
Published as a conference paper at ICLR 2024

A RELATED WORKS

Offline RL. Ensuring that the policy distribution remains close to the data distribution is crucial for
offline RL, as distributional shift can lead to unreliable estimation (Levine et al., 2020). Offline RL
algorithms typically fall into two categories to address this: those that enforce policy constraints on
the learned policy (Wang et al., 2018; Fujimoto et al., 2019; Peng et al., 2019; Li et al., 2020; Fuji-
moto & Gu, 2021; Kostrikov et al., 2021; Chen et al., 2021; Emmons et al., 2021; Sun et al., 2024; Xu
et al., 2023), and those that learn pessimistic value functions to penalize OOD actions (Kumar et al.,
2020; Yu et al., 2020; An et al., 2021; Bai et al., 2022; Yang et al., 2022a; Ghasemipour et al., 2022;
Sun et al., 2022a; Nikulin et al., 2023). Among these algorithms, ensemble-based approaches (An
et al., 2021; Ghasemipour et al., 2022) demonstrate superior performance by estimating the lower-
confidence bound (LCB) of Q values for OOD actions based on uncertainty estimation (Loquercio
et al., 2020; Sun et al., 2022b). Additionally, imitation-based (Emmons et al., 2021) or weighted
imitation-based algorithms (Wang et al., 2018; Nair et al., 2020; Kostrikov et al., 2021) generally
enjoy better simplicity and stability compared to other pessimism-based approaches. Studies in
offline goal-conditioned RL (Yang et al., 2023; 2022b) further demonstrate that weighted imita-
tion learning offers improved generalization compared to pessimism-based offline RL methods. In
addition to traditional offline RL methods, recent studies employ advanced techniques such as trans-
former (Chen et al., 2021; Chebotar et al., 2023; Yamagata et al., 2023) and diffusion models (Janner
et al., 2022; Hansen-Estruch et al., 2023; Wang et al., 2022) for sequence modeling or function class
enhancement, thereby increasing the potential of offline RL to tackle more challenging tasks.

Offline RL Theory. There is a large body of literature (Jin et al., 2021; Rashidinejad et al., 2021;
Zanette et al., 2021; Xie et al., 2021a;b; Uehara & Sun, 2021; Shi et al., 2022; Zhong et al., 2022; Cui
& Du, 2022; Xiong et al., 2022; Li et al., 2022; Cheng et al., 2022) dedicating to the development
of pessimism-based algorithms for offline RL. These algorithms can provably efficiently find near-
optimal policies with only the partial coverage condition. However, these works do not consider the
corrupted data. Moreover, when the cumulative corruption level is sublinear, i.e., ⇣ = o(N), our
algorithm can handle the corrupted data under similar partial coverage assumptions.

Robust RL. One type of robust RL is the distributionally robust RL, which aims to learn a policy
that optimizes the worst-case performance across MDPs within an uncertainty set, typically framed
as a Robust MDP problem (Nilim & Ghaoui, 2003; Iyengar, 2005; Ho et al., 2018; Moos et al.,
2022). Hu et al. (2022) prove that distributionally robust RL can effectively reduce the sim-to-real
gap. Besides, numerous studies in the online setting have explored robustness to perturbations on
observations (Zhang et al., 2020; 2021), actions (Pinto et al., 2017; Tessler et al., 2019), rewards
(Wang et al., 2020; Husain et al., 2021), and dynamics (Mankowitz et al., 2019). There is also
a line of theory works (Lykouris et al., 2021; Wu et al., 2021; Wei et al., 2022; Ye et al., 2023a)
studying online corruption-robust RL. In the offline setting, a number of works focus on testing-time
robustness or distributional robustness in offline RL (Zhou et al., 2021; Shi & Chi, 2022; Hu et al.,
2022; Yang et al., 2022a; Panaganti et al., 2022; Wen et al., 2023; Blanchet et al., 2023). Regarding
the training-time robustness of offline RL, Li et al. (2023) investigated reward attacks in offline
RL, revealing that certain dataset biases can implicitly enhance offline RL’s resilience to reward
corruption. Wu et al. (2022) propose a certification framework designed to ascertain the number
of tolerable poisoning trajectories in relation to various certification criteria. From a theoretical
perspective, Zhang et al. (2022) studied offline RL under contaminated data. One concurrent work
(Ye et al., 2023b) leverages uncertainty weighting to tackle reward and dynamics corruption with
theoretical guarantees. Different from prior work, we propose an algorithm that is both provable and
practical under diverse data corruption on all elements.

Robust Imitation Learning. Robust imitation learning focuses on imitating the expert policy using
corrupted demonstrations (Liu et al., 2022) or a mixture of expert and non-expert demonstrations
(Wu et al., 2019; Tangkaratt et al., 2020b;a; Sasaki & Yamashina, 2020). These approaches primarily
concentrate on noise or attacks on states and actions, without considering the future return. In
contrast, robust offline RL faces the intricate challenges associated with corruption in rewards and
dynamics.

Heavy-tailedness in RL. In the realm of RL, Zhuang & Sui (2021); Huang et al. (2023) delved
into the issue of heavy-tailed rewards in tabular Markov Decision Processes (MDPs) and function
approximation, respectively. There is also a line of works (Bubeck et al., 2013; Shao et al., 2018;

16

Published as a conference paper at ICLR 2024

Xue et al., 2020; Zhong et al., 2021; Huang et al., 2022; Kang & Kim, 2023) studying the heavy-
tailed bandit, which is a special case of MDPs. Besides, Garg et al. (2021) investigated the heavy-
tailed gradients in the training of Proximal Policy Optimization. In contrast, our work addresses the
heavy-tailed target distribution that emerges from data corruption.

Huber Loss in RL. The Huber loss, known for its robustness to outliers, has been widely employed
in the Deep Q-Network (DQN) literature, (Dabney et al., 2018; Agarwal et al., 2020; Patterson
et al., 2022). However, Ceron & Castro (2021) reevaluated the Huber loss and discovered that it
fails to outperform the MSE loss on MinAtar environments. In our study, we leverage the Huber
loss to address the heavy-tailedness in Q targets caused by data corruption, and we demonstrate its
remarkable effectiveness.

B ALGORITHM PSEUDOCODE

The pseudocode of RIQL and IQL can be found in Algorithm 1 and Algorithm 2, respectively:

Algorithm 1: Robust IQL algorithm
Initialize policy ⇡� and value function V , Q✓i , i 2 [1,K] ;
Normalize the observation according to Section 5.1 ;
for training step= 1, 2, . . . , T do

Sample a mini-batch from the offline dataset: {(s, a, r, s0)} ⇠ D;
Update value function V to minimize

LV () = E(s,a)⇠D [L⌧2(Q↵(s, a) � V (s))] ;

Update {Q✓i}
K

i=1 independently to minimize

LQ(✓i) = E(s,a,r,s0)⇠D[l
�

H
(r + �V (s

0) � Q✓i(s, a))];

Update policy ⇡� to maximize

L⇡(�) = E(s,a)⇠D [exp(�A↵(s, a)) log ⇡�(a|s)]

end for

Algorithm 2: IQL algorithm (Kostrikov et al., 2021) (for comparison)
Initialize policy ⇡� and value function V , Q✓ ;
for training step= 1, 2, . . . , T do

Sample a mini-batch from the offline dataset: {(s, a, r, s0)} ⇠ D;
Update value function V to minimize (2) ;
Update Q✓ to minimize (1) ;
Update policy ⇡� to maximize (3)

end for

C THEORETICAL ANALYSIS

C.1 PROOF OF THEOREM 3

Before giving the proof of Theorem 3, we first state the performance difference lemma.
Lemma 6 (Performance Difference Lemma (Kakade & Langford, 2002)). For any ⇡ and ⇡0, it holds
that

V ⇡
� V ⇡

0
=

1

1 � �
Es⇠d⇡Ea⇠⇡(·|s)[A

⇡
0
(s, a)].

Proof. See Kakade & Langford (2002) for a detailed proof.

17

Published as a conference paper at ICLR 2024

Proof of Theorem 3. First, we have

V ⇡IQL � V ⇡̃IQL = V ⇡IQL � V ⇡E

| {z }
imitation error 1

+V ⇡E � V ⇡̃E

| {z }
corruption error

+V ⇡̃E � V ⇡̃IQL

| {z }
imitation error 2

.

We then analyze these three error terms respectively.

Corruption Error. By the performance difference lemma (Lemma 6), we have

V ⇡E � V ⇡̃E = �
1

1 � �
Es⇠d

⇡̃EEa⇠⇡̃E(·|s)[A
⇡E(s, a)]

=
1

1 � �
Es⇠d

⇡̃EEa⇠⇡̃E(·|s)[V
⇡E(s) � Q⇡E(s, a)]

=
1

1 � �
Es⇠d

⇡̃E

⇥
Ea⇠⇡E(·|s)[Q

⇡E(s, a)] � Ea⇠⇡̃E(·|s)[Q
⇡E(s, a)]

⇤

Rmax

(1 � �)2
Es⇠d

⇡̃E [k⇡̃E(· | s) � ⇡E(· | s)k1], (11)

where the second inequality uses the fact that A⇡E(s, a) = Q⇡E(s, a) � V ⇡E(s), and the last in-
equality is obtained by Hölder’s inequality and the fact that kQ⇡Ek1 Rmax/(1��). By Pinsker’s
inequality, we further have

Es⇠d
⇡̃E [k⇡̃E(· | s) � ⇡E(· | s)k1] Es⇠d

⇡̃E

⇥q
2KL

�
⇡̃E(· | s),⇡E(· | s)

�⇤

s

2E(s,a)⇠d
⇡̃E log

⇡̃E(a | s)

⇡E(a | s)

s

2ME(s,a)⇠dD log
⇡̃E(a | s)

⇡E(a | s)

=

vuut2M

N

NX

i=1

log
⇡̃E(ai | si)

⇡E(ai | si)
, (12)

where the second inequality follows from Jensen’s inequality and the definition of KL-
divergence, the third inequality is obtained by the coverage assumption (Assumption 2) that
sup

s,a
[d⇡̃E(s, a)/dD(s, a)] M , and the last inequality uses the definition of dD. Recall that

⇡E and ⇡̃E take the following forms:

⇡E(a | s) / ⇡µ(a | s) · exp(� · [T V ⇤
� V ⇤](s, a)),

⇡̃E(a | s) / ⇡D(a | s) · exp(� · [T̃ V ⇤
� V ⇤](s, a)).

We have
⇡̃E(ai | si)

⇡E(ai | si)
=
⇡D(ai | si) · exp(� · [T̃ V ⇤

� V ⇤](si, ai))

⇡µ(ai | si) · exp(� · [T V ⇤ � V ⇤](si, ai))

⇥

P
a2A

⇡µ(a | si) · exp(� · [T V ⇤
� V ⇤](si, a))P

a2A
⇡D(a | si) · exp(� · [T̃ V ⇤ � V ⇤](si, a))

.

(13)

By the definition of corruption levels in Assumption 1, we have

⇣i = k[T V](si, a) � [T̃ V](si, a)k1, max
n⇡D(a | si)

⇡µ(a | si)
,
⇡µ(a | si)

⇡D(a | si)

o
 ⇣ 0

i
, 8a 2 A.

This implies that

⇡D(ai | si) · exp(� · [T̃ V ⇤
� V ⇤](si, ai))

⇡µ(ai | si) · exp(� · [T V ⇤ � V ⇤](si, ai))
 ⇣ 0

i
· exp(�⇣i)

⇡µ(a | si) · exp(� · [T V ⇤
� V ⇤](si, a))

⇡D(a | si) · exp(� · [T̃ V ⇤ � V ⇤](si, a))
 ⇣ 0

i
· exp(�⇣i), 8a 2 A.

(14)

18

Published as a conference paper at ICLR 2024

Plugging (14) into (13), we have

⇡̃E(ai | si)

⇡E(ai | si)
 ⇣ 0

i
· exp(�⇣i) ·

⇣ 0
i
· exp(�⇣i)

P
a2A

⇡D(a | si) · exp(� · [T̃ V ⇤
� V ⇤](si, a))P

a2A
⇡D(a | si) · exp(� · [T̃ V ⇤ � V ⇤](si, a))

= ⇣ 0
i

2
· exp(2�⇣i). (15)

Combining (11), (12), and (15), we have

V ⇡E � V ⇡̃E
2Rmax

(1 � �)2

vuutM

N

NX

i=1

(log ⇣ 0
i
+ 2�⇣i) =

2Rmax

(1 � �)2

r
M⇣

N
, (16)

where the last equality uses � = 1 and the definition of ⇣ in Assumption 1.

Imitation Error 1. Following the derivation of (11), we have

V ⇡IQL � V ⇡E
Rmax

(1 � �)2
Es⇠d

⇡E [k⇡E(· | s) � ⇡IQL(· | s)k1]

p
2Rmax

(1 � �)2
Es⇠d

⇡E [
q

KL(⇡E(· | s),⇡IQL(· | s))]

p
2Rmax

(1 � �)2

q
Es⇠d

⇡E [KL(⇡E(· | s),⇡IQL(· | s))]

p
2MRmax

(1 � �)2

q
Es⇠µ[KL(⇡E(· | s),⇡IQL(· | s))] =

p
2MRmax

(1 � �)2
p
✏1, (17)

where the second inequality uses Pinsker’s inequality, the third inequality is obtained by Jensen’s
inequality, the fourth inequality uses Assumption 2, and the final equality follows from the definition
of ✏1.

Imitation Error 2. By the performance difference lemma (Lemma 6) and the same derivation
of (11), we have

V ⇡̃E � V ⇡̃IQL =
Rmax

1 � �
Es⇠d

⇡̃EEa⇠⇡̃E(·|s)[A
⇡̃IQL(s, a)]

Rmax

(1 � �)2
Es⇠d

⇡̃E [k⇡̃E(· | s) � ⇡̃IQL(· | s)k1].

By the same derivation of (17), we have

V ⇡̃E � V ⇡̃IQL

p
2MRmax

(1 � �)2

q
Es⇠D[KL(⇡̃E(· | s), ⇡̃IQL(· | s))]

p
2MRmax

(1 � �)2
p
✏2. (18)

Putting Together. Combining (16), (17), and (18), we obtain that

V ⇡IQL � V ⇡̃IQL

p
2MRmax

(1 � �)2
[
p
✏1 +

p
✏2] +

2Rmax

(1 � �)2

r
M⇣

N
,

which concludes the proof of Theorem 3.

Remark 7. We would like to make a comparison with Zhang et al. (2022), a theory work about
offline RL with corrupted data. They assume that ✏N data points are corrupted and propose a least-
squares value iteration (LSVI) type algorithm that achieves an O(

p
✏) optimality gap by ignoring

other parameters. When applying our results to their setting, we have ⇣ ✏N , which implies that
our corruption error term O(

p
⇣/N) O(

p
✏). This matches the result in Zhang et al. (2022),

which combines LSVI with a robust regression oracle. However, their result may not readily apply to
our scenario, given that we permit complete data corruption (✏ = 1). Furthermore, from the empir-
ical side, IQL does not require any robust regression oracle and outperforms LSVI-type algorithms,
such EDAC and MSG.

19

Published as a conference paper at ICLR 2024

C.2 PROOF OF LEMMA 5

Proof of Lemma 5. We first state Theorem 1 of Sun et al. (2020) as follows.

Lemma 8 (Theorem 1 of Sun et al. (2020)). Consider the following statistical model:

yi = hxi,�
⇤
i + "i, with E ("i | xi) = 0,E(|"i|1+⌫) < 1, 81 i N.

By solving the Huber regression problem with a proper parameter �

�̂ = argmin
�

NX

i=1

l�
H
(yi � hxi,�i),

the obtained �̂ satisfies

k�̂ � �⇤
k2 . N�min{⌫/(1+⌫),1/2}.

Back to our proof, for any (si, ai, s0i) ⇠ D, we take (i) xi = {si, ai} 2 R|S⇥A| as
the one-hot vector at (si, ai) and (ii) yi = ri + �V (s0i). Moreover, we treat {r(s, a +
�Es0⇠P (·|s,a)[V (s

0)]}(s,a)2S⇥A 2 R|S⇥A| as �⇤. Hence, by Lemma 8 and the fact that k · k1

k · k2, we obtain

kQ̂(s, a) � r(s, a) � �Es0⇠P (·|s,a)[V (s
0)]k1 . N�min{⌫/(1+⌫),1/2},

where N is the size of dataset D. This concludes the proof of Lemma 5.

A Discussion about Recovering the Optimal Value Function We denote the optimal solutions
to (2) and (7) by V⌧ and Q⌧ , respectively. When N ! 1, we know

V⌧ (s) = E⌧
a⇠⇡D(·|s) [Q⌧ (s, a)] , Q⌧ (s, a) = r(s, a) + �Es0⇠P (·|s,a) [V⌧ (s

0)] ,

where E⌧
x⇠X

[x] denotes the ⌧ -th expectile of the random variable X . following the analy-
sis of IQL (Kostrikov et al., 2021, Theorem 3), we can further show that lim⌧!1 V⌧ (s) =
maxa2A s.t. ⇡D(a|s)>0 Q

⇤(s, a). With the Huber loss, we can further recover the optimal value func-
tion even in the presence of a heavy-tailed target distribution.

D IMPLEMENTATION DETAILS

D.1 DATA CORRUPTION DETAILS

We apply both random and adversarial corruption to the four elements, namely states, actions, re-
wards, and dynamics (or “next-states”). In our experiments, we primarily utilize the “medium-
replay-v2” and “medium-expert-v2” datasets from (Fu et al., 2020). These datasets are gathered
either during the training of a SAC agent or by combining equal proportions of expert demonstra-
tions and medium data, making them more representative of real-world scenarios. To control the
cumulative corruption level, we introduce two parameters, c and ✏. Here, c represents the corruption
rate within the dataset of size N , while ✏ denotes the corruption scale for each dimension. We detail
four types of random data corruption and a mixed corruption below:

• Random observation attack: We randomly sample c ·N transitions (s, a, r, s0), and mod-
ify the state to ŝ = s+� · std(s),� ⇠ Uniform[�✏, ✏]ds . Here, ds represents the dimension
of states and “std(s)” is the ds-dimensional standard deviation of all states in the offline
dataset. The noise is scaled according to the standard deviation of each dimension and is
independently added to each respective dimension.

• Random action attack: We randomly select c · N transitions (s, a, r, s0), and modify the
action to â = a + � · std(a),� ⇠ Uniform[�✏, ✏]da , where da represents the dimension of
actions and “std(a)” is the da-dimensional standard deviation of all actions in the offline
dataset.

20

Published as a conference paper at ICLR 2024

• Random reward attack: We randomly sample c · N transitions (s, a, r, s0) from D, and
modify the reward to r̂ ⇠ Uniform[�30 · ✏, 30 · ✏]. We multiply by 30 because we have
noticed that offline RL algorithms tend to be resilient to small-scale random reward corrup-
tion (as observed in (Li et al., 2023)), but would fail when faced with large-scale random
reward corruption.

• Random dynamics attack: We randomly sample c ·N transitions (s, a, r, s0), and modify
the next-step state ŝ0 = s0 + � · std(s0),� ⇠ Uniform[�✏, ✏]ds . Here, ds indicates the
dimension of states and “std(s0)” is the ds-dimensional standard deviation of all next-states
in the offline dataset.

• Random mixed attack: We randomly select c·N of the transitions and execute the random
observation attack. Subsequently, we again randomly sample c · N of the transitions and
carry out the random action attack. The same process is repeated for both reward and
dynamics attacks.

In addition, four types of adversarial data corruption are detailed as follows:

• Adversarial observation attack: We first pretrain an EDAC agent with a set of Qp

functions and a policy function ⇡p using clean dataset. Then, we randomly sample
c · N transitions (s, a, r, s0), and modify the states to ŝ = minŝ2Bd(s,✏) Qp(ŝ, a). Here,
Bd(s, ✏) = {ŝ||ŝ � s| ✏ · std(s)} regularizes the maximum difference for each state di-
mension. The Q function in the objective is the average of the Q functions in EDAC. The
optimization is implemented through Projected Gradient Descent similar to prior works
(Madry et al., 2017; Zhang et al., 2020). Specifically, We first initialize a learnable vector
z 2 [�✏, ✏]ds , and then conduct a 100-step gradient descent with a step size of 0.01 for
ŝ = s+ z · std(s), and clip each dimension of z within the range [�✏, ✏] after each update.

• Adversarial action attack: We use the pretrained EDAC agent with a group Qp functions
and a policy function ⇡p. Then, we randomly sample c · N transitions (s, a, r, s0), and
modify the actions to â = minâ2Bd(a,✏) Qp(s, â). Here, Bd(a, ✏) = {â||â � a| ✏ ·

std(a)} regularizes the maximum difference for each action dimension. The optimization
is implemented through Projected Gradient Descent, as discussed above.

• Adversarial reward attack: We randomly sample c·N transitions (s, a, r, s0), and directly
modify the rewards to: r̂ = �✏⇥ r.

• Adversarial dynamics attack: We use the pretrained EDAC agent with a group of Qp

functions and a policy function ⇡p. Then, we randomly select c · N transitions (s, a, r, s0),
and modify the next-step states to ŝ0 = minŝ02Bd(s0,✏) Qp(ŝ0,⇡p(ŝ0)). Here, Bd(s0, ✏) =
{ŝ0||ŝ0 � s0| ✏ · std(s0)}. The optimization is the same as discussed above.

Table 3: Hyperparameters used for RIQL under the random corruption benchmark.
Environments Attack Element N ↵ �

Halfcheetah

observation 5 0.1 0.1
action 3 0.25 0.5
reward 5 0.25 3.0

dynamics 5 0.25 3.0

Walker2d

observation 5 0.25 0.1
action 5 0.1 0.5
reward 5 0.1 3.0

dynamics 3 0.25 1.0

Hopper

observation 3 0.25 0.1
action 5 0.25 0.1
reward 3 0.25 1.0

dynamics 5 0.5 1.0

D.2 IMPLEMENTATION DETAILS OF IQL AND RIQL

For the policy and value networks of IQL and RIQL, we utilize an MLP with 2 hidden layers, each
consisting of 256 units, and ReLU activations. These neural networks are updated using the Adam

21

Published as a conference paper at ICLR 2024

Table 4: Hyperparameters used for RIQL under the adversarial corruption benchmark.
Environments Attack Element N ↵ �

Halfcheetah

observation 5 0.1 0.1
action 5 0.1 1.0
reward 5 0.1 1.0

dynamics 5 0.1 1.0

Walker2d

observation 5 0.25 1.0
action 5 0.1 1.0
reward 5 0.1 3.0

dynamics 5 0.25 1.0

Hopper

observation 5 0.25 1.0
action 5 0.25 1.0
reward 5 0.25 0.1

dynamics 5 0.5 1.0

optimizer with a learning rate of 3⇥10�4. We set the discount factor as � = 0.99, the target networks
are updated with a smoothing factor of 0.005 for soft updates. The hyperparameter � and ⌧ for IQL
and RIQL are set to 3.0 and 0.7 across all experiments. In terms of policy parameterization, we argue
that RIQL is robust to different policy parameterizations, such as deterministic policy and diagonal
Gaussian policy. For the main results, IQL and RIQL employ a deterministic policy, which means
that maximizing the weighted log-likelihood is equivalent to minimizing a weighted l2 loss on the
policy output: L⇡(�) = E(s,a)⇠D[exp(�A(s, a))ka�⇡�(s)k22]. We also include a discussion about
the diagonal Gaussian parameterization in Appendix E.4. In the training phase, we train IQL, RIQL,
and other baselines for 3⇥ 106 steps following (An et al., 2021), which corresponds to 3000 epochs
with 1000 steps per epoch. The training is performed using a batch size of 256. For evaluation,
we rollout each agent in the clean environment for 10 trajectories (maximum length equals 1000)
and average the returns. All reported results are averaged over four random seeds. As for the
specific hyperparameters of RIQL, we search K 2 {3, 5} and quantile ↵ 2 {0.1, 0.25, 0.5} for the
quantile Q estimator, and � 2 {0.1, 0.5, 1.0, 3.0} for the Huber loss. In most settings, we find that
the highlighted hyperparameters often yield the best results. The specific hyperparameters used for
the random and adversarial corruption experiment in Section 6.1 are listed in Table 3 and Table 4,
respectively. Our code is available at https://github.com/YangRui2015/RIQL, which is based on the
open-source library of CORL (Tarasov et al., 2022).

D.3 QUANTILE CALCULATION

To calculate the ↵-quantile for a group of Q function {Q✓i}
K

i=1, we can map ↵ 2 [0, 1] to the range
of indices [1,K] in order to determine the location of the quantile in the sorted input. If the quantile
lies between two data points Q✓i < Q✓j with indices i, j in the sorted order, the result is computed
according to the linear interpolation: Q↵ = Q✓i +(Q✓j �Q✓i) ⇤ fraction(↵⇥ (K � 1)+1), where
the “fraction” represents the fractional part of the computed index. As a special case, when K = 2,
Q↵ = (1�↵)min(Q✓0 , Q✓1)+↵max(Q✓0 , Q✓1), and Q↵ recovers the Clipped Double Q-learning
trick when ↵ = 0.

E ADDITIONAL EXPERIMENTS

E.1 ABLATION OF IQL

As observed in Figure 1, IQL demonstrates notable robustness against some types of data corruption.
However, it raises the question: which component of IQL contributes most to its robustness?
IQL can be interpreted as a combination of expectile regression and weighted imitation learning. To
understand the contribution of each component, we perform an ablation study on IQL under mixed
corruption in the Hopper and Walker tasks, setting the corruption rate to 0.1 and the corruption scale
to 1.0. Specifically, we consider the following variants:

IQL ⌧ = 0.7: This is the standard IQL baseline.

IQL ⌧ = 0.5: This variant sets ⌧ = 0.5 for IQL.

22

https://github.com/YangRui2015/RIQL

Published as a conference paper at ICLR 2024

IQL w/o Expectile: This variant removes the expectile regression that learns the value function and
instead directly learns the Q function to minimize E(s,a,r,s0)⇠D[(r+�Q(s0,⇡(s0))�Q(s, a))2], and
updating the policy to maximize E(s,a)⇠D[exp(Q(s, a) � Q(s,⇡(s))) log ⇡(a|s)].

ER w. Q gradient: This variant retains the expectile regression to learn the Q function and
V function, then uses only the learned Q function to perform a deterministic policy gradient:
max⇡[Q(s,⇡(s))].

Hopper Walker
0.0

0.5

1.0

1.5

2.0

2.5

⇥103 Mixed Attack

IQL � = 0.7

IQL � = 0.5

IQL w/o. Expectile

ER w. Q gradient

BC

Figure 8: Ablation results of IQL
under mixed attack.

The results are presented in Figure 8. From these, we can con-
clude that while expectile regression enhances performance, it is
not the key factor for robustness. On the one hand, IQL ⌧ = 0.7
outperforms IQL ⌧ = 0.5 and IQL w/o Expectile, confirming
that expectile regression is indeed an enhancement factor. On
the other hand, the performance of ER w. Q gradient drops to
nearly zero, significantly lower than BC, indicating that expectile
regression is not the crucial component for robustness. Instead,
the supervised policy learning scheme is proved to be the key to
achieving better robustness.

E.2 ABLATION OF OBSERVATION NORMALIZATION

Figure 9 illustrates the comparison between IQL and “IQL (norm)” on the medium-replay and
medium-expert datasets under various data corruption scenarios. In most settings, IQL with nor-
malization surpasses the performance of the standard IQL. This finding contrasts with the general
offline Reinforcement Learning (RL) setting, where normalization does not significantly enhance
performance, as noted by (Fujimoto & Gu, 2021). These results further justify our decision to in-
corporate observation normalization into RIQL.

(a) (b) (c) (d)

Figure 9: Comparison of IQL w/ and w/o observation normalization.

E.3 EVALUATION UNDER THE MIXED CORRUPTION

We conducted experiments under mixed corruption settings, where corruption independently oc-
curred on four elements: state, actions, rewards, and next-states (or dynamics). The results for
corruption rates of 0.1/0.2 and corruption scales of 1.0/2.0 on the ”medium-replay” datasets are
presented in Figure 10 and Figure 11. From the figures, it is evident that RIQL consistently out-
performs other baselines by a significant margin in the mixed attack settings with varying
corruption rates and scales. Among the baselines, EDAC and MSG continue to struggle in this
corruption setting. Besides, CQL also serves as a reasonable baseline, nearly matching the perfor-
mance of IQL in such mixed corruption settings. Additionally, SQL also works reasonably under a
small corruption rate of 0.1 but fails under a corruption rate of 0.2.

E.4 EVALUATION OF DIFFERENT POLICY PARAMETERIZATION

In the official implementation of IQL (Kostrikov et al., 2021), the policy is parameterized as a
diagonal Gaussian distribution with a state-independent standard deviation. However, in the data
corruption setting, our findings indicate that this version of IQL generally underperforms IQL with
a deterministic policy. This observation is supported by Figure 12, where we compare the perfor-
mance under the mixed attack with a corruption rate of 0.1. Consequently, we use the deterministic

23

Published as a conference paper at ICLR 2024

Figure 10: Results under random mixed attack with a corruption rate of 0.1.

Figure 11: Results under random mixed attack with a corruption rate of 0.2.

Figure 12: Comparison of different policy parameterizations under random mixed attack with a
corruption rate of 0.1.

policy for both IQL and RIQL by default. Intriguingly, RIQL demonstrates greater robustness to
the policy parameterization. In Figure 12, “RIQL - Gaussian” can even surpass “RIQL - Determin-
istic” and exhibits lower performance variance. We also note the consistent improvement of RIQL
over IQL under different policy parameterizations, which serves as an additional advantage of RIQL.
Based on our extensive experiments, we have noticed that “RIQL - Gaussian” offers greater stabil-
ity and necessitates less hyperparameter tuning than “RIQL - Deterministic”. Conversely, “RIQL -
Deterministic” requires more careful hyperparameter tuning but can yield better results on average
in scenarios with higher corruption rates.

24

Published as a conference paper at ICLR 2024

Table 5: Average normalized performance under random data corruption (scale 1.0) using
“medium-expert” datasets. Results are averaged over 4 random seeds.

Environment Attack Element BC EDAC MSG CQL SQL IQL RIQL (ours)

Halfcheetah

observation 51.6±2.9 -4.0±3.2 -4.9±4.5 3.4±1.6 30.5±5.1 71.0±3.4 79.7±7.2
action 61.2±5.6 45.4±3.2 32.8±4.1 67.5±9.7 89.8±0.4 88.6±1.2 92.9±0.6
reward 59.9±3.3 51.8±6.6 28.7±6.0 87.3±5.1 92.9±0.7 93.4±1.2 93.2±0.5
dynamics 59.9±3.3 25.4±11.3 2.5±2.4 54.0±1.9 78.3±3.2 80.4±2.0 92.2±0.9

Walker2d

observation 106.2±1.7 -0.4±0.0 -0.3±0.1 15.0±2.6 17.5±4.3 71.1±23.5 101.3±11.8
action 89.5±17.3 48.4±20.5 3.8±1.7 109.2±0.3 109.7±0.7 112.7±0.5 113.5±0.5
reward 97.9±15.4 35.0±29.8 -0.4±0.3 104.2±5.4 110.1±0.4 110.7±1.3 112.7±0.6
dynamics 97.9±15.4 0.2±0.5 3.6±6.7 82.0±11.9 93.5±3.7 100.3±7.5 112.8±0.2

Hopper

observation 52.7±1.6 0.8±0.0 0.9±0.1 46.2±12.9 1.3±0.1 23.2±33.6 76.2±24.2
action 50.4±1.5 23.5±6.0 18.8±10.6 83.5±13.5 59.1±32.0 77.8±16.4 92.6±38.9
reward 52.4±1.5 0.7±0.0 3.9±5.4 90.8±3.6 85.4±16.3 78.6±31.0 91.4±25.9
dynamics 52.4±1.5 5.6±6.5 2.1±2.4 26.7±7.5 75.8±9.3 69.7±25.3 84.6±15.4

Average score " 69.3 19.4 7.6 64.2 70.3 81.5 95.3

E.5 EVALUATION ON THE MEDIUM-EXPERT DATASETS

In addition to the “medium-replay” dataset, which closely resembles real-world environments, we
also present results using the ”medium-expert” dataset under random corruption in Table 5. The
“medium-expert” dataset is a mixture of 50% expert and 50% medium demonstrations. As a re-
sult of the inclusion of expert demonstrations, the overall performance of each algorithm is much
better compared to the results obtained from the “medium-replay” datasets. Similar to the main
results, EDAC and MSG exhibit very low average scores across various data corruption scenarios.
Additionally, CQL and SQL only manage to match the performance of BC. IQL, on the other hand,
outperforms BC by 17.6%, confirming its effectiveness. Most notably, RIQL achieves the highest
score in 10 out of 12 settings and improves by 16.9% over IQL. These results align with our
findings in the main paper, further demonstrating the superior effectiveness of RIQL across different
types of datasets.

Table 6: Average normalized performance under random corruption of scale 2.0 using the
“medium-replay” datasets. Results are averaged over 4 random seeds.

Environment Attack Element BC EDAC MSG CQL SQL IQL RIQL (ours)

Walker2d

observation 16.1±5.5 -0.4±0.0 -0.4±0.1 12.5±21.4 0.7±1.2 27.4±5.7 50.3±11.5
action 13.3±2.5 77.5±3.4 16.3±3.7 15.4±9.1 79.0±5.2 69.9±2.8 82.9±3.8
reward 16.0±7.4 1.2±1.6 9.3±5.9 48.4±4.6 0.2±0.9 56.0±7.4 81.5±4.6
dynamics 16.0±7.4 -0.1±0.0 4.2±3.8 0.1±0.4 18.5±3.6 12.0±5.6 77.8±6.3

Hopper

observation 17.6±1.2 2.7±0.8 7.1±5.8 29.2±1.9 13.7±3.1 69.7±7.0 55.8±17.4
action 16.0±3.1 31.9±3.2 35.9±8.3 19.2±0.5 38.8±1.7 75.1±18.2 92.7±11.0
reward 19.5±3.4 6.4±5.0 42.1±14.2 51.7±14.8 41.5±4.2 62.1±8.3 85.0±17.3
dynamics 19.5±3.4 0.8±0.0 3.7±3.2 0.8±0.1 14.4±2.7 0.9±0.3 45.8±9.3

Average score " 16.8 15.0 14.8 22.2 25.9 46.6 71.6

Table 7: Average normalized performance under adversarial corruption of scale 2.0 using the
“medium-replay” datasets. Results are averaged over 4 random seeds.

Environment Attack Element BC EDAC MSG CQL SQL IQL RIQL (ours)

Walker2d

observation 13.0±1.5 3.9±6.7 3.5±3.9 63.3±5.1 2.7±3.0 47.0±8.3 71.5±6.4
action 0.3±0.5 9.2±2.4 4.8±0.4 1.7±3.5 5.6±1.4 3.0±0.9 7.9±0.5
reward 16.0±7.4 -0.1±0.0 9.1±3.8 28.4±19.2 -0.3±0.0 22.9±12.5 81.1±2.4
dynamics 16.0±7.4 2.2±1.8 1.9±0.2 4.2±2.2 3.4±1.9 1.7±1.0 66.0±7.7

Hopper

observation 17.0±5.4 23.9±10.6 19.9±6.6 52.6±8.8 14.0±1.2 44.3±2.9 57.0±7.6
action 9.9±4.6 23.3±4.7 22.8±1.7 14.7±0.9 19.3±3.1 21.8±4.9 23.8±4.0
reward 19.5±3.4 1.2±0.5 22.9±1.1 22.9±1.1 0.6±0.0 24.7±1.6 35.5±6.7
dynamics 19.5±3.4 0.6±0.0 0.6±0.0 0.6±0.0 24.3±3.2 0.7±0.0 29.9±1.5

Average score " 13.9 8.0 10.7 23.6 8.7 20.8 46.6

25

Published as a conference paper at ICLR 2024

E.6 EVALUATION UNDER LARGE-SCALE CORRUPTION

In our main results, we focused on random and adversarial corruption with a scale of 1.0. In this
subsection, we present an empirical evaluation under a corruption scale of 2.0 using the “medium-
replay” datasets. The results for random and adversarial corruptions are presented in Table 6 and
Table 7, respectively.

In both tables, RIQL achieves the highest performance in 7 out of 8 settings, surpassing IQL by
53.5% and 124.0%, respectively. Most algorithms experience a significant decrease in performance
under adversarial corruption at the same scale, with the exception of CQL. However, it is still not
comparable to our algorithm, RIQL. These results highlight the superiority of RIQL in handling
large-scale random and adversarial corruptions.

E.7 TRAINING TIME

We report the average epoch time on the Hopper task as a measure of computational cost in Table 8.
From the table, it is evident that BC requires the least training time, as it has the simplest algo-
rithm design. IQL requires more than twice the amount of time compared to BC, as it incorporates
expectile regression and weighted imitation learning. Additionally, RIQL requires a comparable
computational cost to IQL, introducing the Huber loss and quantile Q estimators. On the other hand,
EDAC, MSG, and CQL require significantly longer training time. This is primarily due to their re-
liance on a larger number of Q ensembles and additional computationally intensive processes, such
as the approximate logsumexp via sampling in CQL. Notably, DT necessitates the longest epoch
time, due to its extensive transformer-based architecture. The results indicate that RIQL achieves
significant gains in robustness without imposing heavy computational costs.

Table 8: Average Epoch Time.
Algorithm BC DT EDAC MSG CQL IQL RIQL

Time (s) 3.8±0.1 28.9±0.2 14.1±0.3 12.0±0.8 22.8±0.7 8.7±0.3 9.2±0.4

Figure 13: Hyperparameter study for � in the Huber loss under the mixed attack.

E.8 HYPERPARAMETER STUDY

In this subsection, we investigate the impact of key hyperparameters in RIQL, namely � in the Huber
loss, and ↵, K in the quantile Q estimators. We conduct our experiments using the mixed attack,
where corruption is independently applied to each element (states, actions, rewards, and next-states)
with a corruption rate of 0.2 and a corruption scale of 1.0. The dataset used for this evaluation is the
“medium-replay” dataset of the Hopper and Walker environments.

Hyperparameter � In this evaluation, we set ↵ = 0.1 and K = 5 for RIQL. The value of �
directly affects the position of the boundary between the l1 loss and the l2 loss. As � approaches

26

Published as a conference paper at ICLR 2024

Figure 14: Hyperparameter study for ↵ in the quantile estimators under the mixed attack.

Figure 15: Hyperparameter study for K in the quantile estimators under the mixed attack.

0, the boundary moves far from the origin of coordinates, making the loss function similar to the
squared loss and resulting in performance closer to IQL. This can be observed in Figure 13, where
� = 0.1 is the closest to IQL. As � increases, the Huber loss becomes more similar to the l1 loss and
exhibits greater robustness to heavy-tail distributions. However, excessively large values of � can
decrease performance, as the l1 loss can also impact the convergence. This is evident in the results,
where � = 3.0 slightly decreases performance. Generally, � = 1.0 achieves the best or nearly the
best performance in the mixed corruption setting. However, it is important to note that the optimal
value of � also depends on the corruption type when only one type of corruption (e.g., state, action,
reward, and next-state) takes place. For instance, we find that � = 0.1 generally yields the best
results for state and action corruption, while � = 1 is generally optimal for the dynamics corruption.

Hyperparameter ↵ In this evaluation, we set � = 1.0 and K = 5 for RIQL. The value of ↵
determines the quantile used for estimating Q values and advantage values. A small ↵ results in a
higher penalty for the corrupted data, generally leading to better performance. This is evident in
Figure 14, where ↵ = 0.1 achieves the best performance in the mixed corruption setting. However,
as mentioned in Section 5.3, when only dynamics corruption is present, it is advisable to use a
slightly larger ↵, such as 0.25, to prevent the excessive pessimism in the face of dynamics corruption.

Hyperparameter K In this evaluation, we set ↵ = 0.1 and � = 1.0 for RIQL. Hyperparameter
K is used to adjust the quantile Q estimator for in-dataset penalty. From Figure 15, we can observe
that the impact of K is more pronounced in the walker2d task compared to the hopper task, whereas
the above hyperparameter ↵ has a greater influence on the hopper task. For the walker2d task, a
larger value of K leads to better performance. Overall, K = 5 achieves the best or nearly the best
performance in both settings. Therefore, we set K = 5 by default, considering both computational
cost and performance.

27

Published as a conference paper at ICLR 2024

Table 9: Comparison with additional baselines under random data corruption. Average normal-
ized scores are reported and the highest score is highlighted.

Environment Attack Element DT MSG UWMSG RIQL (ours)

Halfcheetah

observation 33.7±1.9 -0.2±2.2 2.1±0.4 27.3±2.4
action 36.3±1.5 52.0±0.9 53.8±0.6 42.9±0.6
reward 39.2±1.0 17.5±16.4 39.9±1.8 43.6±0.6
dynamics 33.7±1.9 1.7±0.4 3.6±2.0 43.1±0.2

Walker2d

observation 54.5±5.0 -0.4±0.1 1.5±2.0 28.4±7.7
action 10.3±3.1 25.3±10.6 61.2±9.9 84.6±3.3
reward 65.5±4.9 18.4±9.5 65.9±13.9 83.2±2.6
dynamics 54.5±5.0 7.4±3.7 6.5±2.8 78.2±1.8

Hopper

observation 65.2±12.1 6.9±5.0 11.3±4.0 62.4±1.8
action 15.5±0.7 37.6±6.5 82.0±17.6 90.6±5.6
reward 78.0±5.3 24.9±4.3 61.0±19.5 84.8±13.1
dynamics 65.2±12.1 12.4±4.9 18.7±4.6 51.5±8.1

Average score " 46.0 17.0 34.0 60.0

E.9 ADDITIONAL BASELINES

In addition to the baselines compared in the main paper, we compare RIQL to a sequence-modeling
baseline, Decision Transformer (DT) (Chen et al., 2021), and a recently proposed robust offline RL
algorithm for data corruption, UWMSG (Ye et al., 2023b). The results are presented in Table 9 and
Table 10. Overall, RIQL demonstrates robust performance compared to the two additional baselines.

In comparison to BC, DT demonstrates a notable improvement, highlighting the effectiveness of
sequence modeling. Furthermore, as DT employs a distinct sequence modeling approach from TD-
based methods, it does not store data in independent transitions {si, ai, ri, s0i}

N

i=1. Instead, it utilizes
a trajectory sequence {si

t
, ai

t
, ri

t
}
T

t=1 for i-th trajectory. Consequently, the observation corruption
and dynamics corruption are identical for DT. Analyzing Table 9 and Table 10, we can observe that
DT holds an advantage under observation corruption due to its ability to condition on historical infor-
mation rather than relying solely on a single state. Despite leveraging trajectory history information
and requiring 3.1 times the epoch time compared to RIQL, DT still falls significantly behind RIQL
in performance under both random and adversarial data corruption. Exploring the incorporation of
trajectory history, similar to DT, into RIQL could be a promising avenue for future research.

With regard to UWMSG, we observe its improvement over MSG, confirming its effectiveness with
uncertainty weighting. However, it is still more vulnerable to data corruption compared to RIQL.
We speculate that the explicit uncertainty estimation used in UWMSG is still unstable.

Table 10: Comparison with additional baselines under adversarial data corruption. Average
normalized scores are reported and the highest score is highlighted.

Environment Attack Element DT MSG UWMSG RIQL (ours)

Halfcheetah

observation 35.5±4.3 1.1±0.2 1.3±0.8 35.7±4.2
action 16.6±1.2 37.3±0.7 39.4±3.1 31.7±1.7
reward 37.0±2.6 47.7±0.4 43.8±0.8 44.1±0.8
dynamics 35.5±4.3 -1.5±0.0 10.9±1.8 35.8±2.1

Walker2d

observation 57.4±3.2 2.9±2.7 9.9±1.5 70.0±5.3
action 9.5±1.6 5.4±0.9 7.4±2.4 66.1±4.6
reward 64.9±5.4 9.6±4.9 52.9±12.1 85.0±1.5
dynamics 57.4±3.2 0.1±0.2 2.1±0.2 60.6±21.8

Hopper

observation 57.7±15.1 16.0±2.8 13.6±0.7 50.8±7.6
action 14.0±1.1 23.0±2.1 34.0±4.4 63.6±7.3
reward 68.6±10.5 22.6±2.8 23.6±2.1 65.8±9.8
dynamics 57.7±15.1 0.6±0.0 0.8±0.0 65.7±21.1

Average score " 42.7 13.7 20.0 56.2

28

Published as a conference paper at ICLR 2024

Figure 16: Ablations of RIQL under four types of data corruption.

E.10 ADDITIONAL ABLATION STUDY

In this subsection, we analyze the contributions of RILQ’s components in the presence of observa-
tion, action, reward, and dynamics corruption. Figure 16 illustrates the average normalized perfor-
mance of Walker and Hopper tasks on the medium-replay datasets. We consider three variants of
RIQL: RIQL without observation normalization (RIQL w/o norm), RIQL without the quantile Q
estimator (RIQL w/o quantile), and RIQL without the Huber loss (RIQL w/o Huber). In RIQL
w/o quantile, the Clipped Double Q trick used in IQL, is employed to replace the quantile Q esti-
mator in RIQL. Based on the figure, we draw the following conclusions for each component: (1)
normalization is beneficial for all four types of corruption, (2) quantile Q estimator is more effective
for observation and action corruption but less so for reward and dynamics corruption, (3) conversely,
the Huber loss is more useful for reward and dynamics corruption but less effective for observation
and action corruption. Overall, all three components contribute to the performance of RIQL.

F EVALUATION ON ANTMAZE TASKS

In this section, we present the evaluation of RIQL and baselines on a more challenging benchmark,
AntMaze, which introduces additional difficulties due to its sparse-reward setting. Specifically, we
assess four “medium” and “large” level tasks. Similar to the MuJoCo tasks, we consider random
data corruption, but with a corruption rate of 0.2 for all AntMaze tasks. We observe that algorithms
in AntMaze tasks are more sensitive to data noise, particularly when it comes to observation and
dynamics corruption. Therefore, we use smaller corruption scales for observation (0.3), action (1.0),
reward (30.0), and dynamics (0.3). The hyperparameters used for RIQL are list in Talbe 12.

As shown in Table 11, methods such as BC, DT, EDAC, and CQL struggle to learn meaningful
policies in the presence of data corruption. In contrast, IQL exhibits relatively higher robustness,
particularly under action corruption. RIQL demonstrates a significant improvement of 77.8% over
IQL, successfully learning reasonable policies even in the presence of all types of corruption. These
results further strengthen the findings in our paper and highlight the importance of RIQL.

Table 11: Average normalized performance under random data corruption on AntMaze tasks.
Environment Attack Element BC DT EDAC CQL IQL RIQL (ours)

antmaze-medium-play-v2

observation 0.0±0.0 0.0±0.0 0.0±0.0 0.8±1.4 7.4±5.0 18.0 ± 4.7
action 0.0±0.0 0.0±0.0 0.0±0.0 0.8±1.4 63.5 ± 5.4 64.6 ± 5.2
reward 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 12.4 ± 8.1 61.0 ± 5.8
dynamics 0.0±0.0 0.0±0.0 0.0±0.0 37.5±28.6 32.7 ± 8.4 63.2 ± 5.4

antmaze-medium-diverse-v2

observation 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 11.9 ± 6.9 12.5 ± 7.9
action 0.0±0.0 0.0±0.0 0.0±0.0 15.0±22.3 65.6 ± 4.6 62.3 ± 5.5
reward 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.3 ± 4.5 22.9 ± 17.9
dynamics 0.0±0.0 0.0±0.0 0.0±0.0 20.8±14.2 35.5 ± 8.5 41.8 ± 7.2

antmaze-large-play-v2

observation 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 27.3 ± 5.1
action 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 33.1 ± 6.2 33.2 ± 6.3
reward 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.6 ± 0.9 27.7 ± 8.0
dynamics 0.0±0.0 0.0±0.0 0.0±0.0 4.2±5.5 1.6 ± 1.5 25.0 ± 6.4

antmaze-large-diverse-v2

observation 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 24.9±10.7
action 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 33.7 ± 5.9 30.9 ± 9.4
reward 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.1 ± 1.1 20.2 ± 17.0
dynamics 0.0±0.0 0.0±0.0 0.0±0.0 4.2±7.2 2.5 ± 2.9 16.5±5.7

Average score " 0.0 0.0 0.0 5.2 19.4 34.5

29

Published as a conference paper at ICLR 2024

Table 12: Hyperparameters used for RIQL under the random corruption on the AntMaze Tasks.
Environments Attack Element N ↵ �

antmaze-medium-play-v2

observation 5 0.25 0.5
action 3 0.5 0.1
reward 3 0.5 0.5

dynamics 3 0.5 0.5

antmaze-medium-diverse-v2

observation 3 0.25 0.1
action 3 0.5 0.1
reward 3 0.25 0.1

dynamics 3 0.5 0.1

antmaze-large-play-v2

observation 3 0.25 0.5
action 3 0.25 0.1
reward 3 0.5 0.5

dynamics 3 0.5 1.0

antmaze-large-diverse-v2

observation 3 0.25 0.5
action 5 0.25 0.05
reward 3 0.25 0.5

dynamics 3 0.5 0.5

F.1 LEARNING CURVES OF THE BENCHMARK EXPERIMENTS

In Figure 17 and Figure 18, we present the learning curves of RIQL and other baselines on the
“medium-replay” datasets, showcasing their performance against random and adversarial corrup-
tion, respectively. The corruption rate is set to 0.3 and the corruption scale is set to 1.0. These
results correspond to Section 6.1 in the main paper. From these figures, it is evident that RIQL not
only attains top-level performance but also exhibits remarkable learning stability compared to other
baselines that can experience significant performance degradation during training. We postulate
that this is attributed to the inherent characteristics of the Bellman backup, which can accumulate
errors along the trajectory throughout the training process, particularly under the data corruption
setting. On the contrary, RIQL can effectively defend such effect and achieves both exceptional
performance and remarkable stability.

G DISCUSSION OF THE CORRUPTION SETTING

In our corruption setting, the states and next-states are independently corrupted. However, our work
does not consider the scenario where next-states are not explicitly saved in the dataset, meaning that
corrupting a next-state would correspond to corrupting another state in the same trajectory.

The motivations behind our chosen corruption setting are as follows:

• Our work aims to address a comprehensive range of data corruption types. Consequently,
conducting an independent analysis of each element’s vulnerability can effectively high-
light the disparities in their susceptibility.

• When data are saved into (s, a, r, s0) for offline RL, each element in the tuple can be subject
to corruption independently.

• Our corruption method aligns with the concept of ✏-Contamination in offline RL theo-
retical analysis (Zhang et al., 2022), which considers arbitrary corruption on the 4-tuples
(s, a, r, s0).

• Data corruption can potentially occur at any stage, such as storage, writing, reading, trans-
mission, or processing of data. When data is loaded into memory, there is also a possibility
of memory corruption and even intentional modifications by hackers. In the case of TD-
based offline RL methods, it is common practice to load 4-tuples (s, a, r, s0) into memory
and each element has the potential to be corrupted independently.

In the future, exploring the effects of data corruption in scenarios considering the dependence be-
tween states and next-states, or in the context of POMDP, holds promise for further research.

30

Published as a conference paper at ICLR 2024

(a) HalfCheetah

(b) Walker

(c) Hopper

Figure 17: Learning curves under random data corruption on the “medium-replay” datasets.

31

Published as a conference paper at ICLR 2024

(a) HalfCheetah

(b) Walker

(c) Hopper

Figure 18: Learning curves under adversarial data corruption on the “medium-replay” datasets.

32

	Introduction
	Related Works
	Preliminaries
	Offline RL under Diverse Data Corruption
	Empirical Observation
	Theoretical analysis

	Robust IQL for Diverse Data Corruption
	Observation Normalization
	Huber Loss for Robust Value Function Learning
	Penalizing Corrupted Data via In-dataset Uncertainty
	RIQL Algorithm

	Experiments
	Evaluation under Random and Adversarial Corruption
	Evaluation with Varying Corruption Rates
	Ablations

	Conclusion
	Related Works
	Algorithm Pseudocode
	Theoretical Analysis
	Proof of Theorem 3
	Proof of Lemma 5

	Implementation Details
	Data Corruption Details
	Implementation Details of IQL and RIQL
	Quantile Calculation

	Additional Experiments
	Ablation of IQL
	Ablation of Observation Normalization
	Evaluation under the Mixed Corruption
	Evaluation of Different Policy Parameterization
	Evaluation on the Medium-expert Datasets
	Evaluation under Large-scale Corruption
	Training Time
	Hyperparameter Study
	Additional Baselines
	Additional Ablation Study

	Evaluation on AntMaze Tasks
	Learning Curves of the Benchmark Experiments

	Discussion of the Corruption Setting

