g2 uses positional embeddings (which are concatenated to the input)

to encode pixel coordinates.

U-net blocks use strided convolutions for down-sampling and bilinear interpolation for

up-sampling.

Figure 1:Reconstruction results using FBP compared with 4 samples generated by the proposed GAN. Notice

that, as signal increases, GAN reconstructions become more similar to one another.

Figure 2:Progress of our iterative algorithm on two candidate reconstructions
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Figure 3:Structure of the modified U-net block used

to insert z into the generator.

g1 g2 SSIM Parameters FPS

FBP L 76.6% 6.30 · 106 211

FBP XL 76.7% 9.37 · 106 178

FBP XXL 76.9% 1.56 · 107 121

XXS S-64 76.7% 2.63 · 106 239

XS M 76.9% 4.12 · 106 187

S L 77.4% 6.93 · 106 152

Figure 4:Comparison of denoising results using FBP

basedmodels (top) and end-to-endmodels (bottom).
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Generative Model

The generator G(r, z), given sensor readings r, can sample different possible reconstruc-

tions by varying z. It is composed of two U-nets connected by Radon backprojection (AT ):
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The input z is fed near the end of the model to make the computation of∇zG(r, z) efficient.

The structure of the block that receives z is depicted in Figure 3.

Training

We build on theWGAN[1] framework and train G to minimize (z uniformly distributed over

the sphere):
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Simultaneously, we train a discriminator D to minimize Ex[D(x)] − Er,z[D(G(r, z))] while
enforcing ‖D‖L ≤ c using Spectral Normalization [2].

Avoiding mode collapse

To avoid mode collapse, we push the distribution of AG(r, z) towards N (µ(r), diag(σ2(r))).
We generate two different reconstructions for each noisy reading and project them into

sinograms y1 = AG(r, z1) and y2 = AG(r, z2). Then, we fit a normal distribution with

diagonal covariance and compare it against N (µ(r), diag(σ2(r))) using the Kullback–Leibler
divergence:∥∥∥y1 + y2
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Using this in place of the first term of (1) solves mode collapse without reducing training

stability.

Iterative improvement of reconstructions

The reconstruction produced by our generator can be iteratively improved using projected

gradient to minimize ‖AG(r, z) − µ(r)‖2
σ(r) + λD(G(r, z)) subject to ‖z‖ = 1.

Results

Reconstruction quality of our model is compared against model based on FBP using struc-

tured similarity (SSIM) on the DeepLesion dataset. Table 4 reports the results of different

model sizes together with inference speed measured in frames per second (FPS). From the

table it can be noticed that end-to-end models achieve a more accurate reconstruction

than FBP based models while being faster.

https://arxiv.org/abs/2010.14933
https://arxiv.org/abs/2010.14933

