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A Proof of SE(3)-Invariant Conditional Distributions10

In this section, we restate and prove Proposition 1 in section 4.1.11

Proposition 1. Suppose a prior distribution p0(T |P) is SE(3)-invariant. If the angular and linear12

velocity fields ω, v are SE(3)-equivariant, then the conditional distribution pt(T |P) at any time13

t ≥ 0 defined via the flow of ODE (Ṙ, ẋ) = ([ωθ(t,P, T )]R, vϕ(t,P, T )) is SE(3)-invariant.14

To this end, we first introduce the concept of a conditional flow derived from the velocity fields15

and define the SE(3)-equivariance of the conditional flow. Subsequently, we demonstrate that16

SE(3)-equivariant time-dependent conditional velocity fields induce an SE(3)-equivariant condi-17

tional flow. Finally, we prove Proposition 1 by establishing that, starting from an SE(3)-invariant18

prior, an SE(3)-equivariant conditional flow preserves the invariance over time.19

A.1 SE(3)-Equivariant Conditional Flows20

Consider a trajectory on the SE(3) manifold, starting from an initial point T ∈ SE(3) and guided by21

the time-dependent angular and linear velocity fields, ω and v, conditioned on a point cloud P . This22

trajectory is called an integral curve for ω and v conditioned on P and starting at T , and is denoted by23

γ : R → SE(3). By decomposing the SO(3) and R3 components such that γ(t) = (γR(t), γx(t)),24

the integral curve is defined via the following ordinary differential equations (ODEs) of the velocity25

fields:26

γ̇R(t) = [ω(t,P, γ(t))]γR(t), γ̇x(t) = v(t,P, γ(t)), γ(0) = T. (1)

Denoting the space of point clouds by X , a conditional flow of the velocity fields ω and v conditioned27

on P is defined as a mapping f : R×X × SE(3) → SE(3). Here, f(t,P, T ) = γ(t) where γ is the28

integral curve for ω and v conditioned on P and starting at T .29
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Now, we define the SE(3)-equivariance of a conditional flow as follows:30

Definition 3. A flow on SE(3) conditioned on a point cloud, denoted by f(t,P, T ), is SE(3)-31

equivariant if, for an arbitrary T ′ ∈ SE(3), f(t, T ′P, T ′T ) = T ′f(t,P, T ).32

Next, We demonstrate that SE(3)-equivariant time-dependent conditional velocity fields induce the33

SE(3)-equivariance of their conditional flow through the following Proposition:34

Proposition 2. For any time-dependent conditional angular and linear velocity fields ω and v, their35

conditional flow f is SE(3)-equivariant if ω and v are SE(3)-equivariant.36

Proof. Consider an arbitrary point cloud P and fix T = (R0, x0) as an arbitrary element in SE(3).37

Then, f(t,P, T ) = γ(t) = (γR(t), γx(t)) represents the integral curve for the velocity fields con-38

ditioned on P and starting at T . The ODEs governing this integral curve are given by the same39

equations as (1).40

For any T ′ = (R′, x′) ∈ SE(3), f(t, T ′P, T ′T ) = γ̃(t) = (γ̃R(t), γ̃x(t)) where γ̃ is the integral41

curve for the velocity fields conditioned on T ′P and starting at T ′T . The ODEs for this integral42

curve are given by:43

˙̃γR(t) = [ω(t, T ′P, γ̃(t))]γ̃R(t), ˙̃γx(t) = v(t, T ′P, γ̃(t)), γ̃(0) = T ′T . (2)

Now, consider an integral curve γ̂ defined as γ̂(t) = (γ̂R(t), γ̂x(t)) := (R′γR(t), R
′γx(t) + x′) =44

T ′(γR(t), γx(t)) = T ′γ(t) = T ′f(t,P, T ). This integral curve results from transforming the inte-45

gral curve (γR(t), γx(t)) by T ′.46

To prove the SE(3)-equivariance of the conditional flow, we need to show that γ̃ and γ̂ are the same47

integral curve. Specifically, we need to show that γ̃(t) = f(t, T ′P, T ′T ) = T ′f(t,P, T ) = γ̂(t).48

Noting that R[a]RT = [Ra] for any R ∈ SO(3) and a ∈ R3, we analyze ˙̂γR(t) as follows:49

˙̂γR(t) =
d

dt
(R′γR(t)) = R′γ̇R(t)

= R′[ω(t,P, γ(t))]γR(t)

= [R′ω(t,P, γ(t))]R′γR(t)

= [ω(t, T ′P, T ′γ(t))]R′γR(t)

= [ω(t, T ′P, γ̂(t))]γ̂R(t).

(3)

Similarly, for γ̂x(t), we have:50

˙̂γx(t) =
d

dt
(R′γx(t) + x′)

= R′γ̇x(t)

= R′v(t,P, γ(t))

= v(t, T ′P, T ′γ(t))

= v(t, T ′P, γ̂(t)).

(4)

Finally, note that γ̂(0) = T ′γ(0) = T ′T . Thus, γ̃(t) and γ̂(t) satisfy the same ODEs, and the51

uniqueness of the solution of the ODE ensures that γ̃ and γ̂ are the same integral curve. Con-52

sequently, we have f(t, T ′P, T ′T ) = T ′f(t,P, T ) for any T ′ ∈ SE(3), demonstrating that f is53

SE(3)-equivariant.54

A.2 SE(3)-Invariant Conditional Distributions55

To demonstrate that an SE(3)-equivariant conditional flow preserves the invariance of an SE(3)-56

invariant prior, we present the following proposition.57

Proposition 3. Suppose a prior distribution p0(T |P) is SE(3)-invariant. If the conditional flow f58

is SE(3)-equivariant, then the conditional distribution pt(T |P) at any time t ≥ 0 defined via the59

flow is SE(3)-invariant.60
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Proof. To prove this proposition, we first extend Theorem 3 from [1], which involves a general61

Riemannian manifold and a general group, to a conditional version.62

Consider a Riemannian manifold (M, h) with a group G. Denote the action of an element g ∈ G63

on M by the map Lg : M → M. The map Lg is isometric if, for any tangent vectors u and v64

at any point x ∈ M, the following condition holds: h(d(Lg)x(u), d(Lg)x(v)) = h(u, v), where65

d(Lg)x represents the differential of Lg at x. If Lg is isometric, then
∣∣det JLg

(x)
∣∣ = 1 for any66

x ∈ M, where JLg
(x) denotes the Jacobian matrix of the map Lg evaluated at x and expressed in67

local coordinates.68

Let c denote a condition variable. The conditional flow at time t is represented by the map69

ft,c : M → M. This flow transforms a prior conditional distribution p0(x|c) into the condi-70

tional distribution pt(x|c). The likelihood of the transformed conditional distribution is given by the71

following change of variables formula:72

pt(x|c) = p0
(
f−1
t,c (x)

∣∣c) ∣∣∣det Jf−1
t,c

(x)
∣∣∣ . (5)

A conditional distribution p(x|c) is G-invariant if p(Lg(x)|g · c) = p(x|c) for any g ∈ G. Assuming73

the action of g ∈ G on c is well-defined and denoted by g·c, the conditional flow ft,c is G-equivariant74

if, ft,g·c(Lg(x)) = Lg(ft,c(x)) for any g ∈ G, i.e., ft,g·c ◦ Lg = Lg · ft,c and L−1
g ◦ f−1

t,g·c =75

f−1
t,c ◦ L−1

g .76

Assuming that the map Lg is isometric for any g ∈ G, we can prove Proposition 3 in a general77

Riemannian manifold M and a general group G as follows:78

pt(Lg(x)|g · c)

= p0
(
f−1
t,g·c(Lg(x))

∣∣g · c) ∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣

= p0
(
Lg−1

(
f−1
t,g·c(Lg(x))

)∣∣c) ∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣ (invariant prior)

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c)∣∣∣det JLg−1

((
f−1
t,g·c ◦ Lg

)
(x)

)∣∣∣︸ ︷︷ ︸
=1

∣∣∣det Jf−1
t,g·c

(Lg(x))
∣∣∣ ∣∣det JLg

(x)
∣∣︸ ︷︷ ︸

=1

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c)∣∣∣det JLg−1

((
f−1
t,g·c ◦ Lg

)
(x)

)
Jf−1

t,g·c
(Lg(x))JLg

(x)
∣∣∣ (multiplicativity)

= p0
((
Lg−1 ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c) ∣∣∣det JLg−1◦f−1
t,g·c◦Lg

(x)
∣∣∣ (chain rule)

= p0
((
L−1
g ◦ f−1

t,g·c ◦ Lg

)
(x)

∣∣c) ∣∣∣det JL−1
g ◦f−1

t,g·c◦Lg
(x)

∣∣∣ (Lg−1 = L−1
g )

= p0
((
f−1
t,c ◦ L−1

g ◦ Lg

)
(x)

∣∣c) ∣∣∣det Jf−1
t,c ◦L

−1
g ◦Lg

(x)
∣∣∣

= p0
(
f−1
t,c (x)

∣∣c) ∣∣∣det Jf−1
t,c

(x)
∣∣∣

= pt(x|c).

(6)

Proposition 3 is a special case where M = SE(3), G = SE(3), and c = P , and the group action of79

T ′ ∈ SE(3) on T ∈ SE(3), denote by LT ′(T ) = T ′T , is the left translation map which is isometric.80

Hence, Proposition 3 is proved.81

We now prove Proposition 1 by utilizing Proposition 2 and Proposition 3.82

Proof of Proposition 1. Since the angular and linear velocity fields ωθ and vϕ are SE(3)-equivariant,83

it follows from Proposition 2 that their flow f is also SE(3)-equivariant. Consequently, by Propo-84

sition 3, the conditional distribution pt(T |P), which is defined via the flow of the velocity fields, is85

SE(3)-invariant.86
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VN-
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1 × 1 1 × 3
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1 × 1 1 × 3Matrix multiplication
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1 × 3Concat. Concat.

Figure 1: The structure of the velocity fields and lifting layer. The VN-DGCNN encodes the point
cloud P into a representation z consisting of 341 three-dimensional vectors. The VN-MLP in the
lifting layer utilizes this representation along with the grasp pose T, to produce a matrix of size
1× 3. This matrix lifts the time variable t (of size 1× 1) to a three-dimensional vector. Finally, the
VN-MLP takes as input the concatenated list of the lifted time, representation, and grasp pose, and
outputs the angular and linear velocities.

B Implementation Details87

B.1 Details for Networks88

To model the time-dependent conditional velocity fields ωθ(t,P, T ) and vϕ(t,P, T ) with SO(3)-89

equivariance, we employ Vector Neuron (VN) architectures [2], which are specifically designed for90

SO(3)-equivariance. The structure of these velocity fields is illustrated in Figure 1.91

To encode the point cloud P , we utilize the backbone of the VN-DGCNN designed for classification92

tasks. We use the network before the invariant layer, excluding the batch normalization layers. We93

add an EdgeConv module with a size of 170 at the sixth module position. Following the backbone,94

a mean pooling layer is applied to pool the point dimension, extracting a representation z consisting95

of 341 three-dimensional vectors. The grasp pose T is reconfigured into a form that concatenates96

the three column vectors of the rotation part and one vector of the translation part, resulting in four97

three-dimensional vectors. Time t is converted into a single three-dimensional vector through the98

lifting layer. Subsequently, the VN-MLP concatenates these lists of three-dimensional vectors as99

input and outputs the angular and linear velocities. The VN-MLP consists of five hidden VN-Linear100

layers, each followed by VN-LeakyReLU activation with a negative slope 0.2, and one output VN-101

Linear layer. The sizes of the hidden layers are (256, 256, 128, 128, 128), and the output layer size102

is 2, as the network’s output is two three-dimensional vectors.103

The lifting layer uses the representation z and the grasp pose T to convert the scalar time t into104

a three-dimensional vector. This process involves a VN-MLP that consists of a single VN-Linear105

layer with a size of 1, producing an output matrix of size 1×3. This output matrix is then multiplied106

to the scalar t (size 1× 1), resulting in a single three-dimensional vector.107

B.2 Details for Training and Inference108

Dataset Split We use a dataset of 101 mugs and 83 bowls obtained from the ACRONYM dataset109

[3] to train the networks. The dataset is split as follows: 61 mugs and 51 bowls are randomly selected110

for training, 20 mugs and 16 bowl for validation, and the remaining 20 mugs and 16 bowl for testing.111

Flow Matching We employ the Flow Matching (FM) framework [4, 5] to train our continuous112

normalizing flow model. The core element of FM involves designing the per-sample target vector113

field u∗
t (T |T1) and the corresponding probability path pt(T |T1), where T1 = (R1, x1) represents a114

particular sample from the target distribution q(T |P). In our approach, we separate the rotation and115

translation components in u∗
t (T |T1) = (ω∗

t (R|R1), v
∗
t (x|x1)). We then define the target angular116

and linear velocity fields ω∗
t (R|R1) and v∗t (x|x1) as follows:117

[ω∗
t (R|R1)] =

log(RTR1)

1− t
, v∗t (x|x1) =

x1 − x

1− t
. (7)
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Consequently, the training objective for EquiGraspFlow is designed as118

L = Et,T1∼q(T |P),T∼pt(T |T1)

[
1

2

∥∥∥∥[ωθ(t,P, T )]− log(RTR1)

1− t

∥∥∥∥2
F

+

∥∥∥∥vϕ(t,P, T )− x1 − x

1− t

∥∥∥∥2
]

(8)

where || · ||F denotes the Frobenius norm, and T = (R, x) and T1 = (R1, x1).119

One thing to note is that it might seem natural to design the vector field on the SE(3) manifold120

instead of separating the rotation and translation components, similarly to how we design the angular121

velocity field on the SO(3) manifold as shown in (7). However, this approach results in screw122

motion-shaped paths of grasp poses, where the translation may not follow a straight line toward123

the target grasp pose. In the context of our grasp pose generation task, separating the rotation and124

translation and ensuring that the translation motion directly heads toward the target grasp pose is a125

more intuitive and appropriate vector field formulation.126

Guided Flows Guided Flows [6] is a technique that enhances the sample quality and efficiency of127

conditional generative models by integrating classifier-free guidance [7] into Flow Matching mod-128

els. This method employs a guided velocity field during sampling, defined as a weighted sum of129

unconditional and conditional velocity fields. Using an empty set ∅ as a null condition for the point130

cloud input, we define the guided angular and linear velocity fields ω̃θ and ṽϕ as follows, utilizing131

the weight parameter β:132

ω̃θ(t,P, T ) = (1− β)ωθ(t,∅, T ) + βωθ(t,P, T ),

ṽϕ(t,P, T ) = (1− β)vϕ(t,∅, T ) + βvϕ(t,P, T ).
(9)

When ∅ is input, the point cloud encoder outputs a list of zero vectors as z. To train the unconditional133

velocity fields, we randomly replace P with the empty set ∅ with a probability of 20% during134

training. For inference, we use β = 1.25 to evaluate average performance and β = 2 to assess the135

consistency of performance.136

Optimizer Adam optimizer [8] with learning rate 1×10−4 is utilized to train the baselines and our137

network. L2 regularization with hyperparameter 1 × 10−5 and 1 × 10−6 are employed for training138

6-DOF GraspNet (GAN) [9] and EquiGraspFlow.139

B.3 Details for Grasping Motion in Real-World Experiments140

The robot motion for grasping an object in real-world experiment is designed as follows. To prevent141

collisions with the object during the movement of the gripper toward the generated grasp pose, we142

first move the gripper to a pre-grasp pose. This pre-grasp pose is offset from the grasp pose by a143

small distance in the −z direction in the gripper’s frame (the z-axis of the gripper’s frame represents144

the direction of gripper’s palm). Next, we move the gripper to the grasp pose and execute the grasp.145

Once the object is grasped, the gripper is lifted by 10cm. The success of the grasp is manually146

determined based on whether the object is held securely by the gripper. After each grasping attempt,147

we manually reset the position and orientation of the object to its initial state.148

C Additional Results for Grasp Pose Generation149

Figures 2 to 5 illustrate the additional visualizations of the generated grasp poses. These figures150

show the generated grasp poses of two mugs and two bowls for ten object rotations, along with the151

Earth Mover’s Distance (EMD) and grasp success rate values. The objects are rotated and input into152

each model, but in these figures, both the objects and the generated grasp poses are inversely rotated153

to align all scenes. Successful and failed grasp poses are indicated in green and red, respectively.154

The grasp poses generated by EquiGraspFlow are widely distributed across various parts of the155

objects, demonstrating that our model generates more diverse grasp poses compared to the baselines.156

The values indicate that EquiGraspFlow generates grasp poses similar to the ground truth with high157

success rate. Additionally, the variance in the values indicates that EquiGraspFlow exhibits more158

consistent results across different object rotations. Notably, our model maintains identical value159

across the ten object rotations, demonstrating the perfect equivariance of our approach.160
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