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ABSTRACT
Recent advances in large language models (LLMs) have blurred the
boundary of high-quality text generation between humans and ma-
chines, which is favorable for generative text steganography. While,
current advanced steganographic mapping is not suitable for LLMs
since most users are restricted to accessing only the black-box API
or user interface of the LLMs, thereby lacking access to the training
vocabulary and its sampling probabilities. In this paper, we explore
a black-box generative text steganographic method based on the
user interfaces of large language models, which is called LLM-Stega.
The main goal of LLM-Stega is that the secure covert communi-
cation between Alice (sender) and Bob (receiver) is conducted by
using the user interfaces of LLMs. Specifically, We first construct a
keyword set and design a new encrypted steganographic mapping
to embed secret messages. Furthermore, to guarantee accurate ex-
traction of secret messages and rich semantics of generated stego
texts, an optimization mechanism based on reject sampling is pro-
posed. Comprehensive experiments demonstrate that the proposed
LLM-Stega outperforms current state-of-the-art methods.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy; • Computing methodologies→ Natural
language generation.

KEYWORDS
Generative Text Steganography; Large Language Models; Black-
box; User Interfaces

1 INTRODUCTION
Steganography is the science and art of embedding secret informa-
tion into cover media, aiming to covertly transmit secret informa-
tion through public channels.[2, 6, 23]. The principle of steganogra-
phy can be illustrated by Simmons’ "prisoner problem"[28]: There
are two prisoners Alice (sender) and Bob (receiver) in jail who are
trying to hatch an escape plan. The only way they can communi-
cate is carefully censored by warden Eve (steganalyzer). Therefore,
they must find some way to embed the secret messages into a nor-
mal digital carrier (recalled cover) to obtain an “innocent-looking”
medium with secret messages (called stego). According to the types
of digital carrier, steganography can be divided into image steganog-
raphy [15, 29, 40, 42], video steganography [11, 16, 19, 20], audio
steganography [1, 12, 35] and text steganography [7, 8, 21, 38, 44,
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Figure 1: (a) previous methods rely on a language model and
steganographic mapping, which is a white-box method; (b)
the proposed LLM-Stega generates stego texts by using large
language models. The LLM-Stega directly uses the UIs of
LLMs to embed and extract secret messages, which is a black-
box method.

46]. Recently, text steganography has become a popular research
topic in the information security field since text has high universal-
ity and robustness when transmitted through public channels.

Early text steganography methods are mainly achieved by modi-
fying content, such as embedding secret information through syn-
onym replacement [13, 24, 36] or spelling conversion [27]. Although
these methods can effectively maintain the semantic imperceptibil-
ity of stego text, they have low embedding capacity and significant
differences in statistical distribution characteristics [44]. Recent ad-
vancements in deep neural networks (DNNs) and natural language
processing (NLP) have catalyzed a paradigm shift in text steganog-
raphy, propelling it towards generative text steganography with
high embedding capacity and security. [8, 9, 21, 38, 44–46].

As shown in Figure.1(a), existing generative text steganographic
methods typically involve training a language model on a cor-
pus. Subsequently, secret messages are embedded by establishing
a steganographic mapping between specific binary bits represent-
ing the secret messages and the sampling probability of words
within the training vocabulary. These methods have demonstrated
commendable performance in terms of security and text quality.
However, these methods still have two limitations: (1) These are
white-box methods and require that Alice and Bob share the same
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language model and training vocabulary. Constrained by the lan-
guage model and training corpus, the generated texts have a sig-
nificant gap in fluency, logic, and diversity compared to natural
texts. (2) the embedding paradigm, building a steganographic map-
ping between secret messages and sampling probabilities of the
off-the-shelf language model, inevitably changes the sampling prob-
ability distribution, resulting in security risk. The first limitation
can be resolved by using a superior language model. For example,
both Zigegler et al. [46] and Dai et al. [7] leverage GPT-2 as the
language model to generate stego text. Recently, Wang et al. [33]
use LLaMA [31] to generate stego texts, which is the first attempt
for generative text steganography based on LLM. Although these
attempts improve the text quality of generated stego text, they can-
not achieve satisfied embedding capacity and security since they
still use the white-box steganographic mapping to embed secret
messages. Some experimental results of these attempts demonstrate
the aforementioned second limitation.

In order to address the above questions and fully leverage the
generation ability of LLMs, as shown in Figure 1(b), we explore a
black-box generative text steganography based on the UIs (user
interfaces) of large languagemodels. The contributions of this paper
as the following:

(1) It is the first exploration using the UIs of LLMs to implement
a black-box generative text steganography, which generates
stego texts and extracts secret messages by using some
elaborated prompts.

(2) We construct a keyword set and design an encrypted stegano-
graphic mapping to embed secret messages. Meanwhile, an
optimization mechanism based on reject sampling is pro-
posed to ensure the accurate extraction of secret messages
and the rich semantics of generated stego texts.

(3) Comprehensive experiments are conducted to evaluate the
superiority of the proposed LLM-stega over the state-of-
the-art methods in terms of embedding capacity and se-
curity, including Arithmetic codding [46], ADG [44] and
Discop [8].

2 RELATEDWORKS
2.1 Generative text Steganography
The main trait of generative text steganography is that an off-the-
shelf language model is directly used to generate stego texts under
the control of steganographic mapping. Thus, both language model
and steganographic mapping play important roles in generative
text steganography.

Recently, with the emergence of language models based on
DNNs, generative text steganography has continuously made break-
throughs in quality and security. Fang et al. [9] proposed a prelimi-
nary idea for generative text steganography. They first randomly
divided the vocabulary 𝑉 into 2𝑏 groups

[
𝑉1, 𝑉2, . . .𝑉2𝑏

]
to map

the 𝑏-bit secret messages. Then the highest probability token in a
group is selected during generation. Yang et al. [38, 39] indicated
that using a better language model can generate more fluent and
secure stego texts. Both Ziegler et al [46] and Dai et al. [7] use
GPT-2 as a language model to generate stego texts. Meanwhile,
they designed a different steganographic mapping to embed secret
messages. Their findings show that good steganographic mapping

is also beneficial for the security of generative text steganography.
From the perspective of provably secure steganography, Zhang et
al. [44] proposed an Adaptive Dynamic Grouping (ADG) steganog-
raphy, which recursively embeds secret information by the adaptive
dynamic grouping of the vocabulary tokens. Ding et al. [8] proposed
a novel steganographic mapping based on "Distribution Copies"
(Discop). Since the steganographic behavior does not destroy the
original distribution, this method has state-of-the-art security.

2.2 Large Language Models
LLMs have achieved excellent performance on multiple tasks, and
researchers have sought ways to utilize LLMs as task-specific data
generators. For example, using LLMs to generate tabular data [3], re-
lational triples [5], sentence pairs [26], and instruction data [28]. In
these methods, LLMs have a satisfied generation quality for specific
subject categories in zero-shot learning. However, existing meth-
ods often use simple class condition prompts and some researchers
explore ways to improve the quality of the generated data with-
out improving prompt conditions. For example, SuperGen[17] and
ZeroGen [41] used LLMs to generate text classification data and
used noise robust learning techniques [32] to deal with the quality
of the generated data. SunGen [10] used the learned data quality
weights to re-weight the data generated in the training process to
obtain more excellent data.

Notably, some researchers have begun to explore the use of
prompt engineering to tune LLMs and LLMs-API to generate data.
Chen et al. [4] explored using soft prompts to tune the data gen-
erated by LLMs when white box LLMs and seed samples are used.
Yu et al. [43] further proposed a method suitable for black box
LLMs and even LLMs-API (for example, ChatGPT) to generate the
required data without relying on any labeled samples.

From the above review, it is obvious that existing generative
text steganographic methods are the white-box paradigm, i.e., both
embedding and extracting secret messages require the off-the-shelf
languagemodel and sampling probability distribution of vocabulary
on all generation steps. In addition, due to the expensive training
and excellent performance, the off-the-shelf large language models
have high commercial value. Users hardly access the sampling
distribution and relymore on the black-box APIs and UIs to leverage
LLMs. Therefore, existing white-box methods are not suitable for
LLMs. How to design a black-box generative text steganography
with large language models, has become an interesting problem.

3 THE PROPOSED METHODOLOGY
As shown in Figure. 2, the proposed LLM-Stega aims to generate
stego texts and extracting secret messages by using the UI of LLMs.
The LLM-Stega is composed of four parts, including keyword con-
struction, encrypted steganographic mapping, steganographic text
generation, and secret message extraction. We will elaborate on
each of them in the rest of this section.

3.1 Keyword Set Construction
Due to the black-box, we do not have access to the training vo-
cabulary of LLM and its distribution at each step to encode secret
messages. Thus, a keyword set is constructed to encode the secret
messages, where the keywords are the important components of
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Figure 2: The overall framework of LLM-Stega. Lc-Idx and Re-Idx are the location index and repetition number of the selected
keywords in the augmentation keyword set, respectively. Sec-Mes denotes the secret messages. The𝑤𝑖 and 𝑝𝑖 denote the i-th
word and i-th sampling probability in the keyword set, respectively.

generated stego texts. In this paper, we select the subject, predicate,
object, and emotion as the keywords of each generated sentence.
We first design a keyword prompt to induce the LLMs to generate
four keyword subsets, containing subject set, predicate set, object
set, and emotion set. Apart from the emotion set with 3 different
words (negative, positive, and neutral) and their sampling prob-
abilities, others contain 16 different high-probability words and
corresponding sampling probabilities.

Notably, randomly selecting keywords from the four subsets ap-
pear with unclear logic and semantic blur, which brings difficulties
to the satisfied stego text generation. In order to mitigate the ques-
tion, the LLM, induced by an evaluation prompt, is used to evaluate
the superiority of the randomly selected keywords and optimize
their probabilities. Compared with existing white-box methods,
using the constructed keyword set to encode secret messages has
three significant advantages: (1) the keyword set is separated from
the generation process of LLM, users do not require accessing the
sampling distribution of LLMs. Meanwhile, the steganographic be-
havior does not change the sampling distribution of LLM, which
improves the security of the generated stego texts. (2) since the
sampling probabilities of the keywords are optimized by using the
potential knowledge of LLM, the generated stego text based on
these keywords can achieve high text quality. (3) in an ideal situa-
tion, the keyword set can encode massive secret messages as long
as the set is large enough.

3.2 Encrypted Steganographic Mapping
In practice, the number of commonly used keywords is limited
and their sampling distribution does not obey uniform distribution.
If these subsets are directly used to encode the secret messages,
the embedding capacity and security of the generated stego could
not be satisfied. To resolve these problems, we first augment the
keyword set. Specifically, we perform repeated sampling to expand
the keyword set according to the optimized sampling probabilities.
Then, the location indices of keywords in the augmentation set are
directly used to encode secret messages. In this part, for a good
trade-off between time cost and embedding capacity, we expand
the capacity of three subsets (subject, predicate and object) from 16
to 218 words and that of emotion subset from 3 to 210 which can
encode 3 ∗ 18 + 10 = 64 bits secret messages.

In the augmentation keyword set, the more common keyword
has a higher sampling probability, encoding more secret messages.
The augmentation strategy not only enhances the embedding ca-
pacity but also maintains the real sampling probabilities of the
keywords encoded secret messages.

Moreover, we notice that the location indices of the keywords
are fixed, which leads to the potential exposure risk of the stegano-
graphic behavior. To further improve the security of steganographic
mapping, an encryption strategy is designed. Concretely, we use a
One-Time Password mechanism to implement the encryption. XOR
operation is performed using the number of the keyword repeti-
tions and the release time of stego text on online social networks

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MM’24, October 28 - November 1, 2024, Melbourne, Australia. Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(OSNs)., which is formulated as follows:

𝑆 = 𝐵𝑅𝑒−𝐼𝑑𝑥 ⊕ 𝐵𝑅𝑒𝑎𝑙−𝑇𝑖𝑚𝑒 (1)

where 𝐵𝑅𝑒−𝐼𝑑𝑥 and 𝐵𝑅𝑒𝑎𝑙−𝑇𝑖𝑚𝑒 denote the binary of the number
of the keyword repetition and that of the release time whose com-
ponents consist of six numbers, containing date, hour, and minute.
⊕ is the XOR operation. The computation result is regarded as a
private key shared by Alice and Bob. Although Eve intercepts the
augmentation keyword set, he(or she) still cannot correctly decode
secret messages.

Compared with existing steganographic mappings, the proposed
encrypted steganographic mapping does not destroy the sampling
distribution of LLM in the generation process since the stegano-
graphic mapping is independent of the generation process of LLM.
Because of this trait, the proposed mapping applies to various LLMs
with user interfaces. Due to the page limitation, in this paper, we
only leverage the UIs of GPT-4 to evaluate the superiority of the
proposed encrypted steganographic mapping.

3.3 Steganographic Text Generation and Secret
Message Extraction

The main goal of the proposed LLM-Stega is that using the user
interfaces of LLMs implements steganographic text generation and
secret message extraction. After selecting keywords by using the
proposed encrypted steganographic mapping, we use an embedding
prompt to induce LLMs to generate stego texts. Unlike an explicit
extraction algorithm, the extraction based on the LLM cannot en-
sure a perfectly accurate extraction. Thus, we proposed a feedback
optimization mechanism based on reject sampling.

In the generation process, under the guidance of an designed
extraction prompt, LLM attempts to output the keywords encoded
in the secret messages. If the output keywords have errors, the
LLM could return the main reason for these errors and optimize
the embedding, generation, and extraction prompts until there
are no extraction errors. The feedback optimization mechanism
based on reject sampling is shown in Algorithm.1 in detail. In our
experiments, making two rejecting sampling ensure the accurate
extraction of secret messages embedded into each stego sentence.
It is noteworthy that there is a generation prompt behind the reject
sampling module shown in Figure. 2. The main reason is that during
iterative optimization, the generated stego texts tend to be simple
sentences merely containing keywords, so as to ensure accurate
extraction. While, the sentence diversity and semantic richness of
the generated stego texts are diminished, resulting in secure risk.
Therefore, we design and optimize the embedding and generation
prompts to ensure rich semantic and accurate extraction, respec-
tively. The optimization mechanism based on reject sampling is
shown in Algorithm.1 in detail.

After Bob gains the generated stego texts from OSNs, he (or
she) leverages the extraction prompt to extract keywords of the
generated stego texts using the UIs of LLM. Finally, according to the
shared side information, containing the keyword set, private-key,
One-Time-Password mechanism, and the release times of stego
texts on OSNs, Bob perfectly decodes the secret messages.

Algorithm 1 Feedback optimization mechanism based on reject
sampling.
Require: Key-words, Embedding prompt, Extraction prompt,

Feedback prompt, Generation prompt, LLM
Ensure: Stego-text
1: 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ← False
2: 𝑆𝑡𝑒𝑔𝑜-𝑡𝑒𝑥𝑡 ← Generate text carry secret information using

LLM by Embedding prompt
3: while not 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 do
4: 𝐾𝑒𝑦-𝑤𝑜𝑟𝑑𝑠′ ← Extract words from 𝑆𝑡𝑒𝑔𝑜-𝑡𝑒𝑥𝑡using LLM

by Extraction prompt
5: if 𝐾𝑒𝑦-𝑤𝑜𝑟𝑑𝑠′ == 𝐾𝑒𝑦-𝑤𝑜𝑟𝑑𝑠 then
6: 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ← True
7: else
8: 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ← Get feedback for 𝑆𝑡𝑒𝑔𝑜-𝑡𝑒𝑥𝑡 using LLM

by Feedback prompt
9: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑚𝑝𝑡 ← Optimize Generation prompt

using LLM based on Feedback
10: 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑝𝑟𝑜𝑚𝑝𝑡 ← Optimize Embedding prompt

using LLM based on Feedback
11: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑚𝑝𝑡 ← Optimize Extraction prompt

using LLM based on Feedback
12: 𝑆𝑡𝑒𝑔𝑜-𝑡𝑒𝑥𝑡 ← Generate text carry secret information

using LLM by Generation prompt
13: end if
14: end while
15: if 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 then
16: return 𝑆𝑡𝑒𝑔𝑜-𝑡𝑒𝑥𝑡
17: end if

4 EXPERIMENT
In this section, we evaluate the performance of LLM-Stega in terms
of text quality, embedding capacity, anti-steganalysis ability, and
human evaluation. The details of the experimental setup and result
analysis are described in the following sections.

4.1 Experimental Setup
(1) LLM and Theme information selection. In the experiments,
we select the UI of GPT-4 to implement block-box generative text
steganography since the GPT-4 is an advanced and widely used
LLM. Due to the vivid topics and popularity, the Entertainment News
is selected as the theme information to constrain the semantics and
context of the generated stego texts.

(2) Baselines. Three advanced generative steganographic meth-
ods are rebuilt, including Arithmetic [46], ADG [44], and Discop [8].
Due our computation and memory limitation, we use the LSTM
model trained on News[30] data as an off-the-shelf language model.
For the Arithmetic-based algorithm, we choose the steganography
text generated under the different embedding capacities of 1.39 bit
per word (bpw) (AC-2) and 3.99 bpw (AC-6) to compare.

4.2 Metrics
(1) Text Quality. We select the Perplexity (PPL) and semantic
similarity (SS) to evaluate the text quality of generated stego texts.
For the PPL, it is a general quantitative metric in the other text

4
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Table 1: Experimental results of PPL and SS

Steganography Perplexity Semantic similarity

AC-2 [46] 199.80 0.3421

AC-6 [46] 287.97 0.3723

ADG [44] 709.84 0.4189

Discop [8] 46.73 0.6150

LLM-Stega 165.76 0.5881

generation tasks [18]. The PPL is defined as follows:

PPL = exp

(
− 1
𝑁

𝑁∑︁
𝑖=1

log𝑝 (𝑤𝑖 |𝑤1, . . . ,𝑤𝑖−1)
)

(2)

where 𝑁 is the length of the text, 𝑤𝑖 is the 𝑖-th token in text,
and 𝑝 (𝑤𝑖 |𝑤1, . . . ,𝑤𝑖−1) is the probability assigned by the language
model to the 𝑖-th word given the preceding words. In this exper-
iment, we choose the GPT-2 model of huggingface to calculate
the PPL values of different steganographic texts. For the semantic
similarity, We choose the Sentence-bert [25] method and use the
roberta-base-nli-mean-tokens [14] model to extract sentence vectors,
to calculate the cosine similarity between steganographic text and
cover text.

(2) Embedding Capacity (EC). It is the average number of
secret messages embedded into one token, which is represented as
bits per word (bpw). It can be calculated as:

𝐸𝐶 =
𝑁

𝑊
(𝑏𝑝𝑤) (3)

where 𝑁 is the total number of bits in the embedded secret mes-
sages, and𝑊 is the total number of words in the generated stegano-
graphic text. Since steganography is a key technology for covert
communication, embedding capacity is an important metric.

(3) Anti-steganalysis Ability. The ability is an important met-
ric for security. In this experiment, we leverage three advanced ste-
ganalysis methods, containing LS-CNN (LC) [34], BiLSTM-Dense
(BD) [37], and Bert-FT (BF) [22]. The steganalysis accuracy is de-
scribed below:

𝐴𝑐𝑐 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +𝑇𝑁 (4)

where𝑇𝑃 is true positives,𝑇𝑁 is true negatives, 𝐹𝑃 is false positives,
and 𝐹𝑁 is false negatives, and we assume the stego texts are positive
samples.

(4) Statistical Imperceptibility. The Kullback-Leibler Diver-
gence (KLD) serves as an evaluation metric to measure the imper-
ceptibility of steganographic algorithms by comparing the distri-
bution of the generated stego-texts against the distribution of the
original cover texts. In our experiment, we select the KLD proposed
by Zhang et al. [44] to evaluate the statistical imperceptibility of
the tested methods. It is formulated as follows:

𝐾𝐿𝐷 (𝜇𝑥 , 𝜎𝑥 , 𝜇𝑦, 𝜎𝑦 ) =
∑︁ [

log
(
𝜎𝑦

𝜎𝑥

)
+
𝜎2
𝑥 + (𝜇𝑥 − 𝜇𝑦 )2

2𝜎2
𝑦

− 1
2

]
(5)

Table 2: Experimental results of length and EC

Steganography length Embedding capacity

AC-2 [46] 14.391 1.39 bpw

AC-6 [46] 14.944 3.99 bpw

ADG [44] 22.411 5.63 bpw

Discop [8] 100.000 4.76 bpw

LLM-Stega 13.333 5.93 bpw

where 𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation of cover texts,
while 𝜇𝑦 and 𝜎𝑦 represent those of stego-texts.

(5) Human Evaluation. For the human evaluation, we focus on
evaluating three key aspects of the generated texts: fluency, coher-
ence, and relevance. These criteria are chosen to reflect the intra-
sentence linguistic quality, inter-sentence relatedness and causal
dependency, and consistency of the generated texts, respectively.
We construct a dataset comprising 100 instances of steganographic
and non-steganographic texts generated by each algorithm. Three
qualified NLP researchers, proficient in English and with a solid
understanding of steganography, are employed as annotators. Each
annotator independently rates the texts on a five-point scale (rang-
ing from ’very poor’ to ’very good’) for fluency, coherence, and
relevance. The higher evaluation score denotes the better generated
stego texts.

4.3 Results and Analysis
(1) Embedding Capacity and Text Quality. The experimental
results of length and EC of generated stego texts are listed in Ta-
ble 2. To The best of our knowledge, the average length of the News
dataset [30] is about 15 words. The Arithmetic and the proposed
LLM-Stega have more similar lengths with natural News than ADG
and Discop. Meanwhile, the proposed LLM-Stega can achieve the
highest embedding capacity. Since the proposed encrypted stegano-
graphic mapping is independent of the generation process of LLM,
the embedding capacity is not constrained by the distribution en-
tropy of each time step. Table 1 demonstrates the results of text
quality of the generated stego texts. In the exploration of litera-
ture [39], it is found that texts on public social networks are written
by people of different ages and backgrounds in different ways of
expression. This leads to the fact that most of the human-written
sentences may not obey the optimal language model and form a
large variance. From the security, if the generated stego texts have
more similar PPL values with normal sentences, their security is
higher. In addition, the higher similarity represents the more simi-
larity between cover and stego sentences, namely, higher security.
In our experiments, the average PPL of the normal sentence in the
News dataset is 185.64. The “AC-2” can achieve the most similar
PPL value and the lowest SS. In addition, the “Discop” algorithm
gains the best SS and the maximum gap of PPL. While the proposed
LLM-Stega can make the best trade-off between PPL and SS.

(2)Anti-steganalysis Ability. In the experiment, the training
dataset consists of 10,000 cover sentences generated by an off-
the-shelf language model without embedding secret messages and
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Table 3: Generated steganographic examples of the proposed LLM-Stega.

Key-words Stego-text

dancer-announce-song-positive
Acclaimed dancer, Luna Moves, unassumingly announced her new
song, which intriguingly entwines rhythmic beats with her signature
performative flair.

band-praise-song-neutral The band’s praise of their latest song was received with neutrality, a
calm before the potential storm of fan reactions.

band-released-exhibition-positive
The beloved band joyfully released an immersive exhibition, transport-
ing fans through their rich musical journey, sparking waves of nostalgic
happiness across the community.

game-released-episode-positive The innovative game developers ecstatically released a gripping new
episode, thrilling gamers and inviting them into captivating newworlds.

singer-performed-episode-positive
With a voice that touched souls, the singer performed a memorable
episode on the live show, casting a warm, positive light across the
enchanted audience.
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Figure 3: The experimental results of the Anti-steganalysis
ability

10,000 stego sentences generated by the same language model.
The validation dataset includes 1,000 cover sentences and 1,000
generated stego sentences. The testing dataset consists of 1,000
cover sentences and 1,000 generated stego sentences. Please note
that the cover sentences in the training, validation, and testing
datasets should not overlap. Figure. 3 presents the enhanced re-
sults of anti-steganalysis, incorporating additional experimental
data. The proposed method, LLM-Stega, continues to exhibit supe-
rior performance across all metrics when compared to traditional
steganography methods such as AC-2, AC-6, ADG, and Discop. No-
tably, LLM-Stega achieves the LS-CNN of 51.55%, BiLSTM-Dense
of 49.20%, and Bert-FT of 50.00%, underscoring its efficacy in main-
taining imperceptibility against steganalysis techniques.
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Figure 4: The experimental results of the Statistical Imper-
ceptibility and the Human Evaluation.

(3)Statistical Imperceptibility. The KLD thus quantifies the
entropy difference between the cover and stego-text distributions,
assessing the degree to which the proposed algorithm ensures the
stego-texts remain statistically similar to the cover texts.

In this part, we choose the pre-trained BERT to represent the
latent feature of cover and stego texts, which is different from
the KLD in Zhang et al. [44]. In our experiments, as shown in
Figure 4, we find that the probability distributions of the latent
features normalized by the softmax activation function obey a nor-
mal distribution. We take the logarithm of the experimental results
to more clearly compare the differences in statistical impercep-
tibility between the different algorithms. Among them, the KLD
value for the AC algorithm is significantly higher than the other
three algorithms, indicating the AC algorithm’s poorer statistical
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Table 4: Ablation Study of Prompt Optimization

Embedding prompt Extraction prompt Text-length PPL1 Bert-score PPL2 Reject rate
✗ ✗ 17254 118.80 46.23 180.55 67.80%
✗ ✓ 17254 118.80 46.23 178.54 42.70%
✓ ✗ 12292 151.60 45.92 172.50 53.30%
✓ ✓ 12292 151.60 45.92 165.82 41.40%
✓✓ ✓✓ 13094 104.67 46.33 137.26 44.10%
✓✓✓ ✓✓✓ 20096 96.67 47.54 109.31 21.00%

imperceptibility, which also aligns with its inferior performance
in resisting steganalysis compared to the other algorithms. The
experimental data confirms that our LLM-Stega method excels in
statistical imperceptibility compared to other algorithms, ensuring
that the stego-texts are semantically consistent with the cover texts
and exhibit similar distributional characteristics.

(4) Human Evaluation. In order to further evaluate the effec-
tiveness of the proposed LLM-Stega, we implement the human eval-
uation experiment. The details of evaluation scores are illustrated
in Figure. 4. The experimental results indicate that the LLM-Stega
outperformed the other three algorithms. This suggests that LLM-
Stega is more effective in generating steganographic texts that are
contextually relevant and less detectable. The results demonstrate
LLM-Stega’s superior performance in generating steganographic
texts that are fluent, coherent, and relevant. This finding is signifi-
cant in the context of text steganography, highlighting the potential
of LLM-Stega in applications where the imperceptibility of the em-
bedded message is crucial. Besides, we also illustrate some examples
of stego text generated by LLM-Stega in Table 3 for qualitative anal-
ysis. We find that the stego text is fluent enough, with correct
grammar and coherent semantics.

4.4 Ablation Study
As the crux of the proposed LLM-Stega is these elaborated prompts,
we carry out the ablation study to verify the effectiveness of prompt
optimization. In the experiment, PPL1 denotes the Perplexity score
for the initially generated text, serving as a baseline measure of text
complexity. Reject rate denotes the rate of one rejection sampling,
and PPL2 reflects the Perplexity score of the steganographic text fol-
lowing rejection sampling. Furthermore, the Bert-score is utilized
to quantify the semantic similarity between the steganographic
text and the original cover text.

We adopt a structured approach to optimize embedding and
extraction prompts, specifically focusing on applications within
the steganographic domain. This process is segmented into three
phases: an initial optimization phase (denoted as ✓), followed by
further optimization phase (denoted as ✓✓), and concluding with a
deep optimization phase (denoted as ✓✓✓). "Initial optimization"
involved designing the basic structure of text prompts, including
theme and a maximum length of generated stego sentences, etc.
Based on the initial optimization, “Further optimization” is used
to improve text prompts according to the feedback from LLMs.
Finally, "deep optimization" consisted of iterative improvements to

the prompt details through continuous feedback, further refining
the prompt to achieve the task objectives.

The experimental results are shown in Table ??. We notice that
using "Initial optimization" increases the PPL value and decreases
BERT scores, namely, the text quality is reduced. This is because the
main goal of “Initial optimization” is to ensure accurately extracting
secret messages. In subsequent optimization phases, we aim to
improve text quality on the condition that the secret information is
extracted accurately, achieving high imperceptibility for the stego-
text. Thus, both the PPL and the reject rate have decreased. Besides,
the single instance of rejection sampling rate is due to the tuned
prompt’s ability to produce text that allows for 100% extraction of
the secret information in just one attempt. The experimental results
show that the “further optimization” process meets expectations.
After "deep iterations", the probability of rejection sampling drops
to its lowest, while the quality of the text is enhanced to its highest.
The experimental results demonstrated that the proposed prompt
optimization based on reject sampling significantly improved the
quality of the generated stego texts.

5 CONCLUSION
Previous works of generative linguistic steganography inevitably
introduce distortions to the distribution estimated by off-the-shelf
language models. In this paper, we attempted to use the user inter-
faces of large language models for generative-linguistic steganog-
raphy. Firstly, an encrypted steganographic mapping is proposed
to map the secret messages into the words of four keyword sets.
These keyword sets are constructed and optimized for the potential
knowledge of LLMs. Then, we propose an optimization mecha-
nism based on reject sampling to improve the effectiveness of the
prompts. Finally, comprehensive experimental results evaluate the
superiority of the proposed LLMs over other tested methods in
terms of text quality, embedding capacity, and anti-steganalysis.

The LLM-Stega is the first attempt at generative text steganogra-
phy based on the UIs of LLM. It is a preliminary method. Meanwhile,
steganographic mapping is a simple method to encode secret mes-
sages and does not fully leverage the powerful generation ability
for text steganography. In future work, we will research a special
fine-tuning strategy to further leverage the potential knowledge
and generation ability of LMMs for improving the performance of
generative text steganography.
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