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1 MORE IMPLEMENTATION DETAILS

1.1 Visibility measurement module

The superpixel segmentation algorithm in the visibility measure-
ment module was simple linear iterative clustering (SLIC) [1]. We
set the approximate number of labels in the segmented output
image to 4800 because we expected the boundary to be clearly
segmented and adjacent local pixels to have similar depth.

1.2 Knowledge transfer module

Specifically, as illustrated in Fig. 1, we choose to transfer 2D knowl-
edge to point clouds for the visible red points in images. We selected
four corresponding scales of image and point cloud features to ap-
ply Kullback-Leibler loss for distillation. Both 2D and 3D semantic
segmentation heads are composed of text embedding EMBC as
weights. We generate pseudo labels for 3D points belonging to
unseen classes. For seen classes, the ground truth is directly used
as supervision during training. Since pseudo labels for 3D points
belonging to unseen classes are discriminated in images. Those
invisible 3D points belonging to unseen classes are set to ignoring
labels. For images, the pseudo labels are generated by perspective-
projecting 3D points. Pixels with no corresponding 3D points are
set to ignoring labels.

1.3 Training Details

The backbone of the 3D model was a SPVCNN [4] with a hidden
size of 64. The SPVCNN consisted of 4 scales of layers. The initial
spatial shape was 1000 x 1000 x 60. The volume space was [—50, 50]
for X axis, [—50, 50] for Y axis and [—4, 2] for Z axis. The model
was trained in 64 epochs with a learning rate of 0.24. The optimizer
was Stochastic Gradient Descent (SGD) with momentum of 0.9 and
weight decay of 1.0e — 4. The learning rate scheduler was cosine
annealing.

1.4 Inference Details

During test time, only the 3D model was available, and the image
branch in the knowledge transfer module was removed. There-
fore, our Affinity3D did not introduce additional parameters and
inference time. Furthermore, all point cloud augmentations were de-
activated during testing unless specifically noted for the utilization
of Test Time Augmentation (TTA).

2 MORE EXPERIMENTS

2.1 Selection of propagation time in the affinity
module
We evaluated the accuracy of pseudo labels for instances on the

SemanticKITTI [2] train dataset. The instance generation module
generated the instances, and the pseudo labels were obtained in the

Table 1: The ablation study of propagation time in affinity
module. ‘GZS’ represents a generalized zero-shot setting.

Method setting | S Accuracy
CLIPInstance(without affinity) | GZS | X | 12723/15043 = 84.58%
CLIPInstance GZS 1 | 12723/15043 = 84.58%
CLIPInstance GZS 2 | 13084/15043 = 86.98%
CLIPInstance GZS 3 | 12723/15043 = 84.58%
CLIPInstance GZS 4 | 12621/15043 = 83.90%
CLIPInstance GZS 5 | 12599/15043 = 83.75%
CLIPInstance GZS 6 | 12592/15043 = 83.71%
CLIPInstance GZS | 7 | 12592/15043 = 83.71%

pseudo label generation module. The ground truth of an instance
is defined as the class of most points belonging to the instance.
Moreover, the accuracy was defined as the ratio of the true positives
to the total number of instances. As shown in Table 1, the accuracy
initially increased as the value of f rose, then decreased, eventually
stabilizing at 83.71%. The maximum value was achieved when f
was 2. Compared with affinity absence, the introduction of affinity
consistently improves the quality of pseudo labels. It demonstrated
the effectiveness of our affinity and the appropriate selection of the
propagation time f.

2.2 Pseudo labels

Table 2: Comparison of pseudo labels on the nuScenes dataset.

‘GZS’ represents a generalized zero-shot setting.

Method setting
MaskCLIP [5] GZS
CLIPInstance GZS

Accuracy
50805/107810 = 47.12%
54587/107810 = 50.63%

In Table 2, we conducted a comparison between our CLIPInstance
and MaskCLIP [5] on the nuScenes train dataset [3] under the
generalized zero-shot setting. As outlined in section 2.1, accuracy
was determined as the ratio of true positives to the total instances.
MaskCLIP generated 2D pseudo labels for images and mapped
them to 3D points via perspective projection. Instance prediction in
MaskCLIP was based on the class with the most points associated
with it. Besides, CLIPInstance was derived from our pseudo label
generation module. The results presented in Table 2 illustrated
that CLIPInstance outperformed MaskCLIP, exhibiting an absolute
improvement of 3.51%.

2.3 Visualization results for annotation-free
setting

We presented more visualization results under the annotation-free
setting in Fig. 2. It can be observed that compared with the baseline,
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Figure 1: The illustration of knowledge transfer module.

(1) Ground Truth (2) Baseline (3) Affinity3D

Figure 2: The visualization results of our Affinity3D, baseline, and ground truth under an annotation-free setting.

our method achieved more accurate predictions for ground and
wall surfaces while exhibiting finer segmentation results along
boundaries for traffic signs and bicyclists.
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