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A Appendix1

Table I: The performance (Agreement and test accuracy) of previous methods under the soft-label
and the hard-label settings. And the average performance reduction of each dataset under hard label
is reported in the last row.

Method CIFAR10 SVHN Caltech256 CUBS200
Agreement Acc Agreement Acc Agreement Acc Agreement Acc

KnockoffNets soft-label 81.59% 80.03% 93.17% 92.14% 76.42% 74.42% 65.48% 59.15%
hard-label 75.32%-6.27% 74.44%-5.59% 85.00%-8.17% 84.50%-7.64% 57.64%-18.78% 55.28%-19.14% 30.01%-35.47% 28.03%-31.12%

ActiveThief(Entropy) soft-label 81.61% 79.85% 92.79% 91.95% 77.38% 70.91% 68.12% 60.39%
hard-label 75.26%-6.35% 74.21%-5.64% 90.47%-2.32% 89.85%-2.10% 56.28%-21.10% 54.14%-16.77% 32.05%-36.07% 29.43%-30.96%

ActiveThief(k-Center) soft-label 82.98% 81.42% 94.45% 93.62% 78.66% 72.20% 73.71% 65.34%
hard-label 75.71%-7.27% 74.24%-7.18% 81.45%-13.00% 80.79%-12.83% 61.19%-17.47% 58.84%-13.36% 37.68%-36.03% 34.64%-30.70%

ActiveThief(DFAL) soft-label 80.42% 78.88% 91.41% 90.57% 64.56% 59.81% 53.24% 47.65%
hard-label 76.72%-3.70% 75.62%-3.26% 84.79%-6.62% 84.17%-6.40% 46.92%-17.64% 44.91%-14.90% 20.31%-32.93% 18.69%-28.96%

ActiveThief(DFAL+k-Center) soft-label 82.05% 80.86% 93.03% 92.08% 67.27% 62.67% 61.39% 55.18%
hard-label 74.97%-7.08% 73.98%-6.88% 81.40%-11.63% 80.86%-11.22% 55.70%-11.57% 53.69%-8.98% 26.60%-34.79% 24.42%-30.76%

Average difference -6.13% -5.71% -8.35% -8.04% -17.31% -14.63% -35.06% -30.50%

Table II: Test accuracy of our method and previous methods with different architectures on CIFAR10
dataset. The smaller the standard deviation (Std), the more stable the method.

Method Substitute’s architecture Std(×10−2)↓ResNet-34 ResNet-18 ResNet-50 VGG-16 DenseNet
KnockoffNets 74.44% 77.12% 66.78% 53.52% 78.50% 9.22
ActiveThief(k-Center) 74.24% 72.90% 71.25% 35.56% 74.48% 15.11
ActiveThief(Entropy) 74.21% 78.77% 73.52% 37.88% 79.09% 15.57
Ours 80.47% 79.93% 80.34% 75.22% 74.43% 2.68

A.1 Gap between hard-label and soft-label setting2

Here, we report the numerical results of previous methods under both the soft-label setting and the3

hard-label setting as a supplementary to the Fig.1. To be consistent with the experiment section, the4

victim models we use are trained using a ResNet-34 [2] architecture on four datasets: CIFAR10 [4],5

SVHN [5], Caltech256 [1], and CUBS200 [8]. And their test accuracy are 91.56%, 96.45%, 78.40%,6

and 77.10% respectively. We use the 1.2M images without labels presented in the ILSVRC-20127

challenge [6] as the attack dataset. We also adopt official source codes from the authors for a fair8

comparison. As in the Tab. I, the performance of all previous methods has a significant degradation9

on the four datasets in this scenario, and the averages of the loss are in the last row of the Tab. I, which10

are 5.71%, 8.04%, 14.63%, and 30.50% respectively. The above results show that in the hard-label11

scenario, the previous model stealing methods are not effective enough.12
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Figure I: The additional visualized attention maps of the victim model and different stages substitute
models using the Grad-CAM. Along with the training stages, the attention map of the substitute
model tends to fit the victim model’s.

A.2 The influence of model architectures13

Instead of assuming that the substitute model and the victim one share the same architecture, we show14

the effect of different model architectures here on the CIFAR10 dataset. Keeping ResNet-34 as the15

victim model, we choose the structure of substitute model from ResNet-34, ResNet-18, ResNet-50 [2],16

VGG-16 [7], DenseNet [3], respectively. With the same architecture included, we use the standard17

deviation to evaluate the impact of architectures on different methods. As in Tab. II, the standard18

deviation of our method is about 1/6 to 1/3 of others, which means that our method is less susceptible19

to the influence of the model structure. In real situations, the structure of the victim model is often20

unknown. Since our method is less affected by the structure, our method performs better in real-world21

attacks.22

A.3 The visualization of the attention alignment.23

As we point out in the section 3.1, the novel CAM-driven erasing strategy we designed can not24

only dig out more class information, but also help the substitute model to align the victim model’s25

attention. As shown in Fig. I, at the beginning time, the substitute model learns the wrong attention26

map. Along with the iterative training stages, the attention area of the substitute model tends to fit the27

victim model’s, which conforms to our intention. As [9] stated, we transfer the victim’s attention to28

the substitute model, which is one of the reasons why our method is effective enough.29
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