
A Calibration on In-distribution and Covariate-shift datasets

IND
WRN28-10 RN50

C10 (Test) C100 (Test) C10 (Test) C100 (Test)
Methods AdaECE (↓) AdaECE (↓)

DNN 1.34 3.84 1.45 2.94
Mixup 1.16 1.98 2.17 7.47

RegMixup (our) 0.50 1.76 0.94 1.53
SNGP 0.87 1.94 - -

Augmix 1.67 5.54 - -

DE (5×) 1.04 3.29 1.28 2.98

Table 6: CIFAR IND calibration performance (%).
IND Covariate Shift

ImageNet-1K (Test) ImageNet-R ImageNet-A ImageNet-V2 ImageNet-Sk
AdaECE (↓) AdaECE (↓) AdaECE (↓) AdaECE (↓) AdaECE (↓)

DNN 1.81 13.56 44.90 4.13 14.48
Mixup 1.29 12.08 44.63 4.28 15.26

RegMixup (our) 1.37 13.30 41.18 3.38 15.35

AugMix 2.05 11.24 42.83 3.94 14.26
DE (5×) 1.38 13.55 42.88 4.02 17.32

Table 7: ImageNet calibration performance on IND
and CS datasets (%).

Covariate Shift
WRN28-10 R50

C10-C C10.1 C10.2 C100-C C10-C C10.1 C10.2 C100-C
Methods AdaECE (↓) AdaECE (↓)

DNN 12.62 4.13 8.81 9.94 12.29 4.36 8.89 19.76
Mixup 7.93 4.39 7.44 10.45 10.75 5.72 10.59 12.63

RegMixup (our) 9.08 2.57 6.83 7.93 11.37 2.89 6.74 11.47
SNGP 11.34 4.36 8.33 10.43 - - - -

AugMix 4.56 3.23 8.33 12.15 - - - -

DE (5 ×) 10.31 2.60 7.50 12.36 12.68 4.10 6.94 12.36

Table 8: CIFAR CS calibration performance (%).

Additionally, we provide the calibration per-
formance of various competitive approaches.
Briefly, calibration quantifies how similar a
model’s confidence and its accuracy are [Os-
borne, 1991]). To measure it, we em-
ploy the recently proposed Adaptive ECE
(AdaECE) [Mukhoti et al., 2020]. For all the
methods, the AdaECE is computed after per-
forming temperature scaling [Guo et al., 2017]
with a cross-validated temperature parameter.
We also provide the AdaECE without tempera-
ture scaling in Appendix D. For completeness,
we also report the ECE in Appendix G.

In terms of calibration on in-domain test sets
(refer Tables 6 and 7), our method either re-
markably improves the AdaECE with respect to
Mixup and DNN, or performs competitively (on
ImageNet-1K).

Under covariate shift (refer Tables 7 and 8), on
corrupted inputs, RegMixup underperforms with
respect to Mixup on C10-C, but not on C100-C.
On all other C10 covariate shift datasets, Reg-
Mixup outperforms both Mixup and DNN. Con-
sidering also the other baselines, except for the
case of C10-C (in which AugMix significantly
outperforms any other baseline on WRN28-10),
our method provides the best calibration in all
other cases. For example, on C100-C experiments on WRN28-10, in terms of AdaECE, RegMixup
obtains a 4.43% improvement over DE, 2.52% over Mixup, and 2.47% over SNGP. Though Reg-
Mixup outperformed all other approaches in 12 scenarios out of total 17 presented here, it is clear
that there is no single method that outperforms any other in all the considered settings.

B Experimental Details

B.1 Code-base

The RegMixup training procedure is outlined in Algorithm 1.

For fair comparisons, when training on C10 and C100, we developed our own code base for all the
approaches (except SNGP, DUQ and AugMix) and performed an extensive hyperparameter search to
obtain the strongest possible baselines.

We would like to highlight that it was not easy to make a few recent state-of-the-art approaches work
in situations different from the ones they reported in their papers as these approaches mostly required
non-trivial changes to the architectures and additional sensitive hyperparametes. We also observed
that their performances did not easily translate to new situations. Below we highlight few of these
issues we faced and the measures we took for comparisons.

For DUQ, the original paper did not perform large scale experiments similar to ours. Unfortunately,
we could not manage to make their code work on C100 as the training procedure seemed to be
unstable. For this reason, wherever possible, we borrowed the numbers for DUQ from the SNGP
paper. Please note that the authors of SNGP performed non-trivial modifications to the original DUQ
methodology to make it work on C100.

For SNGP, we used the publicly available code following exactly the same procedure as mentioned in
their original paper. The code diverges slightly from the procedure described in their paper, hence the
slight differences in the performance. The only modification we performed to the official code-base
was to make the inference procedure consistent with the one described in the paper: indeed, in their

16

Algorithm 1 RegMixup training procedure

input Batch B, α, θt
B̄ ← ∅
λ0 ∼ Beta(α, α)
for ∀(xi,yi) ∈ B do

randomly select (xj ,yj) from B\(xi,yi)
B̄ ← B̄ ∪ (λ0xi + (1− λ0)xj , λ0yi + (1− λ0)yj)

end for
L = CE(B) + CE(B̄) // Loosely speaking, compute cross-entropy loss on both the batches
return θt+1 obtained by updating θt by optimizing the above loss

code they implement a mean-field approximation to estimate the predictive distribution [Lu et al.,
2020], while in their paper they use Monte Carlo Integration with a number of samples equal to the
number of members in the ensembles they use as a baseline, which provides better calibration. The
rationale is that we could not find an obvious way to tune the mean-field approximation hyperparame-
ters to improve at the same time both the calibration and OOD detection performance (indeed, the
mean-field approximation imposes a trade-off between calibration and OOD detection performance).
Additionally, since the standard KFAC-LLLA uses the same Monte Carlo Integration procedure, we
opted for the latter for a fair comparison. For the SNGP RN50 experiments, we tried running the
official implementation on C10 and C100, but we could not make SNGP converge to SOTA accuracy
values. The authors of SNGP did not provide experiment results on C10 and C100 on RN50. Hence
we decided not to report these experiments for SNGP.

For the KFAC-LLLA we leverage the official repository9 [Hobbhahn et al., 2021] and the Backpack
library [Dangel et al., 2020] for the computation of the Kronecker-Factored Hessian.

For AugMix, we used their code base and the exact training procedure. AugMix seems to be sensitive
to hyperparameters of the training procedure as we could could not get the considered architectures
to converge to acceptable accuracy levels under the training regime we used for all other baselines.
Even with the recipes provided in the AugMix paper, we could not get it to converge to competitive
accuracy levels when using RN50 on C10 and C100 hence we decided not to report these experiments
for AugMix.

B.2 Optimization

For C10 and C100 training, we use SGD with Nesterov momentum 0.9 for 350 epochs and a weight
decay of 5× 10−4. For WRN, we apply a dropout p = 0.1 at train time. For all our experiments we
set the batch size to 12810. At training time, we apply standard augmentations random crop and
horizontal flip similar to [Liu et al., 2020a]). The data is appropriately normalized before being
fed to the network both at train and test time.

For ImageNet-1K training, we use SGD with momentum for 100 epochs, learning rate 0.1, cosine
learning scheduler, weight decay of 1 × 10−4, batch size 128 and image size 224 × 224. We use
color jitter, random horizontal flip and random crop for augmentation. We leverage
the timm library for training [Wightman, 2019] all the considered methods with Automatic Mixed
Precision to accelerate the training.

B.3 Hyperparameters

• For DNN-SN and DNN-SRN the spectral norm clamping factor (maximum spectral
norm of each linear mapping) c ∈ {0.5, 0.75, 1.0} and the target of stable rank r ∈
{0.3, 0.5, 0.7, 0.9} (as r = 1 for SRN is the same as applying SN with c = 1.0). Re-
fer to Miyato et al. [2018b] and [Sanyal et al., 2020] for details about these hyperparameters.

• For Mixup, we consider a wide range of Beta distribution hyperparameter α ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, 10, 20}.

9https://github.com/19219181113/LB_for_BNNs
10For SNGP and DUQ, we use the hyperparameters suggested in their original papers.

17

https://github.com/19219181113/LB_for_BNNs

Train Data/ Hyperparas C10 C100 ImageNet
Architecture WRN R50 WRN R50

DNN T 1.32 1.51 1.33 1.42 1.19

DNN-SN c 0.5 0.5 0.5 0.5 -
T 1.42 1.51 1.21 1.42 -

DNN-SR r 0.3 0.3 0.3 0.3 -
T 1.33 1.41 1.22 1.42 -

DE T 1.31 1.42 1.11 1.21 1.29
SNGP T 1.41 - 1.52 - -

Mixup α 0.3 0.3 0.3 0.3 0.1
T 0.73 0.82 1.09 1.21 1.06

RegMixup η = 1, α 20 20 10 10 10
T 1.12 1.31 1.23 1.21 1.14

KFAC-LLLA #samples 1000 1000 1000 1000
σ0 1 0.6 4 0.1 -

Table 9: Cross-validated hyperparameters. Note, T and σ0 are cross-validated by minimizing the
ECE. All other hyperparameters have been tuned to maximise the accuracy.

• For RegMixup we consider the Beta distribution hyperparameters to be α ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, 10, 15, 20, 30}, and the mixing weight η ∈ {0.1, 1, 2}.

• For KFAC-LLLA we take 1000 samples from the distribution. Although the number might
seem quite high, we could not notice significant improvements using a lower number
of samples. We tuned the prior variance σ0 needed for the computation of the Laplace
approximation minimising the ECE on the validation set. We also tried using the theoretical
value σ0 = 1/τ [Kristiadi et al., 2020], where τ represents the weight decay, but it produced
inferior results with respect to our cross-validation procedure. We provide an overview of
the KFAC-LLLA in Appendix E.

• For Deep Ensembles we use 5 members.
• When temperature scaling is applied, the temperature T is tuned on the validation set,

minimising the ECE (we considered values ranging from 0.1 to 10, with a step size of
0.001). For Deep Ensembles, we first compute the mean of the logits, then scale it by the
temperature parameter before passing it through the softmax.

All the cross-validated hyperparameters are reported in Table 9. The cross-validation is performed
with stratified-sampling on a 90/10 split of the training set to maximise accuracy11 on C10 and C100.
For ImageNet, we split the test set using the same proportion to obtain the validation set, which is
then removed from the test set during evaluation. It is important to observe that:

• Cross-validating hyperparameters based solely on the ECE can prefer models with lower
accuracy but better calibration. However, a method improving calibration should avoid
degrading accuracy.

• Hyperparameters should not be cross-validated based on CS experiments and OOD detection
metrics as they these datasets should be unknown during the training and hyperparameter
selection procedure as well.

The results of the cross-validation for RegMixup for CIFAR-10, CIFAR-100 can be found in Table
14. To support our claim that Mixup tends to prefer lower α values, we do not only report the
cross-validation accuracy on Mixup for the experiments in the main paper (Table 12) but we also
report them for two other popular architectures on CIFAR-10 and CIFAR-100: DenseNet-121 Huang
et al. [2017b] and PyramidNet200 Han et al. [2017] (Table 13).

C Existing Uncertainty Measures

There are various uncertainty measures and there is no clear understanding on which one would
be more reliable. In our experiments we considered the following metrics and chose the one best

11Except for the σ0 of the KFAC-LLLA, as we could not observe significant differences in Accuracy between
hyperparameters optimising the accuracy and ECE

18

Methods Clean CIFAR-10-C CIFAR 10.1 CIFAR 10.2
AdaECE (↓) AdaECE (↓) AdaECE (↓) AdaECE (↓)

C10 R50

DNN 3.02 17.30 7.39 12.24
Mixup 2.87 11.35 4.05 7.72

RegMixup (Ours) 1.40 11.51 4.15 8.23

DE (5×) 2.10 13.99 6.23 10.33

C10 WRN

DNN 2.27 15.92 6.00 11.00
Mixup 2.23 7.93 7.22 6.58

RegMixup (Ours) 0.67 8.36 3.02 7.03

SNGP 1.51 11.33 5.59 10.85
AugMix 1.89 5.77 4.10 9.61

DE (5×) 1.74 13.52 4.33 9.44

Methods Clean CIFAR-100-C
AdaECE (↓) AdaECE (↓)

C100 R50

DNN 9.47 25.17
Mixup 7.47 21.52

RegMixup (Ours) 3.92 13.68

DE (5×) 6.50 19.76

C100 WRN

DNN 5.30 17.38
Mixup 3.60 16.54

RegMixup (Ours) 2.47 10.49

SNGP 5.65 10.89
AugMix 5.23 13.67

DE (5×) 3.92 13.47

Table 10: CIFAR calibration performance (%) without temperature scaling

suited for each method in order to create the strongest possible baselines. Let K denote the number
of classes, pi the probability of i-th class, and si the logit of i-th class. Then, these uncertainty
measures can be defined as:

• Entropy: H(p(x)) = −
∑K
i=1 pi logpi.

• Dempster-Shafer [Sensoy et al., 2018]: DS(x) = K/(K+
∑K

i=1 exp(si)).
• Energy: E(x) = − log

∑K
i=1 exp(si) (ignoring the temperature parameter). This metric

was used in [Liu et al., 2020b] for OOD.
• Maximum Probability Score: MPS(x) = maxi pi.
• Feature Space Density Estimation (FSDE): Assuming that the features of each class follow

a Gaussian distribution, there are several ways one can estimate the belief of a test sample
belonging to in-distribution data and treat it as a measure of uncertainty. One such approach
is to compute the Mahalanobis score arg mini∈y(φ(x)− µi)TΣ−1

i (φ(x)− µi), where µi
and Σi are class-wise mean and the covariance matrices of the train data, and φ(x) is the
feature vector.

In the main paper, we report the OOD detection performance using the DS score (as it provided
slightly improved performance in most cases), except when it damages the performance of a method
(e.g. Mixup) or when it does not yield improvements (e.g. KFAC-LLLA). In these situations we use
the entropy as the uncertainty measure.

Remarks regarding various metrics: We would like to highlight a few important observations
that we made regarding these metrics. (1) DS and E are equivalent as they are both decreasing
functions of

∑K
i=1 exp(si), and since log does not modify the monotonicity, both will provide the

same ordering of a set of samples. Hence, will give the same AUROC values. (2) We observed
DS and H to perform similarly to each other except in a few situations where DS provided slightly
better results. (3) MPS, in many situations, was slightly worse. (4) We found Gaussian assumption
based density estimation to be unreliable. Though it provided extremely competitive results for
C10 experiments, sometimes slightly better than the DS based scores, it performed very poorly on
C100. We found this score to be highly unstable as it involves large matrix inversions. We applied
the well-known tricks such as perturbing the diagonal elements and the low-rank approximation with
high variance-ratio, but the results were sensitive to such stabilization and there is no clear way to
cross-validate these hyperparameters.

D Calibration Metrics without Temperature Scaling

For completeness, we report the calibration metrics over all the methods and considered datasets
without the temperature scaling [Guo et al., 2017] in Tables 10 and 11. Details about the cross-
validation procedure used when temperature scaling is applied is provided in Appendix B.

19

IND Covariate Shift
ImageNet-1K (Test) ImageNet-R ImageNet-A ImageNet-V2 ImageNet-Sk

AdaECE (↓) AdaECE (↓) AdaECE (↓) AdaECE (↓) AdaECE (↓)
DNN 4.90 20.48 52.30 9.58 22.94

Mixup 2.28 14.70 47.41 6.46 18.26
RegMixup (our) 3.06 17.42 45.65 7.34 20.85

AugMix 4.28 19.13 51.35 3.94 21.25

DE (5×) 3.61 17.32 51.64 7.94 19.35
Table 11: ImageNet calibration performance (%) without temperature scaling.

E Bayesian at Test Time: Last Layer Laplace Approximation

A structural problem of using MLE logistic regression is that the produced uncertainties depend on
the decision boundary. On the other hand, replacing the MLE logistic regression with a Bayesian
logistic regression and estimating the predictive posterior employing a Laplace approximation
allows to produce better uncertainties [Kristiadi et al., 2020]. However, a Bayesian training either
requires a modification in the architecture [Liu et al., 2020a] or makes the inference procedure
very expensive [Kingma et al., 2015, Gal and Ghahramani, 2016]. Since the objective is to utilize
the standard MLE training of neural networks, the idea of Kronecker-Factored Last Layer Laplace
Approximation [Kristiadi et al., 2020] is making the network Bayesian at test time with almost no
additional cost.

Let w be the parameters of the of the last layer of a neural network, then we seek to obtain the
posterior only over w. Let p(w|x) be the posterior, then the predictive distribution can be written as:

p(y = k|x,D) =

∫
softmax(sk)p(w|D)dw, (4)

where, s is the logit vector and softmax(sk) is the k-th index of the softmax output of the network.

The Laplace approximation assumes that the posterior p(s|D) ∼ N (s|µ,Σ), where µ is a mode of
the posterior p(w|D) (found via standard optimization algorithms for NNs) and Σ is the inverse of
the Hessian H−1 = −(∇2 log p(w|D)|µ)−1. For the formulations and definitions, including the
variants with the terms associated to the bias, we refer to [Kristiadi et al., 2020].

For our experiments, we obtain Σ using the Kronecker-factored (KF) approximation [Ritter et al.,
2018]. Broadly speaking, the KF approximation allows to reduce the computational complexity of
computing the Hessian by factorizing the inverse of the Hessian as H−1 ≈ V−1 ⊗U−1, then the
covariance of the posterior evaluated at a point x takes following form Σ = (φ(x)TVφ(x))U. This
procedure can be easily implemented using the Backpack library [Dangel et al., 2020] to compute V
and U by performing a single pass over the training set after the end of the training, as detailed in
the Appendix of [Kristiadi et al., 2020] and clearly exemplified in the code-base of [Hobbhahn et al.,
2021].

Let Σk be the covariance matrix of the posterior over the last linear layer parameters for the k-
th class obtained using the Laplace approximation around µ, then, given an input x, we obtain
σk = φ(x)>Σkφ(x) representing the variance of k-th logit sk. Once we obtain the covariance matrix,
the Monte Carlo approximation of the predictive distribution (equation (4)) is obtained as:

p̃ =
1

m

m∑
i=1

softmax(s(i)), (5)

where, m logit vectors s(i) are sampled from a distribution with mean s and a covariance matrix
(depending on the approximation used). Lu et. al [Lu et al., 2020] showed that similar performance
can be achieved via the mean-field approximation which provides an approximate closed form
solution of the integration in equation (4) involving the re-scaling of the logits and then taking the
softmax of the re-scaled logit. The re-scaling is defined as follows:

s̃k =
sk√

1 + λσ2
k

(6)

20

Note, the scaling of the k-th logit depends on its variance (obtained using the Laplace approximation)
and a hyperparameter λ. This approximation is efficient in the sense that it does not require multiple
samples as required in the MC approximation (which can become expensive as the number of classes
and samples grow). In our experiments, we use the MC approximation, since we could not find an
obvious way to fine-tune λ. Additionally, we observe that the mean-field approximation imposes
a trade-off between calibration and OOD detection performance. Increasing λ, indeed, flattens
the softmax distribution and improves OOD detection scores; although, as a consequence, harms
calibration by making the network underconfident.

F Additional Insights: RegMixup encourages compact and separated
clusters

Here we provide additional experiments to show that RegMixup encourages more compact and
separated clusters in the feature space We use the well known Fisher criterion [Bishop, 2006,
Chapter 4] to quantify the compactness and separatedness of the feature clusters.

Fisher Criterion: Let Ck denotes the indices of samples for k-th class. Then, the overall within-class
covariance matrix is computed as SW =

∑K
k=1 Sk, where Sk =

∑
n∈Ck(φ(xn)−µk)(φ(xn)−µk)>,

µk =
∑
n∈Ck

φ(xn)
Nk

, and φ(xn) denote the feature vector. Similarly, the between-class covariance

matrix can be computed as SB =
∑K
k=1Nk(µk−µ)(µk−µ)>, where µ = 1

N

∑K
k=1Nkµk, and Nk

is the number of samples in k-th class. Then, the Fisher criterion is defined as α = trace(S−1
W SB).

Note, α would be high when within-class covariance is small and between-class covariance is high,
thus, a high value of α is desirable. In Figure 4, we compute α over the C10 dataset with varying
degrees of domain-shift. As the amount of corruption increases, α gradually decreases for all the
models. However, RegMixup consistently provides the best α in most cases.

21

Figure 4: Fisher criterion for all the corruptions and intensity values of CIFAR-10-C (WRN28-10).

22

WRN28-10 RN50
CIFAR10 (Val) CIFAR100 (Val) CIFAR10 (Val) CIFAR100 (Val)

α Accuracy
0.1 96.06 81.04 95.35 79.60
0.2 96.46 80.91 95.21 80.11
0.3 96.77 81.06 95.36 80.31
0.4 96.71 81.01 95.26 78.93
0.5 96.70 80.99 95.28 78.91
1 96.74 80.66 94.96 78.79
5 96.62 79.84 94.98 77.74
10 96.54 79.24 94.94 75.76
20 96.26 78.40 95.16 75.56

RN50
ImageNet

α Accuracy
0.1 77.10
0.2 77.02
1 76.19

10 72.17
20 71.51

Table 12: Mixup hyperparameter cross-validation: Accuracy (%) of WideResNet28-10 and ResNet50
on validation split of C10 and C100 for varying α values (table on the left), and of ResNet50 on
ImageNet (table on the right).

DenseNet-121 PyramidNet-200
CIFAR10 (Val) CIFAR100 (Val) CIFAR10 (Val) CIFAR100 (Val)

α Accuracy
0.1 95.89 80.54 96.71 82.34
0.2 96.10 80.80 96.70 82.17
0.3 96.21 80.80 96.67 81.70
0.4 96.06 79.71 96.79 82.62
0.5 95.98 80.17 96.92 81.90
1 96.07 79.08 96.89 81.80

10 95.93 75.76 96.69 79.50
20 95.74 76.03 96.60 78.75

Table 13: Mixup hyperparameter cross-validation: Accuracy (%) of DenseNet-121 and PyramidNet-
200.

G ECE results

In this section we report the Expected Calibration Error (ECE) values. While ECE is more popular
than AdaECE, the latter uses an adaptive binning scheme that better accounts for the bias introduced
by the fact neural networks tend to concentrate most samples in high-confidence bins [Mukhoti et al.,
2020].

WRN28-10 RN50
CIFAR10 (Val) CIFAR100 (Val) CIFAR10 (Val) CIFAR100 (Val)

Accuracy
α/η 0.1 1 2 0.1 1 2 0.1 1 2 0.1 1 2

0.1 96.12 96.02 96.38 80.08 80.86 80.96 94.32 95.02 94.48 78.56 79.84 77.92
0.2 96.14 96.00 96.82 80.60 81.96 81.22 94.84 95.44 95.26 78.48 79.18 78.12
0.3 95.82 96.68 96.34 80.92 81.82 80.94 94.62 95.46 95.48 78.38 79.74 78.21
0.4 96.28 96.58 96.48 80.82 81.62 81.00 94.92 95.74 95.46 78.32 79.85 78.17
0.5 96.08 96.88 96.44 81.00 81.20 81.38 94.72 96.04 95.24 78,56 79.34 78.29
1 96.36 97.00 96.96 81.58 81.72 80.68 95.36 95.98 96.00 79.14 79.88 78.62
5 96.50 97.14 97.22 82.00 81.94 81.04 95.86 96.26 96.04 79.42 80.13 78.30
10 96.54 97.16 97.28 80.98 82.51 80.60 95.28 95.58 96.32 80.36 80.65 79.16
15 96.65 97.27 97.18 81.38 82.16 80.59 95.15 96.10 96.34 79.72 80.32 78.80
20 96.72 97.32 97.16 81.58 82.27 80.62 95.46 96.50 96.38 79.68 80.18 78.76
30 96.74 97.28 97.28 82.48 81.94 80.40 95.66 96.46 95.90 79.39 79.78 79.22

Table 14: RegMixup hyperparameter cross-validation: Accuracy (%) of WideResNet28-10 and
ResNet50 on validation split of C10 and C100 for varying α and η values.

23

IND
WRN28-10 RN50

C10 (Test) C100 (Test) C10 (Test) C100 (Test)
Methods ECE (↓) ECE (↓)

DNN 1.26 3.88 1.38 3.05
Mixup 0.94 1.16 0.59 7.49

RegMixup (our) 0.62 1.65 0.62 1.51
SNGP 0.84 1.95 - -

Augmix 1.67 5.54 - -

DE (5×) 0.81 3.31 1.27 3.15
Table 15: CIFAR IND calibration performance (%).

IND Covariate Shift
ImageNet-1K (Test) ImageNet-R ImageNet-A ImageNet-V2 ImageNet-Sk

ECE (↓) ECE (↓) ECE (↓) ECE (↓) ECE (↓)
DNN 1.85 13.52 44.91 4.17 14.51

Mixup 1.34 12.13 44.65 4.34 15.32
RegMixup (our) 1.38 13.32 41.23 3.41 15.37

AugMix 2.08 11.31 42.85 3.97 14.32
DE (5×) 1.39 13.59 42.92 4.07 17.34

Table 16: ImageNet calibration performance (%).

Covariate Shift
WRN28-10 R50

C10-C C10.1 C10.2 C100-C C10-C C10.1 C10.2 C100-C
Methods ECE (↓) ECE (↓)

DNN 12.64 4.29 9.03 9.96 12.31 4.53 8.97 19.80
Mixup 7.54 4.28 7.40 10.32 10.23 5.59 10.59 13.57

RegMixup (our) 9.56 2.87 6.92 7.98 12.61 3.25 6.73 12.87
SNGP 11.33 4.32 8.68 10.45 - - - -

AugMix 4.78 3.55 8.42 12.19 - - - -

DE (5 ×) 10.11 2.98 7.53 12.43 13.12 4.32 7.10 12.53
Table 17: CIFAR CS calibration performance (%).

H Using other vicinal distributions as regularizers

In this Section we perform a preliminary analysis about using other techniques derived from Mixup
as regularizers. In particular, we consider the following methods:

• CutMix Yun et al. [2019]: instead of performing the convex combination of two samples,
cuts and pastes a patch of an image into another, and the area of the patch is proportional
to the interpolation factor λ. We set the CutMix probability to p = 1 and cross-validate
α ∈ {0.1, 0.2, 0.3, 1, 10, 20},

• RegCutMix: we replace Mixup with CutMix in our formulation. Same hyperparameters as
above.

• Mixup + CutMix: we call this way the Transformers-inspired training procedure that at each
iteration randomly decides (with equal probability) whether to apply Mixup or CutMix. For
both Mixup and CutMix we cross-validate α ∈ {0.1, 0.3, 1, 10}.

• RegMixup + CutMix: as above, but using Mixup as a regularizer of the cross-entropy when
Mixup is selected. Hyperparameters as above, η ∈ {0.1, 1, 3}

24

I.I.D. Covariate Shift O.O.D.
C10 C10-C C10.2 C10.1 C100 SVHN T-ImageNet

Methods Accuracy (↑) AUROC (↑)
WRN28-10
RegMixup 97.46 83.13 88.05 92.79 89.63 96.72 90.19

CutMix 96.70 71.40 87.06 91.18 88.65 92.25 91.70
RegCutMix 96.79 71.26 86.84 92.10 89.24 89.47 91.68

Vit-Mixup+CutMix 97.23 77.60 87.85 92.30 89.23 83.46 90.86
ViT-RegMixup+CutMix 97.30 78.67 88.42 93.15 89.03 91.62 89.41

ViT-RegMixup+RegCutMix 97.47 79.10 88.79 93.35 89.93 94.18 90.39

R50
RegMixup 96.71 81.18 86.72 91.58 89.63 95.39 90.04

CutMix 96.27 70.63 85.35 90.35 85.88 83.03 87.43
RegCutMix 95.85 70.22 84.64 90.31 85.10 84.76 87.36

ViT-Mixup+CutMix 96.87 76.36 87.05 90.75 89.19 93.39 89.76
ViT-RegMixup+CutMix 96.60 77.21 86.30 90.97 84.22 87.90 85.87

ViT-RegMixup+RegCutMix 96.47 75.36 86.01 91.28 86.36 87.21 88.42

Table 18: Accuracy and out-of-distribution detection performance (%) using other VRM techniques
as regularisers for ResNet50 and WideResNet28-10 on CIFAR-10.

I.I.D. Covariate Shift O.O.D.
C100 C100-C C10 SVHN T-ImageNet

Methods Accuracy (↑) AUROC (↑)
WRN28-10

RegMixup (Ours) 83.25 59.44 81.27 89.32 83.13
CutMix 81.73 46.64 79.06 85.22 81.07

RegCutMix 82.30 47.37 80.99 84.42 81.85
ViT-Mixup+CutMix 84.05 54.94 80.81 85.36 81.32

ViT-RegMixup+CutMix 83.74 55.12 79.92 86.44 82.28
ViT-RegMixup+RegCutMix 83.92 55.50 80.75 90.23 83.07

R50
RegMixup 81.52 57.64 79.44 88.66 82.56

CutMix 80.21 45.23 77.78 85.39 80.33
RegCutMix 79.07 44.64 77.56 80.52 79.18

ViT-Mixup+CutMix 82.39 56.40 80.53 81.09 81.01
ViT-RegMixup+CutMix 81.65 52.99 79.64 86.45 81.42

ViT-RegMixup+RegCutMix 82.10 53.57 80.66 84.43 83.03

Table 19: Accuracy and out-of-distribution detection performance (%) using other VRM techniques
as regularisers for ResNet50 and WideResNet28-10 on CIFAR-100.

• RegMixup + RegCutMix: as above, but also using CutMix as a regularizer of the cross-
entropy when CutMix is selected. Hyperparameters as above, η is kept the same for both
Mixup and CutMix.

The results are reported in Tables 18 and 19.

As it can be seen: (1) in most cases RegCutMix underperforms with respect to CutMix, (2) in most
cases RegMixup outperforms CutMix and RegCutMix, (3) Mixup+CutMix represents an extremely
competitive method for in-distribution accuracy, but not as competitive for distribution shift and
out-of-distribution detection, (4) RegMixup+CutMix is most of the times inferior to Mixup+CutMix,
(5) RegMixup+RegCutMix is an extremely competitive method in several cases. We leave to
future research exploring whether and how it is possible to combine Mixup-inspired techniques

25

as regularizers to further improve the accuracy on i.i.d. and distribution-shifted data, and the out-
of-distribution detection performance. We remark that in all these setups, RegMixup is extremely
competitive and several times the best method, thus pointing out that despite its simplicity, it is
extremely effective.

26

	Calibration on In-distribution and Covariate-shift datasets
	Experimental Details
	Code-base
	Optimization
	Hyperparameters

	Existing Uncertainty Measures
	Calibration Metrics without Temperature Scaling
	Bayesian at Test Time: Last Layer Laplace Approximation
	Additional Insights: RegMixup encourages compact and separated clusters
	ECE results
	Using other vicinal distributions as regularizers

