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Affinity3D: Propagating Instance-Level Semantic Affinity for
Zero-Shot Point Cloud Semantic Segmentation

Anonymous Authors

ABSTRACT
Zero-shot point cloud semantic segmentation aims to recognize
novel classes at the point level. Previous methods mainly transfer
excellent zero-shot generalization capabilities from images to point
clouds. However, directly transferring knowledge from image to
point clouds faces two ambiguous problems. On the one hand, 2D
models will generate wrong predictions when the image changes.
On the other hand, directly mapping 3D points to 2D pixels by
perspective projection fails to consider the visibility of 3D points in
camera view. The wrong geometric alignment of 3D points and 2D
pixels causes semantic ambiguity. To tackle these two problems, we
propose a framework named Affinity3D that intends to empower
3D semantic segmentation models to perceive novel samples. Our
framework aggregates instances in 3D and recognizes them in
2D, leveraging the excellent geometric separation in 3D and the
zero-shot capabilities of 2D models. Affinity3D involves an affinity
module that rectifies the wrong predictions by comparing them
with similar instances and a visibility module preventing knowledge
transfer from visible 2D pixels to invisible 3D points. Extensive
experiments have been conducted on SemanticKITTI datasets. Our
framework achieves state-of-the-art performance in two settings.

CCS CONCEPTS
• Computing methodologies → Object recognition; Image
segmentation; Cluster analysis; Object identification.

KEYWORDS
Affinity, Zero-shot Semantic Segmentation, Point Cloud Semantic
Segmentation, Pseudo Labels

1 INTRODUCTION
Autonomous driving and robotics are essential multimedia applica-
tions with multiple modality inputs like LiDAR and RGB images.
3D semantic segmentation, as an essential task in autonomous driv-
ing, provides point-level semantic information for planning and
getting regions of interest. Previous methods mainly train models
in a close-set manner, which pre-define classes. In existing outdoor
datasets [3, 8], foreground instances are primarily categorized based
on traffic participants, such as motor vehicles, non-motor vehicles,
pedestrians, animals, etc. Objects like wheelchairs, cartons, etc., are
not defined. When these objects appear on the road, perception
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Figure 1: The illustration of mistakes made by CLIP. The
traffic signs in both two figures are wrongly classified as
bicyclists.

systems fail to correctly identify them, leading to potential safety
issues disregarded by the decision-making system. Therefore, some
methods [4, 14, 34, 46] have started to study endowing models with
the ability to perceive unseen objects.

Unlike models trained in a close-set manner, zero-shot models
can recognize novel classes without additional manual annotations.
It is easier to train zero-shot models in 2D than in the 3D domain
because 2D models can improve generalization performance from
large-scale datasets [14, 16] for downstream tasks. Although a lot
of synthetic data could be used for pretraining, significant differ-
ences exist between synthetic shapes and real-world scenes, and
there are clear distinctions in scale between indoor and outdoor
environments. So, it is hard to pre-train fundamental models with
excellent zero-shot capability in the 3D domain.

Existing methods for recognizing unseen objects in 3D primarily
involve transferring knowledge from language or images [5, 22,
27, 29]. Directly training a language-3D-aligned model without a
large-scale dataset is challenging, so researchers [39, 47, 53] try
to align outputs or features of 3D models with vision-language
models like CLIP [34] to enhance generalization. However, these
methods assume CLIP generated accurate predictions, which is
unrealistic. Models like CLIP struggle to represent instance features
effectively and may produce wrong predictions, especially with
slight image variations or challenging conditions, as illustrated in
Fig. 1. In the SemanticKITTI, there are about 3.11% similar instances
wrongly classified by CLIP. The wrong predictions from CLIP
can confuse the 3D network during output alignment, reducing the
discriminative capability of the 3D network.

The other ambiguous problem of transferring vision-language
models to 3D scenes is caused by thewrong geometric alignment
between 3D points and pixels on 2D images. The wrong geometric
alignment is due to the different visibility between LiDAR and the
camera. Some objects may be visible in LiDAR but occluded in the
image. As shown in Fig. 3, if 3D points of ground are misaligned
with a vehicle, 3D models will transfer the vehicle semantics to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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…
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Encoder
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Text

Encoder
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weights

❄

Instances

Affinity 
Module

3D Visible Pseudo Labela photo of [cls]
a painting of [cls]

…
a rendering of [cls] 

Prompt Engineering

Figure 2: The instance pseudo labels generation pipeline of Affinity3D. The 3D points are clustered into superpoints. Each
superpoint is treated as an instance. The projection of superpoint crops the image of an instance. The cropped images are sent
to the CLIP visual encoder, obtaining CLIP feature 𝐹𝐶𝐿𝐼𝑃 . The prompt engineering fills class names into templates to create
various prompts. The CLIP text encoder encodes prompts. For each class, an average pooling is applied for their various features
of prompts to get its text embedding. The text embeddings of all the classes are utilized as weights for segmentation heads to
get initial pseudo labels. The affinity module refines the initial pseudo labels by comparing them with similar instances.

ground points. It will cause the 3D model confuse of discriminating
between vehicle and ground. According to our assessments, approx-
imately 34% of the points in SemanticKITTI are wrongly matched.
The wrong geometric alignment leads to inappropriate knowledge
transferring between images and point clouds.

To deal with the wrong predictions, we propose an affinity mod-
ule to rectify mistakes by incorporating predictions of similar ob-
jects. In 2D scenes, affinity is a common technique for refining
pseudo labels. However, due to the lack of reliable similarity mea-
surement methods in point clouds, affinity is rarely utilized in 3D
methods. To achieve reliable affinity propagation, locating object
instances is essential. Therefore, we propose an instance genera-
tion module to separate objects in point clouds. Specifically, we
cluster the point cloud into superpoints and treat the superpoints
as instances, as point clouds possess excellent geometric separation
capabilities. To construct reliable affinity, we extract the features
of instances from 2D image patches corresponding to superpoints.
In such a way, the strong zero-shot learning abilities of vision-
language models [6, 14, 18, 34] can be well utilized. Our instance
generation module enables affinity propagation in 3D scenes, facili-
tating better knowledge transfer from images to point clouds.

To address the wrong geometric alignment issue, we propose a
visibility measurement module to estimate the visibility of points
from the camera perspective. The wrong geometric alignment typ-
ically occurs when the points belonging to invisible objects are
wrongly projected onto a visible object. The depths of wrongly
projected points are usually larger than the depth of points from
visible objects. Therefore, our visibility measurement module first
estimates the depth 𝐷𝑠𝑝 of the visible object and treats the points
with depths exceeding 𝐷𝑠𝑝 too much as invisible. After measuring
the visibility, we only distill the knowledge of 2D images to visible
3D points for reliable knowledge transfer.

Incorporating the aforementioned modules, we propose a trans-
ductive zero-shot point cloud semantic segmentation framework [5,

27] named Affinity3D. We evaluated Affinity3D on SemanticKITTI,
and extensive experiments show that our Affinity3D outperforms
existing state-of-the-art methods without increasing inference time.

Our contributions can be summarized as follows:
(1) An affinity module is proposed to refine wrong predictions

of the visual-language model and generate accurate pseudo labels.
(2) A visibility measurement module is proposed to avoid mis-

aligned non-visible 3D points to 2D pixels and achieve reliable
knowledge transfer.

(3) We propose Affinity3D, which demonstrates state-of-the-art
results on the SemanticKITTI dataset. Notably, it achieved 62.78%
mIoU under a generalized zero-shot learning setting.

2 RELATEDWORK
2.1 Close-set 3D semantic segmentation
The objective of 3D semantic segmentation is to classify each
point in a scene. Earlier methods build models based on Point-
Net [32], such as PointNet++ [33], DGCNN [31], RS-CNN [25],
PointASNL [43], PointConv [40], KPConv [38], and PointTrans-
former [48]. However, those methods may perform better in 3D
object classification or 3D indoor semantic segmentation but get
poor results on outdoor scenes. Outdoor scenes are larger and more
sparse than synthetic shapes or indoor scenes. To decrease run-
time latency, researchers propose projection-based methods. Those
methods project 3D points into a 2D view, like range-view [15] and
polar-view, and then employ 2D segmentation structures. However,
due to the lack of 3D operation, projection-based methods make
it hard to model 3D relations, which leads to poor segmentation
performance. Some methods investigate how to build a better repre-
sentation in voxels or from multi-representation [21, 24, 44, 44, 52].

Although closed-set 3D semantic segmentation has made signif-
icant progress in network architecture and modal fusion, it cannot
recognize unseen objects.
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2.2 Zero-shot 3D semantic segmentation
Zero-shot 3D semantic segmentation methods can be categorized
into generative, projection-based, and transfer-based approaches.
3DGenZ [29] and SeCondPoint [22] employ conditional generative
networks, using class names as conditions to generate features
for unseen samples, which are then provided to the classifier for
training. Generative models trained solely on names and seen class
samples may struggle to produce high-quality unseen class results
during generation, leading to low zero-shot capability. Projection-
based methods [5, 27] learn the mapping between 3D and text on
seen classes, but this mapping requires substantial support from
seen classes to generalize to unseen ones. Transfer-based methods
transfer knowledge from 2D vision-language models with excellent
zero-shot capabilities to 3D. Wang [39] transfers knowledge from
CLIP [34] to 3D using contrastive learning at different scales and
generates corresponding pseudo labels by MaskCLIP [51] to super-
vise the training of 3D models. CLIP2Scene [4] proposes semantic
and spatial-temporal consistency regularization to pre-train the
3D network. OpenScene co-embeds dense 3D point features with
image pixels and text in the CLIP feature space, enabling zero-shot
training and open-vocabulary queries.

As a promising semi-supervised learningmethod, Pseudo-labeling
techniques have been widely utilized in 2D zero-shot learning
for self-training. The core idea of this technique is to employ a
pre-trained model on unlabeled data to generate predicted labels,
which are then regarded as true labels (i.e., "pseudo labels"). These
pseudo labels are integrated into subsequent training processes,
leveraging many unlabeled data for model optimization. In order
to obtain pseudo labels, RegionCLIP [50] builds a concept pool
using frequently occurring nouns in image captions. It extracts
pseudo labels by performing classification using the concept pool
and CLIP. GOOD [10] employs a pre-trained deep model to provide
additional depth modalities as pseudo labels. XPM [12] proposes a
cross-modal pseudo-labeling framework, which generates training
pseudo masks by aligning word semantics in captions with visual
features of object masks in images. Zhao et al. [49] proposed a
split-and-fusion (SAF) head designed to remove the noise in the lo-
calization of pseudo labels. Besides, the training of visual-language-
models [14, 19, 23] also benefits from utilizing a data augmentation
engine, in which pseudo-label generation techniques are similarly
employed.

Compared with CLIP2Scene [4] and OpenScene [30], our Affin-
ity3D does not require maintaining complex spatial-temporal con-
sistency relationships at training and does not need heavier open-
vocabulary image segmentation models during inference time. Be-
sides, previousmethodsmainly assume that vision-languagemodels
will not generate incorrect knowledge. Vision-language models will
also makemistakes and transfer erroneous knowledge to 3Dmodels.
Our Affinity3D refines responses generated from vision-language
models by comparing them with similar instances.

2.3 Cross-modal knowledge transfer
Transferring knowledge between different modalities is effective
in 3D pretraining for improving downstream tasks. Methods of
feature-level alignment mainly construct consistency loss on in-
termediate representation. Some researchers apply contrastive or

distillation loss between 2D images and 3D point clouds [13, 26, 28,
35, 42, 45, 46]. Some methods like Image2point [41] assume that
knowledge is stored in parameters, so they transform 2D knowledge
into 3D by inflating of 2D parameters to 3D sparse convolution.
Others try to align the image language and 3D features into a uni-
representation [11, 17].

However, those methods need more exploration of transferring
pathways and considering visibility change problems when map-
ping 3D points with 2D pixels. The transferring path without care-
ful consideration will introduce erroneous semantics into the 3D
model, thereby diminishing zero-shot capabilities. Our Affinity3D
proposes a visibility measurement module that facilitates the visi-
bility change problem.

3 METHOD
Our proposed Affinity3D aims to transfer knowledge fromCLIP [34]
to 3D, utilizing affinity to refine the wrongly generated predictions
from CLIP and visibility to eliminate semantic ambiguity between
visible 3D points and non-visible ones. Affinity3D contains an in-
stance generation module, a pseudo labels generation module, a
visibility measurement module, an affinity module, and a knowl-
edge transfer module. In Fig. 2, the instance generation module
clusters 3D points as superpoints. The 3D superpoints are treated as
instances and sent to the pseudo labels generation module to obtain
initial pseudo labels. The affinity module refines the pseudo labels
by comparing them with similar objects. The knowledge transfer
module distills knowledge from 2D pixels to visible 3D points de-
termined by the visibility module and supervises the network by
the refined pseudo labels.

3.1 Preliminary
The generalized zero-shot 3D semantic segmentation split all classes
𝐶 into seen classes 𝑆 and unseen classes 𝑈 , where 𝑆 ∩ 𝑈 = ∅
and 𝑆 ∪ 𝑈 = 𝐶 . The seen classes have labels, while the unseen
annotations are not provided. In the training phase, point clouds
𝑃 ∈ R𝑁×4, 2D images 𝐼 ∈ R𝐻×𝑊 ×3, and class names are required
as input. Only point clouds 𝑃 , class names, and the 3D model are
available at inference time. The 3D model needs to segment both
seen and unseen classes correctly.

As shown in Fig. 3, the point cloud 𝑃 are sent to 3D Backbone and
encoded as 𝐹 𝑙3𝐷 ∈ R𝑁×𝐶𝑙

3𝐷 at 𝑙-th layer. The image 𝐼 are encoded

by 2D backbone into feature map 𝐹 𝑙2𝐷 ∈ R𝐻 𝑙×𝑊 𝑙×𝐶𝑙
2𝐷 at 𝑙-th layer.

For a given point 𝑝𝑖 , its 3D feature at 𝑙-th layer is 𝐹 𝑖,𝑙3𝐷 and the
corresponding 2D feature at 𝑙-th layer is 𝐹 𝑖,𝑙2𝐷 . The corresponding
2D feature for points 𝑝𝑖 is formulated as follows:

[𝑢, 𝑣, 1]𝑇 =
1
𝑑
· 𝐾 · 𝐸 · [𝑥,𝑦, 𝑧, 1]𝑇 , 𝐹 𝑖,𝑙2𝐷 = 𝐹 𝑙2𝐷 [𝑢, 𝑣], (1)

where [𝑥,𝑦, 𝑧] is the position of point 𝑝𝑖 , 𝑑 is the depth of point 𝑝𝑖 ,
[𝑢, 𝑣] is the pixel position of point 𝑝𝑖 , 𝐾 is the intrinsic matrix, and
𝐸 is the extrinsic matrix of the camera.

The prompt engineering integrates and expands class names
based on different templates, such as “a photo of [cls]," where [cls]
is the inserted class name. After multiple prompts are generated
from various templates for the same class, the class embedding is
obtained by averaging the text features from the CLIP text encoder.
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It can be formulated as follows:

𝑒𝑚𝑏𝑐𝑖 =
1
𝑁𝑐𝑖

𝑁𝑐𝑖∑︁
𝑗=1

CLIPtext (𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑐𝑖𝑗 (𝐶𝑖 )), (2)

𝐸𝑀𝐵Ω = {𝑒𝑚𝑏𝑐𝑖 |𝑐𝑖 ∈ Ω},Ω ∈ {𝐶, 𝑆,𝑈 }, (3)

where 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑐𝑖
𝑗
(·) is the 𝑗-th text editing function for class 𝑐𝑖 ,

𝐶𝑖 is the name of class 𝑐𝑖 , CLIPtext is the CLIP text encoder, and
𝑁𝑐𝑖 is the number of template for class 𝑐𝑖 . 𝐸𝑀𝐵𝐶 represents the
text embeddings for all classes, and 𝐸𝑀𝐵𝑆 /𝐸𝑀𝐵𝑈 denotes the text
embeddings for seen/unseen classes.

3.2 Instance generation module
The geometric spatial structure inherent in point clouds allows for
superior instance separation through clustering compared to 2D
images. Therefore, our instance generation module clusters point
clouds into superpoints. Each superpoint is regarded as an indi-
vidual instance. After projection, the superpoints can be enclosed
by a 2D bounding box. For bounding boxes smaller than 30 × 30,
the height and width are set to 30 × 30. Superpoints with less than
2 points are regarded as invalid. As shown in Fig. 2, the patch
corresponding to the 2D bounding box of each superpoint 𝑆𝑃 𝑗 is
encoded through CLIP visual encoder to obtain the feature 𝐹𝑆𝑃 𝑗

𝐶𝐿𝐼𝑃
.

Consequently, each instance has a superpoint, cropped 2D patch,
and CLIP feature.

3.3 Pseudo label generation module
After the instance generation module, we ignore the instances
corresponding to seen classes and keep the remaining instances
that fall inside images. Let 𝐹𝐶𝐿𝐼𝑃 ∈ R𝑁𝐼 ×𝐶𝐼 be the matrix consisted
of all feature 𝐹𝑆𝑃 𝑗

𝐶𝐿𝐼𝑃
for kept superpoints. 𝑁𝐼 is the number of kept

instances, 𝐶𝐼 is the channel of feature. As shown in Fig. 2, the
pseudo labels of kept instances are computed based on the response
of CLIP features to text embedding. It can be formulated as:

𝑌𝑘𝑒𝑝𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐶𝐿𝐼𝑃 · 𝐸𝑀𝐵𝑈 ), (4)

where 𝑌𝑘𝑒𝑝𝑡 is the semantic prediction for superpoints.

3.4 Affinity module
The initial prediction 𝑌𝑘𝑒𝑝𝑡 is noisy due to image jitter and occlu-
sion. In the transductive zero-shot setting, unseen classes are not
provided labels during training. Therefore, we can enhance the
quality of initial prediction to mitigate noise by deeply exploring
the relationships among samples. The similarity between instances
can rectify this noise. As illustrated in Fig. 4, if a particular instance
yields a wrong prediction at time 𝑡 , corrections can be made by
comparing instances across preceding and subsequent frames or
considering contextual instances. The similarity between instances
is defined as affinity, which can be formulated as:

A = 𝑠𝑐𝑎𝑙𝑒 · 𝐹𝑆𝑃𝑖
𝐶𝐿𝐼𝑃

· 𝐹𝑆𝑃 𝑗

𝐶𝐿𝐼𝑃
, (5)

where 𝐹𝑆𝑃𝑖
𝐶𝐿𝐼𝑃

/𝐹𝑆𝑃 𝑗

𝐶𝐿𝐼𝑃
is the CLIP feature of instance 𝑖/ 𝑗 , and 𝑠𝑐𝑎𝑙𝑒 is

the amplify factor.
The affinity matrix𝑊 between multiple instances is as follows:

𝑊 = softmax(𝑠𝑐𝑎𝑙𝑒 · 𝐹𝐶𝐿𝐼𝑃𝐹𝑇𝐶𝐿𝐼𝑃 ), (6)

where softmax is used for normalization. The propagation of in-
stance affinity is conducted in the form of random walks. It can be
formulated as:

𝑇 = 𝐷−1𝑊 ◦𝛽 ,𝑤ℎ𝑒𝑟𝑒 𝐷𝑖𝑖 =
∑︁
𝑗

𝑊
◦𝛽
𝑖 𝑗
. (7)

In Eqn. (7),𝑊 ◦𝛽 represents the element-wise power of𝑊 to the
exponent of 𝛽 , where 𝐷 is the normalized diagonal matrix. The
diagonal values in 𝐷 are the sums of the corresponding rows in
𝑊 ◦𝛽 . 𝑇 is the propagation matrix. The instance pseudo labels can
be updated as follows:

𝑌
′

𝑘𝑒𝑝𝑡
= 𝑇 · 𝑌𝑘𝑒𝑝𝑡 , (8)

where 𝑌
′

𝑘𝑒𝑝𝑡
is the update response matrix. The refined pseudo

labels 𝑃𝐿
′
provides a semantic class for each point. The refined

pseudo labels for seen labels are filled with ground truths. Points
belonging to the kept superpoints are filled with 𝑌

′

𝑘𝑒𝑝𝑡
. Others are

set to ignoring labels.
For a given instance, instances in adjacent frames contribute

more to affinity propagation. Therefore, we adopt a queue-based ap-
proach, where once the number of instances in the queue reaches a
pre-defined number, all instances are popped from the queue. Then,
the pseudo labels of instances are refined according to Eqn. (8).

3.5 Visibility measurement module
Although the noises in pseudo labels are reduced after passing
through the affinity module, 3D points in outdoor scenes are still
affected by changes in visibility. The projection mapping between
point clouds and images often adopts the perspective projection
method (Eqn. (1)). However, the visibility of objects in LiDAR and
cameras differs. Some objects may be visible in point clouds but
occluded in images. It can be seen in Fig. 3 that the differences
in visibility between LiDAR and the camera can result in wrong
mappings between 3D points and 2D pixels, where 3D points be-
longing to the road may map to a car in the image. Wrong mappings
lead to incorrect pseudo labels or inaccurate 2D-to-3D knowledge
transfer. We measure the visibility of 3D points in the camera view
to address the misaligned issue. Specifically, the calculation method
involves first obtaining superpixel segmentation results from 2D
images. Then, mapping relationships between superpixels and 3D
points are computed by perspective projection (Eqn. (1)). For each
superpixel, its depth 𝐷𝑠𝑝 is represented as the minimum depth of
the points set that belong to that superpixel. The depth 𝐷𝑆𝑝 of
superpixel is formulated as:

𝐷𝑆𝑝 = scattermin (𝐷, 𝑆𝑝 ), (9)

where 𝐷 is the depth vector of 3D points, 𝑆𝑝 is the superpixel
identification (ID) vector of 3D points. The element of the superpixel
ID vector is computed based on the direct perspective projection
mapping between 3D points and superpixel. If a 3D point falls
outside the image bound, its superpixel ID is −1. ‘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑚𝑖𝑛 ’ refers
to the scatter minimum function1, which calculates the minimum
value of the same identification.

1https://pytorch-scatter.readthedocs.io/en/latest/functions/scatter.html
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Figure 3: The visibilitymeasurementmodule ofAffinity3D. 3DPoints are projected to 2Dpixel by perspective projection (Eqn. (1)).
The 3D points that fall outside the image bound are considered invisible. The superpixel segmentation algorithm segments
images into several superpixels. For each superpixel, the minimum depth of 3D points that belong to it represents the
superpixel’s depth 𝐷𝑠𝑝 . Points with a depth exceeding 𝐷𝑠𝑝 +𝑇𝐷 are treated as invisible. The invisible 3D points are ignored in
pseudo-label generation and knowledge-transferring modules.

Usually, local similar pixels are adjacent in 3D space. So, if the
depth 𝐷 of points greater than 𝐷𝑠𝑝 +𝑇𝐷 , it will be determined as in-
visible.𝑇𝐷 is a predefined threshold. The visibility Vis is formulated
as follows:

Vis = 1(𝐷 − 𝐷𝑆𝑝 [𝑆𝑝 ] < 𝑇𝐷 & 𝑆𝑝 > −1), (10)

where 1(·) denotes the visibility function.

3.6 Knowledge transfer module
Due to the lack of large-scale pre-training datasets in point clouds,
many methods incorporate data augmentation during training to
enhance the generalization of 3D models. In order to improve the
network’s generalization ability and discriminative capacity to-
wards novel classes, Affinity3D incorporates the Multi-scale Fusion-
to-Single Knowledge Distillation (MSFSKD) in 2DPass [42] during
training, gradually transferring knowledge from images to point
clouds. However, MSFSKD still needs to select knowledge transfer
pathways. To avoid incorrect semantic correspondences, we utilize
Eqn. (10) to filter out invisible points and only construct knowledge
transfer loss for visible points.

Specifically, the feature 𝐹 𝑖,𝑙3𝐷 of a visible 3D point 𝑝𝑖 at 𝑙-th layer is
transformed to 2D space through a 2D learner that is built by multi-
layer perceptron (MLP), resulting in 𝐹 𝑖,𝑙2𝐷𝑙𝑒𝑎𝑟𝑛𝑒𝑟

. The 2D feature
𝐹
𝑖,𝑙
2𝐷 of a visible 3D point 𝑝𝑖 at 𝑙-th layer and its corresponding
𝐹
𝑖,𝑙

2𝐷𝑙𝑒𝑎𝑟𝑛𝑒𝑟
are concatenated into 𝐹 𝑖,𝑙2𝐷3𝐷 . In order to further mix 2D

and 3D features of visible 3D points 𝑝𝑖 , each channel in the 𝐹 𝑖,𝑙2𝐷3𝐷
is selected through a gated module. Specifically, its transformation
formula is as follows:

𝐹
𝑖,𝑙

𝑔𝑎𝑡𝑒𝑑
= sigmoid

(
MLP𝐺

(
MLP2𝐷3𝐷

(
𝐹
𝑖,𝑙
2𝐷3𝐷

)))
(11)

¤𝐹 𝑖,𝑙2𝐷3𝐷 = ReLU
(
𝐹
𝑖,𝑙

𝑔𝑎𝑡𝑒𝑑
⊙ MLP2𝐷3𝐷

(
𝐹
𝑖,𝑙
2𝐷3𝐷

))
+ 𝐹 𝑖,𝑙2𝐷 , (12)

where MLP(·) is the multi-layer perceptron. sigmoid is the acti-
vation function. ¤𝐹 𝑖,𝑙2𝐷3𝐷 is the final 2D-3D fusion feature. The seg-
mentation head is used to obtain the 3D prediction vector 𝑌 𝑖,𝑙3𝐷 and
2D-3D fusion prediction vector 𝑌 𝑖,𝑙2𝐷3𝐷 of 𝑝𝑖 at 𝑙-th layer. It has to
be noted that the 2D and 3D segmentation heads are composed of
text embeddings as weights. The final prediction can be formulated
as follows:

𝑌
𝑖,𝑙
3𝐷 = softmax

(
𝐹
𝑖,𝑙
3𝐷 · 𝐸𝑀𝐵𝐶

)
, (13)

𝑌
𝑖,𝑙
2𝐷3𝐷 = softmax

(
¤𝐹 𝑖,𝑙2𝐷3𝐷 · 𝐸𝑀𝐵𝐶

)
. (14)

A Kullback–Leibler (KL) divergence loss is adopted between the
2D-3D fusion prediction and the 3D prediction. It can be formulated
as follows:

𝐿𝑙𝑒𝑎𝑟𝑛𝑒𝑟 =
1
𝑁𝑣

∑︁
𝑝𝑖 ∈𝑉𝑝

𝐾𝐿(𝑌 𝑖,𝑙3𝐷 , 𝑌
𝑖,𝑙
2𝐷3𝐷 ), (15)

𝑉𝑝 = {𝑝𝑖 |𝑉𝑖𝑠 [𝑖] = 1}, (16)

where𝑁𝑣 is the number of visible 3D points,𝑉𝑝 is the set containing
all the visible 3D points.

3.7 Joint training
3D point clouds are susceptible to class imbalance issues, where the
network tends to overfit categories with dominant points. Lovasz
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loss [2] is a class-balanced loss in a mini-batch, which achieved
mean intersection-over-union loss for multi-class semantic segmen-
tation. The weighted cross entropy loss utilizes the point frequency
statistics on the dataset as weights to balance the contribution of
different classes. Therefore, Lovasz and weighted cross entropy
loss supervise the classification prediction vectors. The final loss
function formula is:

𝐹3𝐷 = MLPSeg3D
(
concat

(
𝐹 03𝐷 , ..., 𝐹

𝑁𝐿

3𝐷

)
, 𝑃𝑆𝑒𝑔3𝐷

)
(17)

𝑌3𝐷 = softmax
(
𝐹3𝐷 · 𝐸𝑀𝐵𝐶

)
, (18)

𝐿3𝐷 = 𝛼 lovasz
(
𝑌3𝐷 , 𝑃𝐿

′ )
+𝐶𝐸

(
𝑌3𝐷 , 𝑃𝐿

′
,𝑤

)
(19)

𝐿 = 𝐿3𝐷 + 𝛾𝐿𝑙𝑒𝑎𝑟𝑛𝑒𝑟 (20)

where 𝑀𝐿𝑃𝑆𝑒𝑔3𝐷 is the multi-layer perceptron with parameters
𝑃𝑆𝑒𝑔3𝐷 , used to reduce the dimension of concatenated features from
multiple layers. 𝑁𝐿 is the number of layers, 𝛼 and 𝛾 are the balance
factor, and𝑤 is the class weight of weighted cross entropy.

4 EXPERIMENTS
4.1 Dataset and metric
Our experiments were conducted on the semanticKITTI [1] dataset.
The semanticKITTI dataset consists of 22 sequences of point clouds,
where sequences 00 to 10 were used for training, sequence 08 was
used for validation, and sequences 11 to 21 were used for double-
blind test evaluation. We mainly reported the metric of mean in-
tersection over union (mIoU), defined as the average IoU over all
classes. Two experimental settings were conducted: generalized
zero-shot and annotation-free. In the generalized zero-shot setting,
we divided all classes of SemanticKITTI into seen and unseen ones,
where motorcycle, truck, bicyclist, and traffic signs were treated
as unseen classes. The average IoU over seen and unseen classes
were also reported. Harmonic mean IoU (hIoU) was also utilized to
evaluate the general zero-shot performance of models. Harmonic
mIoU considered both mIoU for seen classes and unseen classes,
which was formulated as:

ℎ𝐼𝑜𝑈 =
2 ×𝑚𝐼𝑜𝑈𝑠𝑒𝑒𝑛 ×𝑚𝐼𝑜𝑈𝑢𝑛𝑠𝑒𝑒𝑛
𝑚𝐼𝑜𝑈𝑠𝑒𝑒𝑛 +𝑚𝐼𝑜𝑈𝑢𝑛𝑠𝑒𝑒𝑛

, (21)

where𝑚𝐼𝑜𝑈𝑠𝑒𝑒𝑛/𝑚𝐼𝑜𝑈𝑢𝑛𝑠𝑒𝑒𝑛 represented themIoU for seen/unseen
classes. Following the setting of TCKZ [39], we only evaluated the
front view of LiDAR points on SemanticKITTI.

4.2 Implementation details
To savememory, we applied random cropping to the images. During
training, we involved data augmentation on the point clouds to pre-
vent overfitting on the training set. The data augmentation included
global random translation, scaling, and downsampling. The global
random translation range was [-0.5, 0.5], the global random scaling
range was [0.95, 1.05], and the 70% global random downsampling
was performed for point clouds. Regarding the 2D image, we have
implemented global random flipping and color jitter. The 𝛽 in the
random walk was 2, and the𝑇𝐷 in Eqn. (10) was 0.5. For a fair com-
parison with the previous method, the backbone of the 3D model
was SPVCNN [37]. The CLIP model was ViT-B/32 in our pseudo
label generation module. In the knowledge transfer module, the 2D
image encoder was ResNet-34 [9]. When annotations were available

Table 1: Comparisons with other state-of-the-art methods on
SemanticKITTI validation set under a generalized zero-shot
setting. ‘FS’ means fully supervised, and ‘ZS’ represents zero-
shot. ‘Ann.’ is the abbreviation of annotation. ‘S’/‘U’ means
providing seen/unseen class labels during training.

Setting Ann. Method mIoU hIoUS U Seen Unseen All

FS ✓ ✓ SPVCNN [37] 66.97 60.35 65.58 63.49
✓ SPVCNN [37] 62.31 0 49.19 0

ZS

✓
MaskCLIP- 45.88 19.58 40.34 27.443D+ [51]

✓ 3DGenZ [29] 41.40 10.80 35.00 17.10
✓ TGP [5] 54.60 17.30 46.70 26.30
✓ TCKZ [39] 61.31 46.50 58.19 52.89
✓ Affinity3D 61.41 66.06 62.78 63.65

Table 2: Comparisons with other state-of-the-art methods
on SemanticKITTI validation set under an annotation-free
setting. TTA means test-time augmentation.

Method Input SemanticKITTI
MaskCLIP-3D+ [51] Camera+LiDAR 8.99

TCKZ [39] LiDAR 13.17
Affinity3D LiDAR 18.48

Affinity3D+TTA LiDAR 19.40

for seen classes in the instance generation module, DBSCAN [7]
clustered unseen classes. When no annotations were available, the
boundary preserved supervoxel segmentation (BPSS) [20] method
was employed to generate superpoints. The 𝛼 in Eqn. (19) was 2.0
and the 𝛾 in Eqn. (20) was 0.05.

4.3 Comparisons with the state-of-the-art
methods

Table 1 demonstrated the comparison with the prior state-of-the-
art methods on the SemanticKITTI validation set under a general-
ized zero-shot setting. Our method achieved the best mIoU results
without introducing more inference time. Compared with previous
methods, Affinity3D achieved a 19.56% increase in mIoU for un-
seen classes and an overall improvement of 4.59% across all classes.
Additionally, considering metrics for seen and unseen classes, the
hIoU improved by 11.44%. Besides, the mIoU across all the classes
of Affinity3D approached the level of full supervision.

The results of our Affinity3D and previous methods under an
annotation-free setting were shown in Table 2. It was observed that
the performance of Affinity3D improved compared with that of
TCKZ [39]. If the distribution of point clouds at test time differed
from training, it could lead to performance degradation. Therefore,
we included test-time data augmentation (TTA) in Table 2 to ad-
dress this issue. Specifically, TTA included randomly rotating the
point clouds and then averaging the results predicted by the model
to obtain the augmented prediction result. Affinity3D with TTA
achieved a 0.92% absolute improvement in Table 2.

4.4 Ablation study
Since all classes were unseen under the annotation-free setting, the
mIoU for seen classes and hIoU were not reported, and the mIoU
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Table 3: The ablation study on SemanticKITTI validation
set under a generalized zero-shot setting. ‘MC’ means that
pseudo labels are generated byMASKCLIP. ‘CI’ represents the
pseudo labels generated by our instance generation module
and pseudo label generation module. KT indicates whether
a knowledge transfer module was involved during training.
‘GZS’/‘AF’ represents generalized zero-shot/annotation-free.
‘Aff.’/‘Vis.’ represents the abbreviations of affinity/visibility.

Setting Labels Aff. Vis. KT Seen Unseen All hIoU

GZS

MC 55.88 35.41 52.13 43.35
MC ✓ 56.45 35.13 52.50 43.31
MC ✓ 57.95 36.62 54.05 44.88
MC ✓ ✓ 57.89 40.31 54.76 47.53
CI ✓ 58.73 62.83 59.87 60.71
CI ✓ ✓ 59.00 65.71 60.76 62.17
CI ✓ ✓ 60.88 67.59 62.66 64.06
CI ✓ ✓ ✓ 61.41 66.06 62.78 63.65

AF

MC - 11.37 11.37 -
MC ✓ - 11.65 11.65 -
MC ✓ - 12.96 12.96 -
MC ✓ ✓ - 13.78 13.78 -
CI ✓ - 16.60 16.60 -
CI ✓ ✓ - 17.41 17.41 -
CI ✓ ✓ - 18.06 18.06 -
CI ✓ ✓ ✓ - 18.48 18.48 -

for unseen and all classes were the same. To ensure fairness, the
backbone used for the 3D network was SPVCNN [37], and the image
branch added for knowledge transfer exists only during training.
We demonstrated the ablation study under generalized zero-shot
and annotation-free settings in Table 3.

Effect of instance generation module. In Table 3, we conducted an
ablation experiment on pseudo labels in rows 4, 7 and 12, 15. Com-
pared with MaskCLIP, our instance generation module and pseudo
label generation module could generate instance-level pseudo la-
bels that improved the final performance. Specifically, introducing
instances (row 4 vs row 7) led to an absolute improvement of 27.28%
in mIoU for unseen classes under the generalized zero-shot setting.
Under the annotation-free setting, there was an absolute mIoU im-
provement of 4.28% (row 12 vs row 15). CLIP was a model trained
with image-level supervision, lacking precise object localization
capabilities. Therefore, our instance generation module utilized the
excellent object separation properties of 3D to aggregate objects
and generate pseudo labels. It greatly enhanced CLIP’s perceptual
capabilities for objects and enabled more accurate knowledge trans-
fer.

Effect of affinity module. To validate the effectiveness of our affin-
ity module, we conducted ablation experiments with four different
settings. Incorporating our affinity module resulted in approxi-
mately 1% (row 5 vs row 6 and row 13 vs row 14) absolute improve-
ments in mIoU for both generalized zero-shot and annotation-free
settings. Compared with the full model, when the affinity mod-
ule was removed, the mIoU decreased by 0.12%/0.42% (row 7 vs
row 8/row 15 vs row 16) for all classes under the generalized zero-
shot/annotation-free setting. It seems that when all three modules
were employed simultaneously, the efficacy of our affinity module

Table 4: Pseudo label quality on SemanticKITTI training set.
‘CI’ represents the pseudo labels generated by our instance
generation and pseudo label generation module. ‘GZS’/‘AF’
represents generalized zero-shot/annotation-free.

Method Affinity Setting Accuracy
CI GZS 12569/15043=83.55%
CI ✓ GZS 13084/15043=86.98%
CI AF 384543/1107790=34.71%
CI ✓ AF 418973/1107790=37.82%

tended to diminish. The reason may be that the affinity, visibility,
and knowledge transfer modules serve similar purposes, aiming to
eliminate semantic ambiguity from different perspectives. There-
fore, the effects of individual modules may not be remarkable when
working together.

Effect of visibility measurement module. Our visibility measure-
ment module could serve to judge whether a pseudo-label should be
kept for self-training (Eqn. (15)) and knowledge transfer (Eqn. (19)).
The invisible points are set to the ignoring label for self-training.
The knowledge transfer was only applied to visible points deter-
mined by the visibility measurement module. As shown in Table 3,
compared with MaskCLIP, our visibility module resulted in an abso-
lute improvement of 0.37% (row 1 vs row 2) in mIoU for all classes
in a generalized zero-shot setting. In the annotation-free setting,
there was an absolute improvement of 0.28% (row 9 vs row 10).
Besides, when our visibility module was served to guide the knowl-
edge transfer, an absolute improvement of 2.65% (row 3 vs row 4)
for hIoU was achieved in a generalized zero-shot setting. For the
annotation-free setting, there was an absolute mIoU improvement
of 0.82% (row 11 vs row 12). The above results verified our visibility
module’s effectiveness as a guide for noise filtering.

4.5 Pseudo labels quality
To better understand the effectiveness of our affinity module on
the quality of the pseudo labels, we conducted additional experi-
ments and reported the results in Table 4. We adopt CLIPInstance as
the baseline model, which involved passing the 2D image patches
of individual instances through CLIP ViT-B/32 to extract image
features and computing the maximum response with text embed-
ding to obtain predictions. Pseudo labels for points were assigned
based on the predictions of the instances to which they belong. We
applied affinity by Eqns. (7) and (8) to CLIPInstance in both the
generalized zero-shot and the annotation-free settings. Compared
with CLIPInstance, our affinity module led to an approximately 3%
absolute accuracy improvement of pseudo labels under both set-
tings. Pseudo labels with less noise could reduce the introduction of
wrong semantics during training, thereby improving segmentation
performance.

4.6 Visualization results
We demonstrated some instances’ maximum affinity target in Fig. 4.
It can be seen that a greater presence of semantically similar parts in
images corresponded to higher affinity. Conversely, larger semantic
differences between images resulted in lower affinity. It indicated
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Figure 4: The visualization results of affinity. The source images (row 1) and their maximum targets (row 2) are presented.

(2) Baseline (3) Affinity3D(1) Ground Truth

Unseen:

Figure 5: The visualization results of our Affinity3D, baseline, and ground truth under a generalized zero-shot setting.

that our affinity could be a quantitative indicator of object similar-
ity. Fig. 5 compared our semantic segmentation results with the
baseline. Affinity3D had fewer faults than the baseline. The baseline
model in Fig. 5 incorrectly segmented most points belonging to the
traffic sign and bicyclist class, whereas Affinity3D could maintain
correct semantic segmentation results. In Fig. 5 rows 1 and 2, the
baseline results struggle to maintain consistency at the instance
level compared with Affinity3d. The baseline only correctly seg-
ments the top of bicyclists, which presents numerous fragmented
predictions. The discerning ability of instance consistency validates
the instance-level perception capability of Affinity3D. Accurate per-
ception at the instance level benefited from our instance generation
module, affinity module, and visibility measurement module.

5 CONCLUSION
In this work, we proposed a generalized zero-shot 3D semantic
segmentation framework for progressively transferring knowledge

from the image to the point clouds. The training framework im-
proved 3D semantic segmentation performance without introduc-
ing additional parameters at inference time. Our framework gener-
ated more accurate pseudo labels at the instance level than previ-
ous methods. It leveraged the geometric spatial structure inherent
in point clouds and the remarkable zero-shot properties of 2D
vision-language models. The proposed affinity module enhanced
the quality of pseudo labels by propagating similarity to other
samples. The proposed visibility module measured the visibility
of 3D points in camera view by comparing the depth of points
with the corresponding superpixel’s depth. It substantially softened
semantic ambiguity by ignoring the invisible 3D points when trans-
ferring knowledge from images to point clouds. Our framework
improved the SemanticKITTI dataset under generalized zero-shot
and annotation-free settings. It got 63.65% hIoU under the general-
ized zero-shot setting and 18.48% mIoU under the annotation-free
setting. Future research on transferring object composition knowl-
edge from images to point clouds was still needed.
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