
Supplementary: Subsidiary Prototype Alignment
for Universal Domain Adaptation

Jogendra Nath Kundu1∗ Suvaansh Bhambri1∗ Akshay Kulkarni1∗ Hiran Sarkar1
Varun Jampani2 R. Venkatesh Babu1

1Indian Institute of Science 2Google Research

Appendix
In this appendix, we provide more details of our approach, extensive implementation details, addi-
tional analyses, limitations and potential negative societal impact. Towards reproducible research, we
will publicly release our complete codebase and trained network weights on our webpage.

This supplementary is organized as follows:

• Section A: Notations (Table 1)

• Section B: Limitations

• Section C: Potential societal impact

• Section D: Implementation details

◦ Baseline details
◦ Compute requirements
◦ Miscellaneous details (Fig. 1)

• Section E: Analysis (Table 2, 3)

A Notations

We summarize the notations used throughout the paper in Table 1. The notations are listed under 5
groups i.e. models, datasets, samples, spaces and measures.

B Limitations

The proposed approach may be unsuitable for datasets with very less number of classes. When
number of classes are low, our Insight 3 (main paper) may not hold, making the pretext task very
difficult to learn. This may negatively impact the goal task performance as the backbone is shared
between the two tasks. While this is a limitation of the proposed implementation, a possible solution
could be to merge some entropy-bins through clustering techniques to form more discriminative
pretext classes. This limitation can also arise in case of large class-imbalance in the data, as this
would also lead to overlapping entropy-bins, and a similar bin-merging solution may be used.

C Potential societal impact

Our findings may be used to train deep neural networks with minimal supervision by transferring
knowledge from supplementary datasets. On many datasets with a large amount of annotated data,
such as ImageNet, modern deep networks surpass humans [5]. In many cases where such large-scale

∗equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/spa-unida


Table 1: Notation Table

Symbol Description

Models

h Backbone feature extractor
fg Goal task classifier
fn Pretext task classifier
ψ BoW-inspired block

Datasets

Ds Labeled source dataset
Dt Unlabeled target dataset
Ds,n Pretext source dataset
Dt,n Pretext target dataset

Samples

(xs, ys) Labeled source sample
xt Unlabeled target sample

(xs,n, yins) Pretext source sample
(xt,n, yins) Pretext target sample

Spaces

X Input space
Z Backbone feature space
Cs Source goal task label set
Ct Target goal task label set
Cn Pretext task label set

Measures
γNTR Negative-Transfer-Risk
γDIS Domain-Invariance-Score
γPAS Prototype-Alignment-Score

related datasets are accessible, our proposed approach can be a proxy to supervision in the target
data. Our approach has a favorable impact as it can reduce the data collection effort for data-intensive
applications. This might make technology more accessible to organizations and individuals with
limited resources. It can also aid applications where data is protected by privacy regulations and
hence difficult to collect. The negative consequences might include making these systems more
available to organizations or individuals who try to utilize them for illegal purposes. Our system is
also vulnerable to adversarial attacks and lacks interpretability, as do all contemporary deep learning
systems. While we demonstrate increased performance compared to the state-of-the-art, negative
transfer is still possible in extreme cases of domain-shift or category-shift. Thus, our technique should
not be employed in critical applications or to make significant decisions without human supervision.

D Implementation details

Here, we describe the implementation details excluded from the main paper due to the page limit.

D.1 Baseline details

OVANet. Following prior works [17, 20], we use ResNet50 [6] as our backbone network, which has
been pre-trained on ImageNet [13]. We add a new linear classification layer to replace the previous
one. We use inverse learning rate decay scheduling to train our models, as described in [17]. We
set the weight for entropy minimization loss, λ=0.1 for all the settings. The value is calculated by
the outcome of Open-Set DA for Office-31 (Amazon to DSLR) following [17]. For all experiments,
the source and target batch size is 36. The starting learning rate for new layers is set to 0.01 and for
backbone layers to 0.001. Our method is implemented with PyTorch [11].

DCC. We use ResNet50 [6] as the backbone, pretrained on ImageNet [13]. The classifier is made
up of two linear layers, following [20, 3, 16, 2]. We use Nesterov momentum SGD to optimize the
model, which has a momentum of 0.9 and a weight decay of 5e-4. The learning rate decreases by a
factor of (1 + α i

N )−β , where i and N represent current and global iteration, respectively, and we
set α = 10 and β = 0.75. We use a batch size of 36 and the initial learning rate is set as 1e-4 for
Office-31, and 1e-3 for Office-Home and DomainNet. We use PyTorch for implementation.

2



Table 2: Open-Set DA (OSDA) on Office-31 with mean and std. deviation over 3 runs. We compare
our method with RTN [10], DANN [4], ATI-λ [1], OSBP [16], STA [9], InheriT [7], DCC [8].

Method A�W A�D D�W W�D D�A W�A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

RTN 85.6±1.2 88.1±1.0 89.5±1.4 90.1±1.6 94.8±0.3 96.2±0.7 97.1±0.2 98.7±0.9 72.3±0.9 72.8±1.5 73.5±0.6 73.9±1.4 85.4 86.8
DANN 85.3±0.7 87.7±1.1 86.5±0.6 87.7±0.6 97.5±0.2 98.3±0.5 99.5±0.1 100.0±.0 75.7±1.6 76.2±0.9 74.9±1.2 75.6±0.8 86.6 87.6
ATI-λ 87.4±1.5 88.9±1.4 84.3±1.2 86.6±1.1 93.6±1.0 95.3±1.0 96.5±0.9 98.7±0.8 78.0±1.8 79.6±1.5 80.4±1.4 81.4±1.2 86.7 88.4
OSBP 86.5±2.0 87.6±2.1 88.6±1.4 89.2±1.3 97.0±1.0 96.5±0.4 97.9±0.9 98.7±0.6 88.9±2.5 90.6±2.3 85.8±2.5 84.9±1.3 90.8 91.3
STA 89.5±0.6 92.1±0.5 93.7±1.5 96.1±0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1
InheriT 91.3±0.7 93.2±1.2 94.2±1.1 97.1±0.8 96.5±0.5 97.4±0.7 99.5±0.2 99.4±0.3 90.1±0.2 91.5±0.2 88.7±1.3 88.1±0.9 93.4 94.5
DCC 93.8±1.0 99.4±1.1 90.7±1.1 95.6±0.9 96.9±0.5 98.4±0.7 95.7±0.2 98.4±0.1 92.5±0.5 96.6±0.4 94.5±2.1 96.3±1.8 94.0 97.5
+SPA 96.1±0.5 97.0±1.4 96.2±1.0 97.0±0.3 96.0±0.1 96.0±0.4 99.5±0.2 100.0±.0 89.2±1.0 89.0±0.1 91.9±0.9 92.0±0.7 94.8 95.2

Existing code used.
• OVANet [15]: https://github.com/VisionLearningGroup/OVANet (MIT license)
• DCC [17]: https://github.com/Solacex/Domain-Consensus-Clustering (MIT license)
• PyTorch [11]: https://pytorch.org/ (BSD-style license)

Existing datasets used.
• DomainNet [12]: http://ai.bu.edu/M3SDA (Fair use notice)
• Office-Home [19]: https://www.hemanthdv.org/officeHomeDataset.html (Fair use notice)
• Office-31 [14]: https://www.cc.gatech.edu/∼judy/domainadapt (open source)

D.2 Compute requirements

For our experiments, we used a local desktop machine with an Intel Core i7-6700K CPU, a single
Nvidia GTX 1080Ti GPU and 32GB of RAM.

D.3 Miscellaneous details

Negative-Transfer-Risk (NTR). We introduce a negative-transfer-risk (NTR) γNTR(h) for a given
feature extractor h :X →Z , where Z is an intermediate feature-space. First, the standard linear
evaluation protocol [18] from transfer learning and self-supervised literature is applied on the feature
extractor where a linear classifier f : Z → Cs is trained on the feature h with the labeled source data.
Next, following [17], NTR is computed as the known-unknown classification accuracy using a fixed
entropy threshold ρ on the linear classifier prediction as:

γNTR(h) = E
(x,yunk)∼Dt

1 (Ht(f ◦h(x), ρ)=yunk) where Ht(f ◦ h(x), ρ)=
{
1; H(f ◦h(x))>ρ
0; otherwise

(1)

where f = argminf ′ E(xs,ys)∈Ds
CE(f ′ ◦ h(xs), ys) is the learned source classifier on features

from h. Here, H(.) computes self-entropy, ρ is a fixed entropy threshold, log(|Cs|)/2, where |Cs|
represents the number of classes, following [17]. CE represents the standard cross-entropy loss, and
yunk represents known-unknown label (0 for known, 1 for unknown). We access the known-unknown
labels yunk for a subset of target data only for analysis (not for training).

Pretext dataset procurement. We illustrate more examples in Fig. 1, based on the procedure given
under Insight 3 and in Fig. 4C (main paper).

E Analysis

Table 3: Computational complexity analysis for the
BoW-inspired architecture modification.

MACS (G) Params (M) UniDA

OVANet [15] 4.120 23.661 71.8
+ arch-mod 4.223 25.686 72.0

Variance across different seeds. We high-
light the significance of our results by re-
porting the mean and standard deviation
of OS (overall accuracy) and OS* (known
classes accuracy) over 3 runs with differ-
ent random seeds in Table 2 for Open-Set
DA on Office-31. We observe low variance
with significant performance gains over the baseline.

3

https://github.com/VisionLearningGroup/OVANet
https://github.com/Solacex/Domain-Consensus-Clustering
https://pytorch.org/
http://ai.bu.edu/M3SDA
https://www.hemanthdv.org/officeHomeDataset.html
https://www.cc.gatech.edu/~judy/domainadapt


Source (labeled)

“cabinet”“cycle” “bag”

Source-pretext

“class-1” “class-2” “class-3”

Target (unlabeled)

“??” “??” “??”

Target-pretext

“class-1” “class-2” “class-3”

Figure 1: Given labeled source Ds and unlabeled target Dt datasets, we construct the source-pretext
dataset Ds,n and the target-pretext dataset Dt,n by grid-shuffling of image crops from multiple
instances. The pretext task label yins is the number of distinct instances contributing image crops.

Computational complexity comparison. Table 3 provides the details of the computational overhead
caused by the extra parameters added in the BoW-inspired architecture modification (Sec. 3.4 of the
main paper). While ∼2M additional parameters are required, there is only a marginal increase in
the MACS (number of multiply-accumulate operations). Further, simply adding the architecture-
modification only marginally improves UniDA (also shown in Table 5, Sec. 4.2a of the main paper).

References
[1] Pau Panareda Busto, Ahsan Iqbal, and Juergen Gall. Open set domain adaptation for image and action

recognition. IEEE transactions on pattern analysis and machine intelligence, 42(2):413–429, 2018. 3

[2] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain adaptation. In
ECCV, 2018. 2

[3] Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Learning to detect open classes for universal
domain adaptation. In ECCV, 2020. 2

[4] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The Journal of
Machine Learning Research, 17(1):2096–2030, 2016. 3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015. 1

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016. 2

[7] Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur, Rahul M V, and R. Venkatesh Babu. Towards
inheritable models for open-set domain adaptation. In CVPR, 2020. 3

[8] Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering for
universal domain adaptation. In CVPR, 2021. 3

[9] Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang. Separate to adapt: Open set
domain adaptation via progressive separation. In CVPR, 2019. 3

[10] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with
residual transfer networks. In NeurIPS, 2016. 3

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019. 2, 3

[12] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In ICCV, 2019. 3

4



[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015. 2

[14] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In ECCV, 2010. 3

[15] Kuniaki Saito and Kate Saenko. OVANet: One-vs-all network for universal domain adaptation. In ICCV,
2021. 3

[16] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation by
backpropagation. In ECCV, 2018. 2, 3

[17] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation through self
supervision. In NeurIPS, 2020. 2, 3

[18] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially
robust imagenet models transfer better? In NeurIPS, 2020. 3

[19] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In CVPR, 2017. 3

[20] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Universal domain
adaptation. In CVPR, 2019. 2

5


