
Promptable Closed-loop Traffic Simulation
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Demo Video1

In our submitted supplementary video, we include the rollout videos of all the rollout outputs of2

ProSim in the main paper. We highly recommend interested readers to go through the video demos3

to observe the promptable and closed-loop properties of ProSim.4

B ProSim5

B.1 Encoder: Position-aware Attention Details6

To model relationships between scene tokens and aggregate features, we pass F 0
ma through multiple7

Transformer layers. In most existing methods, each layer follows F l
ma = MHSA(F l−1

ma ), where MHSA8

denotes multi-head self-attention and l is the layer index. However, since each token in F 0
ma is9

normalized to its local coordinate system, basic MHSA cannot infer the relative positional relationship10

between tokens. Instead, we explicitly model the relative positions between tokens with a position-11

aware attention mechanism. For scene token i, we compute its relative positional relationship with12

scene token j with:13

pma[i,j] = Rot(pma[j] − pma[i],−hma[i]), hma[i,j] = hma[j] − hma[i], (1)

where pma[i,j] ∈ R2 and hma[i,j] ∈ R are the relative position and heading of token j in token i’s14

coordinate system, Rot(·) is the vector rotation function. We denote this paired relative position as15

rma[i,j] = [pma[i,j], hma[i,j]]. Then, we perform position-aware attention for token i with:16

f l
ma[i] = MHSA(Q : [f l−1

ma[i],PE(rma[i,i])],

K : {[f l−1
ma[j],PE(rma[i,j])]}j∈Ω(i),

V : {[f l−1
ma[j] + PE(rma[i,j])]}j∈Ω(i)),

(2)

where PE denotes positional encoding and Ω(i) is the scene token index of the neighboring tokens of17

i. In our experiments, we set Ω(i) to contain the nearest 32 tokens of i according to their positions.18

Note that the above result remains the same regardless of which global coordinate system we use19

for the scene input σ = (M,A). With this formulation, we model the relative position relationship20

between different scene tokens symmetrically. At each layer, we apply Equation 2 to all scene tokens21

in parallel. We denote this position-aware attention module as:22

F l
ma = MHSA′(F l−1

ma , Pma, Hma) (3)

Note that this position-aware modification can be similarly applied to multi-headed cross-attention23

MHCA’, which we will use later in the Generator and Policy modules. Finally, we obtain the last-24

layer token features as scene tokens F = [Fm, Fa].25

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



Llama3-8B LoRA

Policy TokensPolicy Queries

Text Tokens

Adaptor

Let

Agent Token Replacement

<A1> and <A2> stop there .

Let and stop there .

Adaptor

Figure A1: Language condition encoder for Generator.

B.2 Generator: Language Prompting Details26

For each scene, we have an optional user-input text prompt L that contains multiple sentences that27

could describe agent behaviors, interactions and scenario properties. To make it easy to refer to28

different agents in the scene, we ask the user to use a specific format "<A[i]>" when mentioning the29

i-th agent. For example, to instruct agent a1 to stop, the user would say "let <A1> stop".30

To process the scene-level text prompt L and condition all the agents, we use an LLM to comprehend31

the natural language prompt and policy features, and generate language-conditioned policy features32

for all agents. To do this, we use a LLaMA3-8B model finetuned with LoRA as backbone, as well33

as two adaptors to bridge the latent spaces of LLM and policy tokens. We show an overview of our34

model in Figure A1.35

Specifically, we use a two-layer MLP adaptor to convert all the policy features to in the LLM’s36

feature space {ta[1], ..., ta[N ]} = MLP({qρ[1], ..., qρ[N ]}). This operation enables the LLM to take37

and comprehend agent policy features in the text space. Next, we use LLM’s text tokenizer and38

input embedding to obtain text tokens from the natural language prompt L {tL[1], ..., tL[O]}, where39

O is the number of text tokens in L.40

Note that some tokens of L specifically mentions indexed agents (e.g., "<A1>"). To help LLM un-41

derstanding the correspondence between agent reference and their policy tokens, we directly replace42

these reference text tokens with agent policy tokens. Specifically, for an agent-reference text token43

tL[j], we replace it with the corresponding agent policy token tL[j] ←− ta[i] given tL[j] corresponds44

to "<A[i]>" To make sure each "<A[i]>" is tokenized to a single token, we add them as new tokens45

to the text tokenizer. We call this step "Agent Token Replacement" in Figure A1.46

After getting all the text and agent token features, we concatenate them to create the complete input47

sequence {tL[1], ..., tL[O], ta[1], ..., ta[N ]} and feed it to the LLM. We then extract the hidden features48

for the last N tokens from the last LLM layer {t′a[1], ..., t
′
a[N ]}, which contains text-contextualized49

policy features for each agent. Next, we use an MLP adaptor to convert these features back to get50

the text-conditional policy features {qL[1], ..., qL[N ]} = MLP({t′a[1], ..., t
′
a[N ]}).51

Finally, for each agent, we obtain its policy token πi by adding the prompt and text conditional52

policy tokens together, πi = qρ[i] + qL[i].53

B.3 Training54

LLM Pretraining. As described above, we train the LLM in Generator with LoRA to compre-55

hend and generate policy token features. However, we found that directly training the LLM with56

the closed-loop imitation loss leads to inferior text-prompting performance. We conjecture this is57

because at the early training stage the LLM is not prepared to interact with the policy tokens. Mean-58

while, the rollout loss can be decently optimized without using the LLM’s output, giving little signal59

for LLM to learn.60 2



To deal with this issue, we propose to pretrain the LLM to have the capacity to interact with policy61

token features. To this end, we first train a ProSim model without using text prompts and the LLM62

with the rollout loss L. Next, we add a simple MLP layer after the Generator to predict the goal63

point of each agent given its policy token π. We supervise this task with an MSE loss Lgoal using64

GT goal points. This task is much simpler than the full task while enforces the LLM to interact with65

policy tokens. To pretrain the LLM, we fix all other modules and only train the LLM and this new66

MLP with Lgoal. Here we only use text as the prompt in inputs. After pretraining, the LLM learns67

to predict the goal intention of each agent from text prompt and add that information to π, making it68

already useful for the Policy. Finally, we discard the goal-prediction MLP and train the full ProSim69

module with all types of prompts and the complete loss L. In our experiments, we pretrain the LLM70

on ProSim-Instruct-520k for 5 epoches before using it in the full Generator module.71

Collision loss. For collision loss Lcoll, we aim to compute the overlapping area between each72

pair of agent using their bounding boxes through the full rollout trajectory. To this end, at each73

timestep, for each agent we compute their occupation polygon using their size, position and heading74

at this timestep. Then, we measure the overlapping area of each agent polygon pair by computing75

the signed distance between these polygons, where positive distance indicate no collision while76

negative distance collision indicate a collision. Specifically, we compute the signed distance between77

polygons A and B with the distance between the origin point and the Minkowski sum A + (-B). For78

all the signed distance, we compute the loss value by first setting the positive distance to 0 (no79

collision), and then taking the negative of the rest of signed distances to penalize collisions. We80

compute the average over all agents through all timesteps to obtain the final Lcoll. We implement81

this loss function by referring to the Waymo Open Sim Agent Challenge collision metric.82

Offroad loss. For offroad loss Loff, we aim to compute the overlapping area of each agent and83

the offroad areas through the full rollout trajectory. To this end, we use the similar strategy as in84

the collision loss. Specifically, at each timestep we obtain all the agent polygons in the same way85

as in the collision loss. Then, we compute the signed distance between the four corners of each86

polygones to a densely sampled set of road edges. Similarly, positive distance indicate no offroad87

while negative distance indicate being offroad. Finally, We average over all negative distances for88

all agents through all timesteps to obtain the final offroad loss. We implement this loss function by89

referring to the Waymo Open Sim Agent Challenge offroad metric.90

C ProSim-Instruct-520k91

C.1 Route Sketch Labeling Details92

Compared with the real trajectory, points in the route sketch are sparse, noisy, and incomplete. We93

simulate these effects with the following steps. First, we extract each agent’s complete trajectory94

from τ . Then, we process this point set by 1) uniformly subsampling the points for sparsity; 2)95

adding random noise to each point; 3) randomly sampling a consecutive subset. For each agent,96

its route sketch is a set of ordered 2D points representing sketch points on the map. The number97

of points in route sketch could be different across agents. In our experiment, we use a uniform98

subsample rate of 5. We than add random noise with standard variation of 0.1 meter. Finally, we99

ensure the randomly sampled consecutive subset contains at least 5 points.100

C.2 Action Tag Labeling Details101

For each action type, we carefully design a heuristic function that takes an agent’s trajectory st1:t2102

from step t1 to t2, and outputs a binary label whether st1:t2 satisfies the condition of this action.103

Then, we can run this function across the full rollout with sliding window and temporal aggregation104

to obtain the full duration [ts, te] that this motion tag is valid. For each agent, we run all the motion105

tags with this method we obtain a set of motion tags. Finally, we post-process the labels to remove106

3

https://github.com/waymo-research/waymo-open-dataset/blob/5f8a1cd42491210e7de629b6f8fc09b65e0cbe99/src/waymo_open_dataset/wdl_limited/sim_agents_metrics/interaction_features.py#L49
https://github.com/waymo-research/waymo-open-dataset/blob/5f8a1cd42491210e7de629b6f8fc09b65e0cbe99/src/waymo_open_dataset/wdl_limited/sim_agents_metrics/map_metric_features.py#L35


conflicting motion tags and temporal noises. Please refer to our codebase for the heuristic function107

implementation details upon release.108

C.3 Natural Language Labeling Details109

For each scenario, we provide the LLM model with agent properties (name and type) as well as all110

of their agent tags (action type and duration). We then prompt LLM to output 20 different sentences,111

each describing the agent behavior or scenario properties in natural language. To obtain interesting112

and diverse language description of the scenario, in the system prompt we instruct the LLM to 1)113

describe temporal transition of agent behavior (e.g., "Let <A1> change to the left lane and then114

make a left turn."); 2) describe scenario properties (e.g., "This is a busy scene with most agents115

accelerating"); 3) describe relationships of different agents (e.g., "Let <A1>, <A2>, <A3> keep116

their own lanes simultaneously"). We concatenate these sentences together to form the prompt L for117

each scenario.118

Here we show full prompt we used for the LLM labeling:119

Prompt 1: Full prompt for LLM labeling
120

Example input:121

Vehicle Agents:122

['<ego>', '<71f1c>', '<df6a1>', '<dad99>']123

Pedestrian Agents:124

['<a261a>', '<191e8>']125

Motorcycle Agents:126

['<d3ddc>', '<8cc93>', '<73c13>', '<d6a9e>']127

128

Agent to Agent:129

ParallelDriving - Agent (Left):<d6a9e>, Agent (Right):<dad99>, Start:50, End:80130

ByPassingRight - Agent (Right, Faster, Overtaking):<ego>, Agent (Left, Slower, Overtaken131

):<dad99>, Start:30, End:65132

133

Agent Behavior:134

Decelerate - Agent:<d3ddc>, Start:0, End:5135

Decelerate - Agent:<ego>, Start:30, End:55136

Decelerate - Agent:<dad99>, Start:35, End:45137

Decelerate - Agent:<d6a9e>, Start:45, End:80138

KeepLane - Agent:<d3ddc>, Start:0, End:60139

KeepLane - Agent:<dad99>, Start:30, End:80140

KeepLane - Agent:<d6a9e>, Start:40, End:80141

KeepSpeed - Agent:<191e8>, Start:0, End:20142

KeepSpeed - Agent:<ego>, Start:0, End:30143

KeepSpeed - Agent:<d6a9e>, Start:40, End:45144

Parked - Agent:<a261a>, Start:0, End:25145

Parked - Agent:<df6a1>, Start:0, End:80146

RightLaneChange - Agent:<ego>, Start:0, End:15147

Straight - Agent:<191e8>, Start:0, End:20148

Straight - Agent:<d3ddc>, Start:0, End:70149

Straight - Agent:<ego>, Start:0, End:80150

Straight - Agent:<dad99>, Start:30, End:80151

Straight - Agent:<d6a9e>, Start:40, End:80152

Stopping - Agent:<d3ddc>, Start:5, End:70153

Stopping - Agent:<dad99>, Start:45, End:80154

LeftLaneChange - Agent:<ego>, Start:15, End:65155

156

Example output:157

158

Here are the 20 commands for the simulation:159

"<ego> bypasses <dad99> from the right lane side when <dad99> is driving slower and160

finally stopping."161

"Do right lane change <ego> at the start of the simulation."162

"Motorcycle <d3ddc> decelerates early on."163

"After finishing the initial maneuver, redirect <ego> to occupy the left lane."164

"Make <dad99> and <d6a9e> to drive parallel, with <d6a9e> on the left."165

"<ego> slows down following the sequence of lane changes.."166

4



"All vehicles, except for <ego>, <dad99>, and <d6a9e>, remain parked."167

"Let <ego> maintain a steady speed after decelerating."168

"Command <d3ddc> cyclist to come to a complete stop after its initial slowdown."169

"Instruct <dad99> to decelerate and then stop towards the end of the scenario."170

"Keep <d6a9e> in its lane after it finishes driving parallel."171

"Walking person <191e8> should keep a steady pace before stopping."172

"<d3ddc> resumes moving straight after stopping."173

"Keep all parked vehicles stationary to represent a low-activity scene."174

"Direct <dad99> car to travel straight for an extended period after decelerating."175

"Ensure <ego> car moves straight throughout the simulation."176

"After slowing, instruct <d6a9e> to continue on a direct trajectory."177

"Let the pedestrian <a261a> standstill in the scene."178

"Emphasize the limited activity within the scene, highlighting agents either stopping or179

staying within their lanes."180

"Pedestrian <191e8> walks straight."181182

We also show two LLM output examples for two scenarios:183

Prompt 2: Text prompt labeling example 1
184

Here are the 20 commands for the simulation:185

186

1. "Have <43> accelerate and make a left turn throughout the entire simulation."187

2. "Initially, <58> accelerates, but then slows down and comes to a stop."188

3. "Keep <10> moving straight while it decelerates early on."189

4. "Make <48> decelerate and then turn left towards the middle of the simulation."190

5. "Command <39> to accelerate and drive straight after 40 seconds."191

6. "Make <7> accelerate rapidly towards the end of the simulation."192

7. "<ego> remains parked and stationary throughout the entire scenario."193

8. "Direct <11> to stay parked for the entire duration of the simulation."194

9. "Most vehicles, except for a few, are parked and stationary at the start of the195

simulation."196

10. "After 40 seconds, <14> starts moving after being parked initially."197

11. "Make <4> change direction with a right turn after being parked for a while."198

12. "Let <48> decelerate and come to a stop before making a left turn."199

13. "Have <58> accelerate initially, but then slow down and stop."200

14. "Command <45> and <56> to stop after 40 seconds."201

15. "Instruct <32> to stop after 15 seconds and then stay stationary."202

16. "Make <15> stop and stay stationary throughout the entire simulation."203

17. "Have <50>, <52>, and <58> accelerate and drive straight throughout the simulation."204

18. "Keep <24> moving straight after 65 seconds."205

19. "Make <39> accelerate and drive straight after being parked initially."206

20. "Emphasize the dynamic nature of the scene, with agents accelerating, decelerating, and207

changing directions."208209

Prompt 3: Text prompt labeling example 2
210

Here are the 20 commands for the simulation:211

212

1. "<653> accelerates while making a left turn throughout the entire simulation."213

2. "Have <654> maintain a steady acceleration from start to finish."214

3. "<661> gradually slows down and drives straight throughout the scenario."215

4. "<666> decelerates and moves straight without any turns or stops."216

5. "Keep <1465> cycling in a straight line for the entire 8 seconds."217

6. "Make <651> drive straight without any changes in speed or direction."218

7. "Ensure <659>, <660>, <662>, <664>, and <ego> remain parked and stationary throughout the219

simulation."220

8. "After accelerating, have <653> continue moving in a straight line."221

9. "Instruct <661> to decelerate and then maintain a steady speed."222

10. "Make <654> overtake <661> from the left lane."223

11. "<663> follows <661> at a steady pace, maintaining a safe distance."224

12. "Command <653> to merge into the lane where <661> is driving."225

13. "Direct <1465> to pass <651> on the right side."226

14. "Have <661> change lanes to the left and then continue driving straight."227

15. "Make <654> drive parallel to <653> on the right side."228

16. "<ego> remains stationary, observing the surrounding traffic."229

5



17. "After accelerating, have <653> change lanes to the right."230

18. "Ensure <660> and <664> remain parked, blocking the left and right lanes respectively."231

19. "Instruct <663> to decelerate and then stop behind <661>."232

20. "The bicycle <1465> cycles past the parked vehicles, maintaining a steady pace."233234

C.4 Metric Formulation235

In our paper, we provide two metrics of promptable closed-loop traffic simulation to measure realism236

and controllability. Here we link these metrics to the problem formulation in Section 3. Recall that237

we formulate promptable closed-loop traffic simulation as238

p(s1:T |σ, ρ) =
T∏

t=1

N∏
i=1

p(sit|s1:t−1, σ, ρ). (4)

Given GT data (τ, σ, ρ), realism measures the probability of the real rollout under the model distri-239

bution p(τ |σ, ρ). In our main paper, we implement this metric with ADE(τ̂ , τ).240

On the other hand, controllability measures how well the model follows the prompt ρ. We quantify241

this by comparing the model’s realism gain against the unconditional model rollout p(τ |σ, ρ) −242

p(τ |σ). In our main paper, we implement this metric with relative improvement (% Gain) in realism243

of the model’s output with and without prompts. We compute % Gain by comparing rollout ADE244

with and without prompt conditioning. : % Gain = ADE(τ,τ)−ADE(τ̂ ,τ)
ADE(τ,τ) × 100%.245

C.5 Quality Assurance246

To ensure the prompts we generate faithfully reflect the agent behaviors in the scenario, we conduct247

a careful quality assurance process with human effort. As Goal Point and Route Sketch are directly248

modified from real trajectories, there is no need to check their accuracy. On the other hand, the249

accuracy of Text is largely dependent on the accuracy of the Action Tag as it stems from Action250

Tags of all agents in a scene. Therefore, we focus on checking the quality of Action Tag. For each251

action types, we ask human labelers to manually check whether the labeled action tag is accurate252

both semantically and temporally by viewing the rollout videos. At each round, we ask human253

labelers to check 100 motion tag examples for each action type. If the qualification rate of a certain254

action type is below 85%, we rewrite the heuristic function of this action type according to the255

human feedback, relabel the motion tags of this type and ask for another round of human checking.256

We continue this process until all the action types pass the quality threshold.257

We show the interface we developed for human labelers in Figure A2. This interface allow human258

labelers to go through and rewind the scenario easily with the interactive progress bar. For each259

scenario with multiple action tags, the interface let the labeler to go through all the action tags all260

together. This allows the human labeler to QA multiple motion tags of the same scenario very261

efficiently. In average, we found human labelers take around 10 seconds to give the QA output for262

each motion tag. Additionally, we ask human labelers to give a QA output for each tag, choosen263

from Correct, Wrong Action, Wrong Time, Wrong Agent, and Need Attention (unsure or other264

types). These different types of QA error tags provide us useful feedback to improve our heuristic265

functions.266

D Additional experiment results267

In our paper, we show benchmark results of 5 different prompt combinations. Aside from these268

combinations shown in the paper, we also show the % Gain results of other prompt combinations in269

Table A1. We can see from the Table A1 that ProSim achieves consistent gain with different kinds270

of prompt modality combinations. These results show that ProSim allows users to freely combine271

different prompt modalities with high controllability.272

6



Figure A2: Interface used by human labeler for Quality Assurance.

Metric ADE ↓ Gain ↑ ADE ↓ Gain ↑ ADE ↓ Gain ↑ ADE ↓ Gain ↑
Prompt Goal + Sketch Goal + Text Sketch + Action Sketch + Text

ProSim 0.4845 48.98% 0.5983 37.00% 0.5588 41.16% 0.5698 40.00%

Prompt Goal + Action + Sketch Goal + Action + Text Text + Sketch + Action All Types

ProSim 0.3635 61.72% 0.5663 40.37% 0.5311 44.08% 0.2877 69.71%

Table A1: Controllability evaluation of ProSim

7


	Demo Video
	ProSim
	Encoder: Position-aware Attention Details
	Generator: Language Prompting Details
	Training

	ProSim-Instruct-520k
	Route Sketch Labeling Details
	Action Tag Labeling Details
	Natural Language Labeling Details
	Metric Formulation
	Quality Assurance

	Additional experiment results

