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1. Introduction
Advancing semiconductor fabrication and devel-

opment requires precise characterization of increas-
ingly compact devices consisting of complex geome-
tries made from diverse materials. Optical metrol-
ogy and imaging are non-destructive, label-free, and
real-time techniques but face the fundamental reso-
lution restriction to half the wavelength (λ) of light.
While deep learning offers promising super-

resolution capabilities, traditional neural networks
employing pixel-wise prediction mechanisms fun-
damentally strugglewith structural integrity in semi-
conductor characterization. These isolated pixel
mispredictions, though minor in overall accuracy
metrics, can falsely indicate defects or breaks in
reconstructed semiconductor features, rendering
quality control decisions unreliable and potentially
compromising manufacturing yield. Here, we pro-
pose a topology-enhanced deep learning frame-
work for optical semiconductor characterization
that systematically incorporates topological con-
straints through specialized loss functions derived
from persistent homology principles.
Our approach enhances attention to structural

integrity in regions where pixel-wise methods alone
plateau. Experimental validation demonstrates
high-fidelity optical imaging of semiconductor
features as small as 0.16λ with approximately 10%
improved correlation compared to conventional
pixel-wise methods, while dramatically reducing
false structural discontinuities. This non-invasive,
topologically enhanced optical characterization
paradigm opens new possibilities for high-precision
semiconductor quality control and smart manufac-
turing processes where geometric integrity at the
nanoscale is paramount.

1.1 Related work
Deep learning has been widely applied to optical

imaging, with recent work such as [1][2] using U-Net
for nanoparticle and nanowire imaging. However,
its pixel-wise loss function often leads to structural
discontinuities, failing to preserve the connectivity
of fine structures such as nanowires.
To address structural consistency, topological

data analysis (TDA) has been incorporated into deep
learning models. The work of [3] introduced a topo-
logical loss function for segmentation networks. By
matching the Betti number, this topological loss-
based model can preserve local topology, i.e., the
predictionswill always share the same topologywith

the ground truth. The model offers significant ad-
vantages in situationswhere topological information
is severely degraded by noise.
In this work, we first employ TDA integrated deep

learning for optical semiconductor characterization,
which can address the fundamental changes when
the predictions and ground truth share the same
Betti numbers but differ in spatial distribution or
shape. Furthermore, our model employs extended
persistent homology model [4], thus it is free from
the limitations of single filtration strategy, such as
failing to characterize the full complexity of topolog-
ical structures in diverse imaging datasets.

Fig. 1: Comparison of traditional pixel-wise models
and our topological-based model for optical pat-
tern reconstruction. (a) The input field, gener-
ated by nano geometry elements in a size of 0.16λ
(100nm) illuminated by a plane wave with a wave-
length of 640nm, produces an unresolved optical
pattern at a propagation distance of H = 2λ. (b)
Traditional pixel-wise models, such as U-Net with
binary cross-entropy (BCE) loss, struggle to re-
construct fine structural details, leading to incom-
plete or fragmented predictions. Our proposed
topological-based model with a topological loss
function ensures structural consistency by pre-
serving key topological features, e.g. Betti num-
bers. (c) The output comparison demonstrates
that our method more accurately reconstructs the
ground truth compared to the traditional model.

2. Methodology
We frame our task as a binary segmentation prob-

lem, where each pixel in a diffraction-limited opti-
cal input image is labeled to reconstruct deeply sub-
wavelength features in the super-resolved output.
This approve enables the recovery of structural de-
tails that exist beyond the conventional diffraction
limit.
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2.1 Network Architecture
We employ an encoder-decoder U-Net architec-

ture, specifically a scientifically modified U-Net spe-
cialized for optical imaging, as proposed in our pre-
vious work [5]. The encoder extracts hierarchical
features from the low-resolution input, while the de-
coder reconstructs a super-resolved binary segmen-
tation output. Unlike conventional architectures
that optimize only pixel-wise accuracy, our model
incorporates a topology-aware loss function to en-
hance structural correctness.

2.2 Topological Loss Function Ltopo

Inspired by the Euler Characteristic Transform
(ECT) [6] and Persistent Homology Transform (PHT)
[7], we leverage persistence diagrams from multi-
directional filtrations as sufficient statistics for
shape modeling due to their injectivity. Thus, our
topological loss is computed as follows:

1. Directional Transform [6]: Given a simplicial
complexK ∈ Rn, wefix adirectional unit vector
ω ∈ Rd. This direction induces a simplex-wise
function:

fω : K −→ R, σ −→ max
v∈σ

⟨v, ω⟩

where ⟨x, y⟩ =
∑

xiyi denotes the standard
dot product of the vectors x and y. To en-
hance topological feature extraction, we ap-
ply filtrations along multiple directions: ω ∈
{( 10 ) ,

(−1
0

)
, ( 01 ) ,

(
0
−1

)
} which ensure a robust

characterization of topological structures.

2. Ltopo: We compute persistent homology based
on cubical complex on the transformed images
using the filtrations defined above and summa-
rize their topological information through per-
sistent diagrams. The topological loss function
is defined as the Wasserstein distance between
the persistence diagrams Dgm of the predicted
(f) and ground truth images (g):

Ltopo(f, g) = W (Dgm(f), Dgm(g))

which measures structural discrepancies in a
Lipschitz-continuousmanner [8]. This formula-
tion ensures that our loss function is both differ-
entiable and robust to small perturbations.

2.3 Training and Optimization
We train our model using a composite loss func-

tion that combines a standard pixel-wise loss with
our proposed topological loss:

Lloss = Lbce + λLtopo

where Lbce is standard BCE loss and λ is a balancing
parameter. We use a stochastic gradient descent op-
timizer with adaptive learning rates to ensure stable
convergence.

3. Results
We evaluated the performance of our U-Net

model using two loss functions: (1) BCE loss and (2)

our proposed topological loss function. The predic-
tion results are displayed in Figure 2, where we com-
pare the pixel-wise and our topology-based mod-
els’ segmentation outcomes. Our proposed method
demonstrates superior structural fidelity compared
to the pixel-wise model, achieving enhanced preser-
vation of topological features, reduced noise, and
better positional alignment.

Model MSE ↓ Pearson Correlation ↑
Pixel-wise 0.017 0.61
Our Model 0.0145 0.72

Table 1: Comparison of model performance.

Fig. 2: Comparison of segmentation results between
a pixel-wisemodel and our topology-basedmodel.
The first row presents the input optical diffrac-
tion images. The second and third rows show the
predictions from both models respectively, and
the fourth row displays the corresponding ground
truth. Our topology-based model produces more
accurate and structured segmentation than the
pixel-wise approach, as highlighted.

Quantitative comparison of the models is pro-
vided inTable 1. Ourmodel achieves aMeanSquared
Error (MSE) of 0.0145 and aPearson correlation coef-
ficient of 0.72, outperforming the pixel-wise model,
which has an MSE of 0.018 and a Pearson correla-
tion of 0.61. These results further highlight the effec-
tiveness of our topology-based approach in improv-
ing segmentation accuracy and preserving relevant
structural features.

4. Conclusion
Our results demonstrate that incorporating topo-

logical constraints into deep learning models sig-
nificantly improves structural fidelity in super-
resolution imaging. By leveraging multi-directional
filtrations and persistence-based loss functions, our
approach provides a robust solution for preserving
both geometric and topological integrity in complex
optical datasets.
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