
Proximal and Federated Random Reshuffling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Random Reshuffling (RR), also known as Stochastic Gradient Descent (SGD)1

without replacement, is a popular and theoretically grounded method for finite-sum2

minimization. We propose two new algorithms: Proximal and Federated Random3

Reshuffling (ProxRR and FedRR). The first algorithm, ProxRR, solves composite4

finite-sum minimization problems in which the objective is the sum of a (potentially5

non-smooth) convex regularizer and an average of n smooth objectives. ProxRR6

evaluates the proximal operator once per epoch only. When the proximal operator7

is expensive to compute, this small difference makes ProxRR up to n times faster8

than algorithms that evaluate the proximal operator in every iteration, such as9

proximal (stochastic) gradient descent. We give examples of practical optimization10

tasks where the proximal operator is difficult to compute and ProxRR has a clear11

advantage. One such task is federated or distributed optimization, where the evalu-12

ation of the proximal operator corresponds to communication across the network.13

We obtain our second algorithm, FedRR, as a special case of ProxRR applied to14

federated optimization, and prove it has a smaller communication footprint than15

either distributed gradient descent or Local SGD. Our theory covers both constant16

and decreasing stepsizes, and allows for importance resampling schemes that can17

improve conditioning, which may be of independent interest. Our theory covers18

both convex and nonconvex regimes. Finally, we corroborate our results with19

experiments on real data sets.20

1 Introduction21

Modern theory and practice of training supervised machine learning models is based on the paradigm22

of regularized empirical risk minimization (ERM) [Shalev-Shwartz and Ben-David, 2014]. While the23

ultimate goal of supervised learning is to train models that generalize well to unseen data, in practice24

only a finite data set is available during training. Settling for a model merely minimizing the average25

loss on this training set—the empirical risk—is insufficient, as this often leads to over-fitting and poor26

generalization performance in practice. Due to this reason, empirical risk is virtually always amended27

with a suitably chosen regularizer whose role is to encode prior knowledge about the learning task at28

hand, thus biasing the training algorithm towards better performing models.29

The regularization framework is quite general and perhaps surprisingly it also allows us to consider30

methods for federated learning (FL)—a paradigm in which we aim at training model for a number of31

clients that do not want to reveal their data [Konečný et al., 2016, McMahan et al., 2017, Kairouz32

et al., 2019]. The training in FL usually happens on devices with only a small number of model33

updates being shared with a global host. To this end, Federated Averaging algorithm has emerged34

that performs Local SGD updates on the clients’ devices and periodically aggregates their average.35

Its analysis usually requires special techniques and deliberately constructed sequences hindering the36

research in this direction. We shall see, however, that the convergence of our FedRR follows from37

merely applying our algorithm for regularized problems to a carefully chosen reformulation.38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Formally, regularized ERM problems are optimization problems of the form39

min
x∈Rd

[
P (x) := 1

n

∑n
i=1 fi(x) + ψ(x)

]
, (1)

where fi : Rd → R is the loss of model parameterized by vector x ∈ Rd on the i-th training data40

point, and ψ : Rd → R ∪ {+∞} is a regularizer. Let [n] := {1, 2, . . . , n}. We shall make the41

following assumption throughout the paper without explicitly mentioning it:42

Assumption 1. The functions fi are Li-smooth, and the regularizer ψ is proper, closed and convex.43

Let Lmax := maxi∈[n] Li.44

In some results we will additionally assume that either the individual functions fi, or their average45

f := 1
n

∑
i fi, or the regularizer ψ are µ-strongly convex. Whenever we need such additional46

assumptions, we will make this explicitly clear. While all these concepts are standard, we review47

them briefly in Section A.48

Proximal SGD. When the number n of training data points is huge, as is increasingly common49

in practice, the most efficient algorithms for solving (1) are stochastic first-order methods, such50

as stochastic gradient descent (SGD) [Bordes et al., 2009], in one or another of its many variants51

proposed in the last decade [Shang et al., 2018, Pham et al., 2020]. These method almost invariably52

rely on alternating stochastic gradient steps with the evaluation of the proximal operator53

proxγψ(x) := argminz∈Rd
{
γψ(z) + 1

2‖z − x‖
2
}
.

The simplest of these has the form54

xSGD
k+1 = proxγkψ(xSGD

k − γk∇fik(xSGD
k)), (2)

where ik is an index from {1, 2, . . . , n} chosen uniformly at random, and γk > 0 is a properly55

chosen learning rate. Our understanding of (2) is quite mature; see [Gorbunov et al., 2020] for a56

general treatment which considers methods of this form in conjunction with more advanced stochastic57

gradient estimators in place of∇fik .58

Applications such as training sparse linear models [Tibshirani, 1996], nonnegative matrix factoriza-59

tion [Lee and Seung, 1999], image deblurring [Rudin et al., 1992, Bredies et al., 2010], and training60

with group selection [Yuan and Lin, 2006] all rely on the use of hand-crafted regularizes. For most of61

them, the proximal operator can be evaluated efficiently, and SGD is near or at the top of the list of62

efficient training algorithms.63

Random reshuffling. A particularly successful variant of SGD is based on the idea of random64

shuffling (permutation) of the training data followed by n iterations of the form (2), with the index65

ik following the pre-selected permutation [Bottou, 2012]. This process is repeated several times,66

each time using a new freshly sampled random permutation of the data, and the resulting method is67

known under the name Random Reshuffling (RR). When the same permutation is used throughout,68

the technique is known under the name Shuffle-Once (SO).69

One of the main advantages of this approach is rooted in its intrinsic ability to avoid cache misses when70

reading the data from memory, which enables a significantly faster implementation. Furthermore,71

RR is often observed to converge in fewer iterations than SGD in practice. This can intuitively be72

ascribed to the fact that while due to its sampling-with-replacement approach SGD can miss to learn73

from some data points in any given epoch, RR will learn from each data point in each epoch.74

Understanding the random reshuffling trick, and why it works, has been a non-trivial open problem75

for a long time [Bottou, 2009, Recht and Ré, 2012, Gürbüzbalaban et al., 2019, Haochen and Sra,76

2019]. Until recent development which lead to a significant simplification of the convergence77

analysis technique and proofs [Mishchenko et al., 2020], prior state of the art relied on long and78

elaborate proofs requiring sophisticated arguments and tools, such as analysis via the Wasserstein79

distance [Nagaraj et al., 2019], and relied on a significant number of strong assumptions about80

the objective [Shamir, 2016, Haochen and Sra, 2019]. In alternative recent development, Ahn et al.81

[2020] also develop new tools for analyzing the convergence of random reshuffling, in particular using82

decreasing stepsizes and for objectives satisfying the Polyak-Łojasiewicz condition, a generalization83

of strong convexity [Polyak, 1963, Lojasiewicz, 1963].84

The difficulty of analyzing RR has been the main obstacle in the development of even some of the85

most seemingly benign extensions of the method. Indeed, while all these are well understood in86

2

Algorithm 1 Proximal Random Reshuffling (ProxRR) and Shuffle-Once (ProxSO)

Require: Stepsizes γt > 0, initial vector x0 ∈ Rd, number of epochs T
1: Sample a permutation π = (π0u, π1, . . . , πn−1) of [n] (Do step 1 only for ProxSO)
2: for epochs t = 0, 1, . . . , T − 1 do
3: Sample a permutation π = (π0, π1, . . . , πn−1) of [n] (Do step 3 only for ProxRR)

4: x0t = xt
5: for i = 0, 1, . . . , n− 1 do
6: xi+1

t = xit − γt∇fπi(xit)
7: xt+1 = proxγtnψ(x

n
t)

combination with its much simpler-to-analyze cousin SGD, to the best of our knowledge, there exists87

no theoretical analysis of proximal, parallel, and importance sampling variants of RR with both88

constant and decreasing stepsizes, and in most cases it is not even clear how should such methods be89

constructed. Empowered by and building on the recent advances of Mishchenko et al. [2020], in this90

paper we address all these challenges.91

2 Contributions92

In this section we outline the key contributions of our work, and also offer a few intuitive explanations93

motivating some of the development.94

• New algorithm: ProxRR. Despite rich literature on Proximal SGD [Gorbunov et al., 2020], it is95

not obvious how one should extend RR to solve problem (1) when a regularizer ψ is present. Indeed,96

the standard practice for SGD is to apply the proximal operator after each stochastic step [Duchi and97

Singer, 2009], i.e., in analogy with (2). On the other hand, RR is motivated by the fact that a data98

pass better approximates the full gradient step. If we applied the proximal operator after each step of99

RR, we would no longer approximate the full gradient after an epoch, as we illustrate next.100

Example 1. Let n = 2, ψ(x) = 1
2‖x‖

2, f1(x) = 〈c1, x〉, f2(x) = 〈c2, x〉 with some c1, c2 ∈ Rd,101

c1 6= c2. Let x0 ∈ Rd, γ > 0 and define x1 = x0 − γ∇f1(x0), x2 = x1 − γ∇f2(x1). Then, we102

have prox2γψ(x2) = prox2γψ(x0 − 2γ∇f(x0)). However, if x̃1 = proxγψ(x0 − γ∇f1(x0)) and103

x̃2 = proxγψ(x1 − γ∇f2(x̃1)), then x̃2 6= prox2γψ(x0 − 2γ∇f(x0)).104

Motivated by this observation, we propose ProxRR (Algorithm 1), in which the proximal operator is105

applied at the end of each epoch of RR, i.e., after each pass through all randomly reshuffled data. A106

notable property of Algorithm 1 is that only a single proximal operator evaluation is needed during107

each data pass. This is in sharp contrast with the way Proximal SGD works, and offers significant108

advantages in regimes where the evaluation of the proximal mapping is expensive (e.g., comparable109

to the evaluation of n gradients∇f1, . . . ,∇fn).110

• Convergence of ProxRR (for strongly convex functions or regularizer). We establish several111

convergence results for ProxRR, of which we highlight two here. Both offer a linear convergence rate112

with a fixed stepsize to a neighborhood of the solution. In both we reply on Assumption 1. Firstly, in113

the case when in addition, each fi is µ-strongly convex, we prove the rate (see Theorem 2)114

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT ‖x0 − x∗‖2 +
2γ2σ2

rad

µ ,

where γt = γ ≤ 1/Lmax is the stepsize, and σ2
rad is a shuffling radius constant (for precise definition,115

see (4)). In Theorem 1 we bound the shuffling radius in terms of ‖∇f(x∗)‖2, n, Lmax and the more116

common quantity σ2
∗ := 1

n

∑n
i=1 ‖∇fi(x∗)−∇f(x∗)‖2. Secondly, if ψ is µ-strongly convex, and117

we choose the stepsize γt = γ ≤ 1/Lmax, we prove the rate (see Theorem 3)118

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

µ .

Both mentioned rates show exponential (linear in logarithmic scale) convergence to a neighborhood119

whose size is proportional to γ2σ2
rad. Since we can choose γ to be arbitrarily small or periodically120

3

decrease it, this implies that the iterates converge to x∗ in the limit. Moreover, we show in Section 4121

that when γ = O(1
T) the error is O(1

T 2), which is superior to the O(1
T) error of SGD.122

• Results for SO. All of our results apply to the Shuffle-Once algorithm as well. For simplicity, we123

center the discussion around RR, whose current theoretical guarantees in the nonconvex case are124

better than that of SO. Nevertheless, the other results are the same for both methods, and ProxRR is125

identical to ProxSO in terms of our theory too. A study of the empirical differences between RR and126

SO can be found in [Mishchenko et al., 2020].127

• Application to Federated Learning. In Section 6 we describe an application of our results to128

federated learning [Konečný et al., 2016, McMahan et al., 2017, Kairouz et al., 2019]. In this way we129

obtain the FedRR method, which is similar to Local SGD, except the local solver is a single pass130

of RR over the local data. Empirically, FedRR can be vastly superior to Local SGD (see Figure 2).131

Remarkably, we also show that the rate of FedRR beats the best known lower bound for Local SGD132

due to [Woodworth et al., 2020] (we needed to adapt it from the original online to the finite-sum133

setting we consider in this paper) for large enough n. See Section F for more details.134

• Nonconvex analysis. In the nonconvex regime, and under suitable assumptions, we establish (see135

Theorems 5 and 8) anO(1
γT) rate up to a neighborhood of sizeO(γ2). For a certain stepsize it yields136

an O(1
ε3) convergence rate.137

Besides the above results, we describe several extensions in the appendix, which we now outline.138

• Extension 1: Decreasing stepsizes. The convergence of RR is not always exact and depends on139

the parameters of the objective. Similarly, if the shuffling radius σ2
rad is positive, and we wish to find140

an ε-approximate solution, the optimal choice of a fixed stepsize for ProxRR will depend on ε. This141

deficiency can be fixed by using decreasing stepsizes in both vanilla RR [Ahn et al., 2020] and in142

SGD [Stich, 2019]. We adopt the same technique to our setting. However, we depart from [Ahn et al.,143

2020] by only adjusting the stepsize once per epoch rather than at every iteration, similarly to the144

concurrent work of Tran et al. [2020] on RR with momentum. For details, see Section I.145

• Extension 2: Importance resampling for Proximal RR. While importance sampling is a well146

established technique for speeding up the convergence of SGD [Zhao and Zhang, 2015, Khaled and147

Richtárik, 2020], no importance sampling variant of RR has been proposed nor analyzed. This is not148

surprising since the key property of importance sampling in SGD—unbiasedness—does not hold for149

RR. Our approach to equip ProxRR with importance sampling is via a reformulation of problem (1)150

into a similar problem with a larger number of summands. In particular, for each i ∈ [n] we include151

ni copies of the function 1
ni
fi, and then take average of all N =

∑
i ni functions constructed this152

way. The value of ni depends on the “importance” of fi, described below. We then apply ProxRR153

to this reformulation. If fi is Li-smooth for all i ∈ [n] and we let L̄ := 1
n

∑
i Li, then we choose154

ni = dLi/L̄e. It is easy to show that N ≤ 2n, and hence our reformulation leads to at most a doubling155

of the number of functions forming the finite sum. However, the overall complexity of ProxRR156

applied to this reformulation will depend on L̄ instead of maxi Li (see Theorem 10), which can lead157

to a significant improvement. For details of the construction and our complexity results, see Section J.158

3 Preliminaries159

In our analysis, we build upon the notions of limit points and shuffling variance introduced by160

Mishchenko et al. [2020] for vanilla (i.e., non-proximal) RR. Given a stepsize γ > 0 (held constant161

during each epoch) and a permutation π of {1, 2, . . . , n}, the inner loop iterates of RR/SO converge162

to a neighborhood of intermediate limit points x1
∗, x

2
∗, . . . , x

n
∗ defined by163

xi∗ := x∗ − γ
∑i−1
j=0∇fπj (x∗), i = 1, . . . , n. (3)

The intuition behind this definition is fairly simple: if we performed i steps starting at x∗, we would164

end up close to xi∗. To quantify the closeness, we define the shuffling radius.165

Definition 1 (Shuffling radius). Given a stepsize γ > 0 and a random permutation π of {1, 2, . . . , n}166

used in Algorithm 1, define xi∗ = xi∗(γ, π) as in (3). Then, the shuffling radius is defined by167

σ2
rad(γ) := max

i=0,...,n−1

[
1
γ2Eπ

[
Dfπi

(xi∗, x∗)
]]
, (4)

4

where the expectation is taken with respect to the randomness in the permutation π. If there are168

multiple stepsizes γ1, γ2, . . . used in Algorithm 1, we take the maximum of all of them as the shuffling169

radius, i.e., σ2
rad := maxt≥1 σ

2
rad(γt).170

The shuffling radius is related by a multiplicative factor in the stepsize to the shuffling variance171

introduced by Mishchenko et al. [2020]. When the stepsize is held fixed, the difference between the172

two notions is minimal. When the stepsize is decreasing, however, the shuffling radius is easier to173

work with, since it can be upper bounded by problem constants independent of the stepsizes.174

Armed with a special lemma for sampling without replacement, we can upper bound the shuffling175

radius using the smoothness constant Lmax, size of the vector ∇f(x∗), and the variance σ2
∗ of the176

gradient vectors∇f1(x∗), . . . , ∇fn(x∗).177

Theorem 1 (Bounding the shuffling radius). For any stepsize γ > 0 and any random permutation π178

of {1, 2, . . . , n} we have σ2
rad ≤

Lmax

2 n
(
n‖∇f(x∗)‖2 + 1

2σ
2
∗
)
, where x∗ is a solution of Problem (1)179

and σ2
∗ is the population variance at the optimum180

σ2
∗ := 1

n

∑n
i=1‖∇fi(x∗)−∇f(x∗)‖2. (5)

All proofs are relegated to the supplementary material. In order to better understand the bound181

given by Theorem 1, note that if there is no proximal operator (i.e., ψ = 0) then ∇f(x∗) = 0 and182

we get that σ2
rad ≤

Lmaxnσ
2
∗

4 . This recovers the existing upper bound on the shuffling variance of183

Mishchenko et al. [2020] for vanilla RR. On the other hand, if∇f(x∗) 6= 0 then we get an additive184

term of size proportional to the squared norm of∇f(x∗).185

4 Theory for strongly convex losses f1, . . . , fn186

Our first theorem establishes a convergence rate for Algorithm 1 applied with a constant stepsize to187

Problem (1) when each objective fi is strongly convex. This assumption is commonly satisfied in188

machine learning applications where each fi represents a regularized loss on some data points, as in189

`2 regularized linear regression and `2 regularized logistic regression.190

Theorem 2. Let Assumption 1 be satisfied. Further, assume that each fi is µ-strongly convex. If191

Algorithm 1 is run with constant stepsize γt = γ ≤ 1/Lmax, then its iterates satisfy192

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT ‖x0 − x∗‖2 +
2γ2σ2

rad

µ .

We can convert the guarantee of Theorem 2 to a convergence rate by properly tuning the stepsize193

and using the upper bound of Theorem 1 on the shuffling radius. In particular, if we choose the194

stepsize as γ = min
{

1
Lmax

,
√
εµ√

2σrad

}
, and let κ := Lmax/µ and r0 := ‖x0 − x∗‖2, then we obtain195

E
[
‖xT − x∗‖2

]
= O (ε) provided that the total number of iterations KRR = nT is at least196

KRR ≥ [(κ+
√
κn√
εµ

(
√
n ‖∇f(x∗)‖+ σ∗)] log

(
2r0
ε

)
. (6)

Comparison with vanilla RR. If there is no proximal operator, then ‖∇f(x∗)‖ = 0 and we recover197

the earlier result of Mishchenko et al. [2020] on the convergence of RR without proximal, which is198

optimal in ε up to logarithmic factors. On the other hand, when the proximal operator is nonzero,199

we get an extra term in the complexity proportional to ‖∇f(x∗)‖: thus, even when all the functions200

are the same (i.e., σ∗ = 0), we do not recover the linear convergence of Proximal Gradient Descent201

[Karimi et al., 2016, Beck, 2017]. This can be easily explained by the fact that Algorithm 1 performs202

n gradient steps per one proximal step. Hence, even if f1 = · · · = fn, Algorithm 1 does not reduce203

to Proximal Gradient Descent. We note that other algorithms for composite optimization which may204

not take a proximal step at every iteration (for example, using stochastic projection steps) also suffer205

from the same dependence [Patrascu and Irofti, 2021].206

Comparison with proximal SGD. In order to compare (6) against the complexity of Proximal SGD207

(Algorithm 2), we recall that Proximal SGD achieves E
[
‖xK − x∗‖2

]
= O (ε) if either f or ψ is208

µ-strongly convex and209

KSGD ≥
(
κ+

σ2
∗

εµ2

)
log
(

2r0
ε

)
. (7)

5

Algorithm 2 Proximal SGD
Require: Stepsizes γk > 0, initial vector x0 ∈ Rd, number of steps K
1: for steps k = 0, 1, . . . ,K − 1 do
2: Sample ik uniformly at random from [n]
3: xk+1 = proxγkψ(xk − γk∇fik (xk))

This result is standard [Needell et al., 2016, Gower et al., 2019], with the exception that we do not210

know any proof in the literature for the case when ψ is strongly convex. For completeness, we prove211

it in Appendix C, but since our proof is a minor modification of that in [Gower et al., 2019], we do212

not provide it here.213

By comparing KSGD (given by (7)) and KRR (given by (6)), we see that ProxRR has milder214

dependence on ε than Proximal SGD. In particular, ProxRR converges faster whenever the target215

accuracy ε is small enough to satisfy ε ≤ 1
Lmaxnµ

(
σ4
∗

n‖∇f(x∗)‖2+σ2
∗

)
. Furthermore, ProxRR is much216

better when we consider proximal iteration complexity (# of proximal operator access), in which case217

the complexity of ProxRR (6) is reduced by a factor of n (because we take one proximal step every n218

iterations), while the proximal iteration complexity of Proximal SGD remains the same as (7). In this219

case, ProxRR is better whenever the accuracy ε satisfies220

ε ≥ n
Lmaxµ

[
n‖∇f(x∗)‖2 + σ2

∗

]
or ε ≤ n

Lmaxµ

[
σ4
∗

n‖∇f(x∗)‖2+σ2
∗

]
.

We can see that if the target accuracy is large enough or small enough, and if the cost of proximal221

operators dominates the computation, ProxRR is much quicker to converge than Proximal SGD.222

5 Theory for strongly convex regularizer ψ223

In Theorem 2, we assume that each fi is µ-strongly convex. This is motivated by the common practice224

of using `2 regularization in machine learning. However, applying `2 regularization in every step225

of Algorithm 1 can be expensive when the data are sparse and the iterates xit are dense, because it226

requires accessing each coordinate of xit which can be much more expensive than computing sparse227

gradients ∇fi(xit). Alternatively, we may instead choose to put the `2 regularization inside ψ and228

only ask that ψ be strongly convex—this way, we can save a lot of time as we need to access each229

coordinate of the dense iterates xit only once per epoch rather than every iteration. Theorem 3 gives a230

convergence guarantee in this setting.231

Theorem 3. Let Assumption 1 hold and f1, . . . , fn be convex. Further, assume that ψ is µ-strongly232

convex. If Algorithm 1 is run with constant stepsize γt = γ ≤ 1/Lmax, where Lmax = maxi Li, then233

its iterates satisfy234

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

µ .

Using Theorem 3 and choosing the stepsize as235

γ = min
{

1
Lmax

,
√
εµ

σrad

}
, (8)

we get E
[
‖xT − x∗‖2

]
= O (ε) provided that the total number of iterations satisfies236

K ≥
(
κ+ σrad/µ√

εµ + n
)

log
(

2r0
ε

)
. (9)

This can be converted to a bound similar to (6) by using Theorem 1, in which case the only difference237

between the two cases is an extra n log
(

1
ε

)
term when only the regularizer ψ is µ-strongly convex.238

Since for small enough accuracies the 1/
√
ε term dominates, this difference is minimal.239

6 FedRR: application of ProxRR to federated learning240

Let us consider now the problem of minimizing the average of N =
∑M
m=1Nm functions that are241

stored on M devices, which have N1, . . . , NM samples correspondingly,242

min
x∈Rd

F (x) +R(x), F (x) = 1
N

∑M
m=1Fm(x), Fm(x) =

∑Nm
j=1fmj(x). (10)

6

Algorithm 3 Federated Random Reshuffling (FedRR)
Require: Stepsize γ > 0, initial vector x0 = x00 ∈ Rd, number of epochs T
1: for epochs t = 0, 1, . . . , T − 1 do
2: for m = 1, . . . ,M locally in parallel do
3: x0t,m = xt
4: Sample permutation π0,m, π1,m, . . . , πNm−1,m of {1, 2, . . . , Nm}
5: for i = 0, 1, . . . , Nm − 1 do
6: xi+1

t,m = xit,m − γ∇fπi,m(xit,m)

7: xnt,m = xNmt,m
8: xt+1 = 1

M

∑M
m=1 x

n
t,m

For example, fmj(x) can be the loss associated with a single sample (Xmj , ymj), where pairs243

(Xmj , ymj) follow a distribution Dm that is specific to device m. An important instance of such for-244

mulation is federated learning, where M devices train a shared model by communicating periodically245

with a server. We normalize the objective in (10) by N as this is the total number of functions after246

we expand each Fm into a sum. We denote the solution of (10) by x∗.247

Extending the space. To rewrite the problem as an instance of (1), we are going to consider a bigger248

product space, which is sometimes used in distributed optimization [Bianchi et al., 2015]. Let us249

define n := max{N1, . . . , Nm} and introduce ψC , the consensus constraint, defined via250

ψC(x1, . . . , xM) :=

{
0, x1 = · · · = xM
+∞, otherwise

.

By introducing dummy variables x1, . . . , xM and adding the constraint x1 = · · · = xM , we arrive at251

the intermediate problem252

min
x1,...,xM∈Rp

1
N

∑M
m=1 Fm(xm) + (R+ ψC)(x1, . . . , xM),

where R + ψC is defined, with a slight abuse of notation, as (R + ψC)(x1, . . . , xM) = R(x1) if253

x1 = · · · = xM , and (R+ ψC)(x1, . . . , xM) = +∞ otherwise.254

Since we have replaced R with a more complicated regularizer R+ ψC , we need to understand how255

to compute the proximal operator of the latter. We show (Lemma 7 in the supplementary) that the256

proximal operator of (R + ψC) is merely the projection onto {(x1, . . . , xM) | x1 = · · · = xM}257

followed by the proximal operator of R with a smaller stepsize.258

Reformulation. To have n functions in every Fm, we write Fm as a sum with extra n−Nm zero259

functions, fmj(x) ≡ 0 for any j > Nm, so that Fm(xm) =
∑n
j=1 fmj(xm) =

∑Nm
j=1 fmj(xm) +260 ∑n

j=Nm+1 0. We can now stick the vectors together into x = (x1, . . . , xM) ∈ RM ·d and multiply261

the objective by N
n , which gives the following reformulation:262

min
x∈RM·d

1
n

∑n
i=1fi(x) + ψ(x), (11)

where ψ(x) := N
n (R+ ψC) and263

fi(x) = fi(x1, . . . , xM) :=

M∑
m=1

fmi(xm).

In other words, function fi(x) includes i-th data sample from each device and contains at most264

one loss from every device, while Fm(x) combines all data losses on device m. Note that the265

solution of (11) is x∗ := (x>∗ , . . . , x
>
∗)> and the gradient of the extended function fi(x) is given266

by ∇fi(x) = (∇f1i(x1)>, · · · ,∇fMi(xM)>)>. Therefore, a stochastic gradient step that uses267

∇fi(x) corresponds to updating all local models with the gradient of i-th data sample, without any268

communication.269

Algorithm 1 for this specific problem can be written in terms of x1, . . . , xM , which results in270

Algorithm 3. Note that since fmi(xi) depends only on xi, computing its gradient does not require271

communication. Only once the local epochs are finished, the vectors are averaged as the result of272

projecting onto the set {(x1, . . . , xM) | x1 = · · · = xM}.273

Reformulation properties. To analyze FedRR, the only thing that we need to do is understand the274

properties of the reformulation (11) and then apply Theorem 2 or Theorem 3. The following lemma275

gives us the smoothness and strong convexity properties of (11).276

7

Lemma 1. Let function fmi be Li-smooth and µ-strongly convex for every m. Then, fi from277

reformulation (11) is Li-smooth and µ-strongly convex.278

The previous lemma shows that the conditioning of the reformulation is κ = Lmax

µ just as we279

would expect. Moreover, it implies that the requirement on the stepsize remains exactly the same:280

γ ≤ 1/Lmax. What remains unknown is the value of σ2
rad, which plays a key role in the convergence281

bounds for ProxRR and ProxSO. To find an upper bound on σ2
rad, let us define282

σ2
m,∗ := 1

Nm

∑n
j=1

∥∥∇fmj(x∗)− 1
Nm
∇Fm(x∗)

∥∥2
,

which is the variance of local gradients on device m. This quantity characterizes the convergence rate283

of local SGD [Yuan et al., 2020], so we should expect it to appear in our bounds too. The next lemma284

explains how to use it to upper bound σ2
rad.285

Lemma 2. The shuffling radius σ2
rad of the reformulation (11) is upper bounded by286

σ2
rad ≤ Lmax ·

M∑
m=1

(
‖∇Fm(x∗)‖2 +

n

4
σ2
m,∗

)
.

The lemma shows that the upper bound on σ2
rad depends on the sum of local variances

∑M
m=1 σ

2
m,∗ as287

well as on the local gradient norms
∑M
m=1 ‖∇Fm(x∗)‖2. Both of these sums appear in the existing288

literature on convergence of Local GD/SGD [Khaled et al., 2019, Woodworth et al., 2020, Yuan et al.,289

2020]. We are now ready to present formal convergence results. For simplicity, we will consider290

heterogeneous and homogeneous cases separately and assume that N1 = · · · = NM = n. To further291

illustrate generality of our results, we will present the heterogeneous assuming strong convexity R292

and the homogeneous under strong convexity of functions fmi.293

Heterogeneous data. In the case when the data are heterogeneous, we provide the first local RR294

method. We can apply either Theorem 2 or Theorem 3, but for brevity, we give only the corollary295

obtained from Theorem 3.296

Theorem 4. Assume that functions fmi are convex and Li-smooth for each m and i. If R is297

µ-strongly convex and γ ≤ 1/Lmax, then we have for the iterates produced by Algorithm 3298

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 + γ2Lmax

Mµ

∑M
m=1

(
‖∇Fm(x∗)‖2 + N

4M σ2
m,∗

)
.

For nonconvex analysis, we consider R ≡ 0 and require the following standard assumption.299

Assumption 2 (Bounded variance and dissimilarity). There exist constants σ, ζ > 0 such that for300

any x ∈ Rd and301

1
n

∑n
i=1

∥∥∇fmi − 1
n∇Fm(x)

∥∥2 ≤ σ2 and 1
M

∑M
m=1

∥∥ 1
n∇Fm(x)−∇F (x)

∥∥2 ≤ ζ2.

Note that above 1
n∇Fm(x) = 1

Nm
∇Fm(x) is the gradient of a local dataset and ∇F (x) =302

1
N

∑M
l=1∇Fl(x) is the full gradient on all data.303

Theorem 5 (Nonconvex convergence). Let Assumptions 1 and 2 be satisfied, and R ≡ 0 (no prox).304

Then, the communication complexity to achieve E
[
‖∇F (xT)‖2

]
≤ ε2 is305

T = O
((

1
ε2 + σ√

nε3
+ ζ

ε3

)
(F (x0)− F∗)

)
.

Notice that by replicating the data locally on each device and thereby increasing the value of n306

without changing the objective, we can improve the second term in the communication complexity.307

In particular, if the data are not too dissimilar (σ � ζ) and ε is small (1
ε3 �

1
ε2), the second term in308

the complexity dominates, and it helps to have more local steps. However, if the data are less similar,309

the nodes have to communicate more frequently to get more information about other objectives.310

Homogeneous data. For simplicity, in the homogeneous (i.e., i.i.d.) data case we provide guarantees311

without the proximal operator. Since then we have F1(x) = · · · = FM (x), for any m it holds312

∇Fm(x∗) = 0, and thus σ2
m,∗ = 1

n

∑n
j=1 ‖∇fmj(x∗)‖2. The full variance is then given by313 ∑M

m=1 σ
2
m,∗ = 1

n

∑M
m=1

∑n
i=1 ‖∇fmi(x∗)‖2 = N

n σ
2
∗ = Mσ2

∗,

where σ2
∗ := 1

N

∑n
i=1

∑M
m=1 ‖∇fmi(x∗)‖2 is the variance of the gradients over all data.314

8

0 200 400 600 800 1000 1200
Data passes

10-5

10-4

10-3

10-2

10-1

P
(x
)
¡
P
¤

SGD
RR (iteration prox)
RR (epoch prox)

0 20000 40000 60000 80000
Prox steps

10-8

10-6

10-4

10-2

100

P
(x
)
¡
P
¤

SGD
RR (iteration prox)
RR (epoch prox)

0.0 0.5 1.0 1.5 2.0
Data passes

0.0005

0.001

0.002

P
(x
)
¡
P
¤

Average
Worst shuffle
Best shuffle

Figure 1: Experimental results for problem (12). The first two plots show with average and confidence intervals
estimated on 20 random seeds and clearly demonstrate that one can save a lot of proximal operator computations
with our method. The right plot shows the best/worst convergence of ProxSO over 20,000 sampled permutations.

0 200 400 600 800 1000
Communication rounds

10-6

10-5

10-4

10-3

10-2

10-1

100

f(
x
)
¡
f
¤ Local SGD

Scaffold
FedRR

0 10000 20000 30000 40000
Communication rounds

10-3

10-2

10-1

f(
x
)
¡
f
¤

Local SGD
Scaffold
FedRR

0 10000 20000 30000 40000
Communication rounds

1

2

4

10

20

40

kx
¡
x
¤
k2

SGD
Scaffold
FedRR

Figure 2: FedRR vs Local-SGD and Scaffold: i.i.d. data (left) and heterogeneous data (middle and right). We
set λ1 = 0 and estimate the averages and standard deviations by running 10 random seeds for each method.

Theorem 6. Let R(x) ≡ 0 (no prox) and the data be i.i.d., that is ∇Fm(x∗) = 0 for any m, where315

x∗ is the solution of (10). Let σ2
∗ := 1

N

∑n
i=1

∑M
m=1 ‖∇fmi(x∗)‖2. If each fmj is Lmax-smooth316

and µ-strongly convex, then the iterates of Algorithm 3 satisfy317

E
[
‖xT − x∗‖2

]
≤ (1− γµ)nT ‖x0 − x∗‖2 +

γ2LmaxNσ
2
∗

Mµ .

The most important part of this result is that the last term in Theorem 6 has a factor of M in the318

denominator, meaning that the convergence bound improves with the number of devices involved.319

7 Experiments1
320

ProxRR vs SGD. In Figure 1, we look at the logistic regression loss with the elastic net regularization,321

322
1
N

∑N
i=1 fi(x) + λ1‖x‖1 + λ2

2 ‖x‖
2, (12)

where each fi : Rd → R is defined as fi(x) := −
(
bi log

(
h(a>i x)

)
+ (1 − bi) log

(
1 − h(a>i x)

))
,323

and where (ai, bi) ∈ Rd × {0, 1}, i = 1, . . . , N are the data samples, h : t → 1/(1 + e−t) is the324

sigmoid function, and λ1, λ2 ≥ 0 are parameters. We set minibatch sizes to 32 for all methods and325

use theoretical stepsizes, without any tuning. We denote the heuristic version of RR that performs326

proximal operator step after each iteration as ‘RR (iteration prox)’. From the experiments, we can see327

that all methods behave more or less the same way. However, the algorithm that we propose needs328

only a small fraction of proximal operator evaluations, which gives it a huge advantage whenever the329

operator takes more time to compute than stochastic gradients.330

FedRR vs Local SGD and Scaffold. We also compare the performance of FedRR, Local SGD and331

Scaffold Karimireddy et al. [2020] on homogeneous (i.e., i.i.d.) and heterogeneous data. Since Local332

SGD and Scaffold require smaller stepsizes to converge, they are significantly slower in the i.i.d.333

regime, as can be seen in Figure 2. FedRR, however, does not need small initial stepsize and very334

quickly converges to a noisy neighborhood of the solution. We obtain heterogeneous regime by335

sorting data with respect to the labels and mixing the sorted dataset with the unsorted one. In this336

scenario, we also use the same small stepsize for every method to address the data heterogeneity.337

Clearly, Scaffold is the best in terms of functional values because it does variance reduction with338

respect to the data. Extending FedRR in the same way might be useful too, but this goes beyond the339

scope of our paper and we leave it for future work. We also note that in terms of distances from the340

optimum, FedRR still performs much better than Local SGD and Scaffold.341

1Our code is provided in the supplementary. More experimental details are in the appendix.

9

References342

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: optimal rates without component343

convexity and large epoch requirements. arXiv preprint arXiv:2006.06946. Neural Information344

Processing Systems (NeurIPS) 2020, 2020. (Cited on pages 2, 4, and 31)345

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,346

Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997. (Cited on page 5)347

Pascal Bianchi, Walid Hachem, and Franck Iutzeler. A coordinate descent primal-dual algorithm and348

application to distributed asynchronous optimization. IEEE Transactions on Automatic Control, 61349

(10):2947–2957, 2015. (Cited on page 7)350

Antoine Bordes, Léon Bottou, and Patrick Gallinari. SGD-QN: Careful quasi-Newton stochastic351

gradient descent. 2009. (Cited on page 2)352

Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. Unpublished353

open problem offered to the attendance of the SLDS 2009 conference, 2009. URL http://leon.354

bottou.org/papers/bottou-slds-open-problem-2009. (Cited on page 2)355

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages356

421–436. Springer, 2012. (Cited on page 2)357

Kristian Bredies, Karl Kunisch, and Thomas Pock. Total generalized variation. SIAM Journal on358

Imaging Sciences, 3(3):492–526, 2010. (Cited on page 2)359

Gong Chen and Marc Teboulle. Convergence Analysis of a Proximal-Like Minimization Algorithm360

Using Bregman Functions. SIAM Journal on Optimization, 3(3):538–543, 1993. doi: 10.1137/361

0803026. (Cited on page 19)362

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward splitting.363

Journal of Machine Learning Research, 10(Dec):2899–2934, 2009. (Cited on page 3)364

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A Unified Theory of SGD: Variance Reduction,365

Sampling, Quantization and Coordinate Descent. volume 108 of Proceedings of Machine Learning366

Research, pages 680–690, Online, 26–28 Aug 2020. PMLR. (Cited on pages 2, 3, 18, and 34)367

Robert M. Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik.368

SGD: General Analysis and Improved Rates. In Kamalika Chaudhuri and Ruslan Salakhutdinov,369

editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of370

Proceedings of Machine Learning Research, pages 5200–5209, Long Beach, California, USA,371

09–15 Jun 2019. PMLR. (Cited on page 6)372

Robert M. Gower, Peter Richtárik, and Francis Bach. Stochastic quasi-gradient methods: variance373

reduction via Jacobian sketching. Mathematical Programming, pages 1–58, 2020. ISSN 0025-5610.374

doi: 10.1007/s10107-020-01506-0. (Cited on page 34)375

Mert Gürbüzbalaban, Asuman Özdağlar, and Pablo A. Parrilo. Why random reshuffling beats376

stochastic gradient descent. Mathematical Programming, Oct 2019. ISSN 1436-4646. doi:377

10.1007/s10107-019-01440-w. (Cited on page 2)378

Jeff Haochen and Suvrit Sra. Random Shuffling Beats SGD after Finite Epochs. In Kamalika379

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on380

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 2624–2633,381

Long Beach, California, USA, 09–15 Jun 2019. PMLR. (Cited on page 2)382

Peter Kairouz et al. Advances and open problems in federated learning. arXiv preprint383

arXiv:1912.04977, 2019. (Cited on pages 1 and 4)384

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear Convergence of Gradient and Proximal-385

Gradient Methods Under the Polyak-Łojasiewicz Condition. In European Conference on Machine386

Learning and Knowledge Discovery in Databases - Volume 9851, ECML PKDD 2016, page387

795–811, Berlin, Heidelberg, 2016. Springer-Verlag. (Cited on page 5)388

10

http://leon.bottou.org/papers/bottou-slds-open-problem-2009
http://leon.bottou.org/papers/bottou-slds-open-problem-2009
http://leon.bottou.org/papers/bottou-slds-open-problem-2009

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and389

Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In390

International Conference on Machine Learning, pages 5132–5143. PMLR, 2020. (Cited on pages 9391

and 30)392

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv Preprint393

arXiv:2002.03329, 2020. (Cited on pages 4 and 31)394

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First Analysis of Local GD on395

Heterogeneous Data. arXiv preprint arXiv:1909.04715, 2019. (Cited on page 8)396

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for Local SGD on397

identical and heterogeneous data. In International Conference on Artificial Intelligence and398

Statistics, pages 4519–4529. PMLR, 2020. (Cited on page 30)399

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave400

Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private401

Multi-Party Machine Learning Workshop, 2016. (Cited on pages 1 and 4)402

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix403

factorization. Nature, 401(6755):788–791, 1999. (Cited on page 2)404

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations405

aux dérivées partielles, 117:87–89, 1963. (Cited on page 2)406

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.407

Communication-efficient learning of deep networks from decentralized data. In Proceedings of the408

20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017. (Cited on409

pages 1 and 4)410

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random Reshuffling: Simple Analysis411

with Vast Improvements. arXiv preprint arXiv:2006.05988. Neural Information Processing Systems412

(NeurIPS) 2020, 2020. (Cited on pages 2, 3, 4, 5, 16, 19, 20, 25, and 26)413

Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without Replacement: Sharper Rates414

for General Smooth Convex Functions. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,415

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings416

of Machine Learning Research, pages 4703–4711, Long Beach, California, USA, 09–15 Jun 2019.417

PMLR. (Cited on page 2)418

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted sampling,419

and the randomized Kaczmarz algorithm. Mathematical Programming, 155(1):549–573, Jan 2016.420

ISSN 1436-4646. doi: 10.1007/s10107-015-0864-7. (Cited on pages 6 and 34)421

Neal Parikh and Stephen Boyd. Proximal Algorithms. Foundations and Trends in Optimization, 1(3):422

127–239, January 2014. ISSN 2167-3888. doi: 10.1561/2400000003. (Cited on pages 16 and 29)423

Andrei Patrascu and Paul Irofti. Stochastic proximal splitting algorithm for composite minimization.424

Optimization Letters, pages 1–19, 2021. (Cited on page 5)425

Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, and Quoc Tran-Dinh. ProxSARAH: An efficient426

algorithmic framework for stochastic composite nonconvex optimization. Journal of Machine427

Learning Research, 21(110):1–48, 2020. (Cited on page 2)428

Boris T. Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i429

Matematicheskoi Fiziki, 3(4):643–653, 1963. (Cited on page 2)430

Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean in-431

equality: Conjectures, case-studies, and consequences. In S. Mannor, N. Srebro, and R. C.432

Williamson, editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23,433

page 11.1–11.24, 2012. Edinburgh, Scotland. (Cited on page 2)434

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal435

algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992. (Cited on page 2)436

11

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: from theory to algo-437

rithms. Cambridge University Press, 2014. (Cited on page 1)438

Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in neural439

information processing systems, pages 46–54, 2016. (Cited on page 2)440

Fanhua Shang, Licheng Jiao, Kaiwen Zhou, James Cheng, Yan Ren, and Yufei Jin. ASVRG:441

Accelerated Proximal SVRG. In Jun Zhu and Ichiro Takeuchi, editors, Proceedings of Machine442

Learning Research, volume 95, pages 815–830. PMLR, 14–16 Nov 2018. (Cited on page 2)443

Sebastian U. Stich. Unified Optimal Analysis of the (Stochastic) Gradient Method. arXiv preprint444

arXiv:1907.04232, 2019. (Cited on pages 4 and 31)445

Ruo-Yu Sun. Optimization for Deep Learning: An Overview. Journal of the Operations Research446

Society of China, 8(2):249–294, Jun 2020. ISSN 2194-6698. doi: 10.1007/s40305-020-00309-6.447

(Cited on page 31)448

Junqi Tang, Karen Egiazarian, Mohammad Golbabaee, and Mike Davies. The practicality of stochastic449

optimization in imaging inverse problems. IEEE Transactions on Computational Imaging, 6:1471–450

1485, 2020. (Cited on page 34)451

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical452

Society: Series B (Methodological), 58(1):267–288, 1996. (Cited on page 2)453

Trang H. Tran, Lam M. Nguyen, and Quoc Tran-Dinh. Shuffling gradient-based methods with454

momentum. arXiv preprint arXiv:2011.11884, 2020. (Cited on pages 4 and 31)455

Blake Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs Local SGD for Hetero-456

geneous Distributed Learning. arXiv preprint arXiv:2006.04735. Neural Information Processing457

Systems (NeurIPS) 2020, 2020. (Cited on pages 4, 8, and 24)458

Honglin Yuan, Manzil Zaheer, and Sashank Reddi. Federated composite optimization. arXiv preprint459

arXiv:2011.08474, 2020. (Cited on page 8)460

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal461

of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006. (Cited on462

page 2)463

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss464

minimization. In Proceedings of the 32nd International Conference on Machine Learning, PMLR,465

volume 37, pages 1–9, 2015. (Cited on page 4)466

12

Checklist467

1. For all authors...468

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s469

contributions and scope? [Yes]470

(b) Did you describe the limitations of your work? [Yes]471

(c) Did you discuss any potential negative societal impacts of your work? [N/A]472

(d) Have you read the ethics review guidelines and ensured that your paper conforms to473

them? [Yes]474

2. If you are including theoretical results...475

(a) Did you state the full set of assumptions of all theoretical results? [Yes]476

(b) Did you include complete proofs of all theoretical results? [Yes]477

3. If you ran experiments...478

(a) Did you include the code, data, and instructions needed to reproduce the main experi-479

mental results (either in the supplemental material or as a URL)? [Yes]480

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they481

were chosen)? [Yes]482

(c) Did you report error bars (e.g., with respect to the random seed after running experi-483

ments multiple times)? [Yes]484

(d) Did you include the total amount of compute and the type of resources used (e.g., type485

of GPUs, internal cluster, or cloud provider)? [Yes]486

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...487

(a) If your work uses existing assets, did you cite the creators? [Yes]488

(b) Did you mention the license of the assets? [N/A]489

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]490

491

(d) Did you discuss whether and how consent was obtained from people whose data you’re492

using/curating? [N/A]493

(e) Did you discuss whether the data you are using/curating contains personally identifiable494

information or offensive content? [N/A]495

5. If you used crowdsourcing or conducted research with human subjects...496

(a) Did you include the full text of instructions given to participants and screenshots, if497

applicable? [N/A]498

(b) Did you describe any potential participant risks, with links to Institutional Review499

Board (IRB) approvals, if applicable? [N/A]500

(c) Did you include the estimated hourly wage paid to participants and the total amount501

spent on participant compensation? [N/A]502

13

Appendix503

Contents504

1 Introduction 1505

2 Contributions 3506

3 Preliminaries 4507

4 Theory for strongly convex losses f1, . . . , fn 5508

5 Theory for strongly convex regularizer ψ 6509

6 FedRR: application of ProxRR to federated learning 6510

7 Experiments 9511

I Proofs 16512

A Basic notions and preliminaries 16513

A.1 Bregman divergence . 16514

A.2 Properties of the proximal operator . 16515

B Proof of Theorem 1 (Bounding the shuffling radius) 17516

C Proof of Convergence of Proximal SGD 17517

D Proofs of Theorem 2 and Theorem 3 (Main convergence results) 19518

D.1 A key lemma for shuffling-based methods . 19519

D.2 Proof of Theorem 2 . 20520

D.3 Proof of Theorem 3 . 21521

E Proofs for federated learning 21522

E.1 Lemma for the extended proximal operator . 21523

E.2 Proof of Lemma 1 . 22524

E.3 Proof of Lemma 2 . 22525

E.4 Proof of Theorem 4 . 23526

E.5 Proof of Theorem 6 . 23527

F FedRR beats distributed GD and Local SGD 23528

F.1 Heterogeneous Data . 23529

F.1.1 Distributed gradient descent . 24530

F.1.2 Local SGD . 24531

14

G Nonconvex analysis 24532

G.1 A key lemma . 26533

G.2 Main theorem . 27534

G.3 Proof of Theorem 5 . 29535

H Further experimental details 29536

II Extensions 31537

I Extension: Decreasing stepsizes 31538

I.1 A recursion Lemma . 31539

I.2 Proof of Theorem 9 . 33540

J Extension: Importance resampling 34541

15

Part I542

Proofs543

A Basic notions and preliminaries544

We say that an extended real-valued function φ : Rd → R∪{+∞} is proper if its domain, dom φ :=545

{x : φ(x) < +∞}, is nonempty. We say that it is convex (resp. closed) if its epigraph, epi φ :=546

{(x, t) ∈ Rd × R : φ(x) ≤ t}, is a convex (resp. closed) set. Equivalently, φ is convex if dom φ is547

a convex set and φ(αx + (1 − α)y) ≤ αφ(x) + (1 − α)φ(y) for all x, y ∈ dom φ and α ∈ (0, 1).548

Finally, φ is µ-strongly convex if φ(x)− µ
2 ‖x‖

2 is convex, and L-smooth if L2 ‖x‖
2−φ(x) is convex.549

One useful fact that we will need is that for any vectors a1, . . . , aM ∈ Rd we have550

m∑
m=1

‖ai‖2 =
1

M

∥∥∥∥∥
M∑
m=1

am

∥∥∥∥∥
2

+

m∑
m=1

∥∥∥∥∥am − 1

M

M∑
l=1

al

∥∥∥∥∥
2

. (13)

The identity above is sometimes called bias-variance decomposition.551

To prove the upper bound in Theorem 1, we rely on a lemma due to Mishchenko et al. [2020] that552

bounds the variance when sampling without replacement.553

Lemma 3 (Lemma 1 in [Mishchenko et al., 2020]). Let X1, . . . , Xn ∈ Rd be fixed vectors, let554

X̄ = 1
n

∑n
i=1Xi be their mean, and let σ2 = 1

n

∑n
i=1

∥∥Xi − X̄
∥∥2

be their variance. Fix any555

i ∈ [n] and let Xπ0 , . . . , Xπi−1 be sampled uniformly without replacement from {X1, . . . , Xn} and556

X̄π = 1
i

∑i−1
j=0Xπj be their average. Then, the sample average and variance are given by557

E
[
X̄π

]
= X̄, E

[∥∥X̄π − X̄
∥∥2
]

= n−i
i(n−1)σ

2. (14)

Finally, we define [n] := {1, 2, . . . , n}.558

A.1 Bregman divergence559

These notions have a more useful characterization in the case of real valued and continuously560

differentiable functions φ : Rd → R. The Bregman divergence of such φ is defined by Dφ(x, y) :=561

φ(x)− φ(y)− 〈∇φ(y), x− y〉 . A continuously differentiable function φ is called µ-strongly convex562

if563
µ
2 ‖x− y‖

2 ≤ Dφ(x, y), ∀x, y ∈ Rd.
It is convex if this holds with µ = 0. Moreover, a continuously differentiable function φ is called564

L-smooth if565

−L2 ‖x− y‖
2 ≤ Dφ(x, y) ≤ L

2 ‖x− y‖
2
, ∀x, y ∈ Rd. (15)

Note that the first inequality is redundant for convex φ because convexity implies 0 ≤ Dφ(x, y).566

A.2 Properties of the proximal operator567

Before we proceed to the proofs of convergence, we should state some basic and well-known568

properties of the regularized objectives. The following lemma explains why the solution of (1) is a569

fixed point of the proximal-gradient step for any stepsize.570

Lemma 4. Let Assumption 1 be satisfied.2 Then point x∗ is a minimizer of P (x) = f(x) + ψ(x) if571

and only if for any γ, b > 0 we have572

x∗ = proxγbψ(x∗ − γb∇f(x∗)).

Proof. This follows by writing the first-order optimality conditions for problem (1), see [Parikh and573

Boyd, 2014, p.32] for a full proof. �574

2We only need the part about ψ.

16

The lemma above only shows that proximal-gradient step does not hurt if we are at the solution. In575

addition, we will rely on the following a bit stronger result which postulates that the proximal operator576

is a contraction (resp. strong contraction) if the regularizer ψ is convex (resp. strongly convex).577

Lemma 5. Let Assumption 1 be satisfied.3 If ψ is µ-strongly convex with µ ≥ 0, then for any γ > 0578

we have579

‖proxγnψ(x)− proxγnψ(y)‖2 ≤ 1

1 + 2γµn
‖x− y‖2, (16)

for all x, y ∈ Rd.580

Proof. Let u := proxγnψ(x) and v := proxγnψ(y). By definition, u = argminw{ψ(w) + 1
2γn‖w−581

x‖2}. By first-order optimality, we have 0 ∈ ∂ψ(u)+ 1
γn (u−x) or simply x−u ∈ γn∂ψ(u). Using582

a similar argument for v, we get x− u− (y − v) ∈ γn(∂ψ(u)− ∂ψ(v)). Thus, by strong convexity583

of ψ, we get584

〈x− u− (y − v), u− v〉 ≥ γµn‖u− v‖2.
Hence,585

‖x− y‖2 = ‖u− v + (x− u− (y − v))‖2

= ‖u− v‖2 + 2〈x− u− (y − v), u− v〉+ ‖x− u− (y − v)‖2

≥ ‖u− v‖2 + 2〈x− u− (y − v), u− v〉
≥ (1 + 2γµn)‖u− v‖2. �

B Proof of Theorem 1 (Bounding the shuffling radius)586

Proof. By the Li-smoothness of fi and the definition of xi∗, we can replace the Bregman divergence587

in (4) with the bound588

E
[
Dfπi

(xi∗, x∗)
] (15)
≤ E

[
Lπi
2

∥∥xi∗ − x∗∥∥2
]
≤ Lmax

2
E
[
‖xi∗ − x∗‖2

]
(3)
=
γ2Lmax

2
E

[∥∥∥∥i−1∑
j=0

∇fπj (x∗)
∥∥∥∥2
]

=
γ2Lmaxi

2

2
E

[∥∥∥∥1

i

i−1∑
j=0

∇fπj (x∗)
∥∥∥∥2
]

=
γ2Lmaxi

2

2
E
[∥∥X̄π

∥∥2
]
, (17)

where X̄π = 1
j

∑i−1
j=0Xπj with Xj := ∇fj(x∗) for j = 1, 2, . . . , n. Since X̄ = ∇f(x∗), by589

applying Lemma 3 we get590

E
[∥∥X̄π

∥∥2
]

=
∥∥X̄∥∥2

+ E
[∥∥X̄π − X̄

∥∥2
]

(14)+(5)
= ‖∇f(x∗)‖2 +

n− i
i(n− 1)

σ2
∗. (18)

It remains to combine (17) and (18), use the bounds i2 ≤ n2 and i(n− i) ≤ n(n−1)
2 , which holds for591

all i ∈ {0, 1, . . . , n− 1}, and divide both sides of the resulting inequality by γ2. �592

C Proof of Convergence of Proximal SGD593

Theorem 7 (Proximal SGD). Let Assumption 1 hold. Further, suppose that either f := 1
n

∑n
i=1 fi594

is µ-strongly convex or that ψ is µ-strongly convex. If Algorithm 2 is run with a constant stepsize595

γk = γ > 0 satisfying γ ≤ 1
2Lmax

, then the final iterate after K steps satisfies596

E
[
‖xK − x∗‖2

]
≤ (1− γµ)

K ‖x0 − x∗‖2 +
2γσ2

∗
µ .

3We only need the part about ψ.

17

Proof. We will prove the case when ψ is µ-strongly convex. The other result follows as a straightfor-597

ward special case of [Gorbunov et al., 2020, Theorem 4.1]. We start by analyzing one step of SGD598

with stepsize γk = γ and using Lemma 4599

‖xk+1 − x∗‖2 =
∥∥proxγψ(xk − γ∇fξ(xk))− proxγψ(x∗ − γ∇f(x∗))

∥∥2

≤ 1

1 + 2γµ
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2. (19)

We may write the squared norm term in (19) as600

‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2 = ‖xk − x∗‖2 − 2γ 〈xk − x∗,∇fξ(xk)−∇f(x∗)〉
+ γ2‖∇fξ(xk)−∇f(x∗)‖2.

(20)

We denote by Ek [·] expectation conditional on xk. Note that the gradient estimate is condition-601

ally unbiased, i.e., that Ek [∇fξ(xk)] = 1
n

∑n
i=1∇fi(xk) = ∇f(xk). Hence, taking conditional602

expectation in (20) and using unbiasedness we have603

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
= ‖xk − x∗‖2 − 2γ 〈xk − x∗,∇f(xk)−∇f(x∗)〉

+ γ2Ek
[
‖∇fξ(xk)−∇f(x∗)‖2

]
.

(21)
By the convexity of f we have604

〈xk − x∗,∇f(xk)−∇f(x∗)〉 ≥ Df (xk, x∗).

Furthermore, we may estimate the third term in (21) by first using the fact that ‖x+ y‖2 ≤ 2‖x‖2 +605

2‖y‖2 for any two vectors x, y ∈ Rd606

Ek
[
‖∇fξ(xk)−∇f(x∗)‖2

]
≤ 2Ek

[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
+ 2Ek

[
‖∇fξ(x∗)−∇f(x∗)‖2

]
= 2Ek

[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
+ 2σ2

∗.

We now use that by the Lmax-smoothness of fi we have that607

‖∇fi(xk)−∇fi(x∗)‖2 ≤ 2Lmax ·Dfi(xk, x∗).

Hence608

Ek
[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
=

1

n

n∑
i=1

‖∇fi(xk)−∇fi(x∗)‖2

≤ 2Lmax

n

n∑
i=1

[fi(xk)− fi(x∗)− 〈∇fi(x∗), xk − x∗〉]

= 2Lmax [f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉]
= 2LmaxDf (xk, x∗). (22)

Combining equations (21)–(22) we obtain609

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
≤ ‖xk − x∗‖2 − 2γ (1− 2γLmax)Df (xk, x∗) + 2γ2σ2

∗.

Since γ ≤ 1
2Lmax

by assumption we have that 1 − 2γLmax ≥ 0. Since Df (xk, x∗) ≥ 0 by the610

convexity of f we arrive at611

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
≤ ‖xk − x∗‖2 + 2γ2σ2

∗.

Taking unconditional expectation and combining (41) with the last equation we have612

E
[
‖xk+1 − x∗‖2

]
≤ 1

1 + 2γµ

(
E
[
‖xk − x∗‖2

]
+ 2γ2σ2

∗

)
=

1

1 + 2γµ
E
[
‖xk − x∗‖2

]
+

2γ2σ2
∗

1 + 2γµ

≤ 1

1 + 2γµ
E
[
‖xk − x∗‖2

]
+ 2γ2σ2

∗.

18

To simplify this further, we use that for any x ≤ 1
2 we have that 1

1+2x ≤ 1 − x and that γµ ≤613
µ

2Lmax
≤ 1

2 , hence614

E
[
‖xk+1 − x∗‖2

]
≤ (1− γµ)E

[
‖xk − x∗‖2

]
+ 2γ2σ2

∗.

Recursing the above inequality for K steps yields615

E
[
‖xK − x∗‖2

]
≤ (1− γµ)

K ‖x0 − x∗‖2 + 2γ2σ2
∗

(
K−1∑
k=0

(1− γµ)
k

)

≤ (1− γµ)
K ‖x0 − x∗‖2 + 2γ2σ2

∗

(∞∑
k=0

(1− γµ)
k

)

= (1− γµ)
K ‖x0 − x∗‖2 +

2γσ2
∗

µ
. �

Furthermore, by choosing the stepsize γ as γ = min
{

1
2Lmax

, εµ4σ∗

}
, we get that E

[
‖xK − x∗‖2

]
=616

O (ε) provided that the number of iterations is at least617

KSGD ≥
(
κ+

σ2
∗

εµ2

)
log

(
2r0

ε

)
,

which we previously stated in (7).618

D Proofs of Theorem 2 and Theorem 3 (Main convergence results)619

D.1 A key lemma for shuffling-based methods620

The intermediate limit points xi∗ are extremely important for showing tight convergence guarantees621

for Random Reshuffling even without proximal operator. The following lemma illustrates that by622

giving a simple recursion, whose derivation follows [Mishchenko et al., 2020, Proof of Theorem 1].623

The proof is included for completeness.624

Lemma 6 (Theorem 1 in [Mishchenko et al., 2020]). Suppose that each fi is Li-smooth and λ-625

strongly convex (where λ = 0 means each fi is just convex). Then the inner iterates generated by626

Algorithm 1 satisfy627

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γλ)E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad,

(23)

where xi∗ is as in (3), i = 0, 1, . . . , n− 1, and x∗ is any minimizer of P .628

Proof. By definition of xi+1
t and xi+1

∗ , we have629

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]

= E
[∥∥xit − xi∗∥∥2

]
− 2γE

[
〈∇fπi(xit)−∇fπi(x∗), xit − xi∗〉

]
+ γ2E

[∥∥∇fπi(xit)−∇fπi(x∗)∥∥2
]
.

(24)

Note that the third term in (24) can be bounded as630 ∥∥∇fπi(xit)−∇fπi(x∗)∥∥2 ≤ 2Lmax ·Dfπi
(xit, x∗). (25)

We may rewrite the second term in (24) using the three-point identity [Chen and Teboulle, 1993,631

Lemma 3.1] as632 〈
∇fπi(xit)−∇fπi(x∗), xit − xi∗

〉
= Dfπi

(xi∗, x
i
t) +Dfπi

(xit, x∗)−Dfπi
(xi∗, x∗). (26)

Combining (24), (25), and (26) we obtain633

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ · E

[
Dfπi

(xi∗, x
i
t)
]

+ 2γ · E
[
Dfπi

(xi∗, x∗)
]

− 2γ (1− γLmax)E
[
Dfπi

(xit, x∗)
]
.

(27)

19

Using λ-strong convexity of fπi , we derive634

λ

2

∥∥xit − xi∗∥∥2 ≤ Dfπi
(xi∗, x

i
t). (28)

Furthermore, by the definition of shuffling radius (Definition 1), we have635

E
[
Dfπi

(xi∗, x∗)
]
≤ max
i=0,...,n−1

E
[
Dfπi

(xi∗, x∗)
]

= γ2σ2
rad. (29)

Using (28) and (29) in (27) yields (23). �636

D.2 Proof of Theorem 2637

Proof. Starting with Lemma 6 with λ = µ, we have638

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γµ)E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad.

Since Dfπ (xit, x∗) is a Bregman divergence of a convex function, it is nonnegative. Combining this639

with the fact that the stepsize satisfies γ ≤ 1/Lmax, we have640

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γµ)E

[∥∥xit − xi∗∥∥2
]

+ 2γ3σ2
rad.

Unrolling this recursion for n steps, we get641

E
[
‖xnt − xn∗‖

2
]
≤ (1− γµ)

n E
[∥∥x0

t − x0
∗
∥∥2
]

+ 2γ3σ2
rad

n−1∑
j=0

(1− γµ)
j

= (1− γµ)

n E
[
‖xt − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

 , (30)

where we used the fact that x0
t − x0

∗ = xt − x∗. Since x∗ minimizes P , we have by Lemma 4 that642

x∗ = proxγnψ

(
x∗ − γ

n−1∑
i=0

∇fπi(x∗)

)
= proxγnψ (xn∗) .

Moreover, by Lemma 5 we obtain that643

‖xt+1 − x∗‖2 =
∥∥proxγnψ(xnt)− proxγnψ(xn∗)

∥∥2 ≤ ‖xnt − xn∗‖
2
.

Using this in (30) yields644

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)

n E
[
‖xt − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

 .

We now unroll this recursion again for T steps645

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT E
[
‖x0 − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

(T−1∑
i=0

(1− γµ)
ni

)
.

(31)

Following Mishchenko et al. [2020], we rewrite and bound the product in the last term as646 n−1∑
j=0

(1− γµ)
j

(T−1∑
i=0

(1− γµ)
ni

)
=

n−1∑
j=0

T−1∑
i=0

(1− γµ)
ni+j

=

nT−1∑
k=0

(1− γµ)
k

≤
∞∑
k=0

(1− γµ)
k

=
1

γµ
.

It remains to plug this bound into (31). �647

20

D.3 Proof of Theorem 3648

Proof. Starting with Lemma 6 with λ = 0, we have649

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad.

Since γ ≤ 1/Lmax and Dfπ (xit, x∗) is nonnegative we may simplify this to650

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]

+ 2γ3σ2
rad.

Unrolling this recursion over an epoch we have651

E
[
‖xnt − xn∗‖

2
]
≤ E

[∥∥x0
t − x0

∗
∥∥2
]

+ 2γ3σ2
radn = E

[
‖xt − x∗‖2

]
+ 2γ3σ2

radn. (32)

Since x∗ minimizes P , we have by Lemma 4 that652

x∗ = proxγnψ

(
x∗ − γ

n−1∑
i=0

∇fπi(x∗)

)
= proxγnψ (xn∗) .

Hence, xt+1 − x∗ = proxγnψ(xnt)− proxγnψ(xn∗). We may now use Lemma 5 to get653

(1 + 2γµn)E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xnt − xn∗‖

2
]
.

Combining this with (32), we obtain654

E
[
‖xt+1 − x∗‖2

]
≤ 1

1 + 2γµn
E
[
‖xt − x∗‖2

]
+

2γ3σ2
radn

1 + 2γµn
.

We may unroll this recursion again, this time for T steps, and then use that
∑T−1
j=1 (1 + 2γµn)

−j ≤655 ∑∞
j=1 (1 + 2γµn)

−j
= 1/(2γµn):656

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T E
[
‖x0 − x∗‖2

]
+

2γ3σ2
radn

1 + 2γµn

(
T−1∑
j=0

(1 + 2γµn)
−j

)

= (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+ 2γ3σ2

radn

(
T∑
j=1

(1 + 2γµn)
−j

)

≤ (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+ 2γ3σ2

radn
1

2γµn

= (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+
γ2σ2

rad

µ
. �

E Proofs for federated learning657

E.1 Lemma for the extended proximal operator658

Lemma 7. Let ψC be the consensus constraint and R be a closed convex proximable function.659

Suppose that x1, x2, . . . , xM are all in Rd. Then,660

proxγ(R+ψC)(x1, . . . , xM) = prox γ
MR(x),

where x = 1
M

∑M
m=1 xm.661

Proof. We have,662

proxγ(R+ψC)(x1, . . . , xM) =

prox γ
MR(x)
...

prox γ
MR(x)

 with x =
1

M

M∑
m=1

xm.

21

This is a simple consequence of the definition of the proximal operator. Indeed, the result of663

proxγ(R+ψC) must have blocks equal to some vector z such that664

z = argmin
x

{
γR(x) +

1

2

M∑
m=1

‖x− xm‖2
}

= argmin
x

{
γR(x) +

1

2

M∑
m=1

(
‖x− x‖2 + 2〈x− x, x− xm〉) + ‖x− xm‖2

)}

= argmin
x

{
γR(x) +

1

2
M‖x− x‖2

}
= prox γ

MR(x).

�665

E.2 Proof of Lemma 1666

Proof. Given some vectors x,y ∈ Rd·M , let us use their block representation x = (x>1 , . . . , x
>
M)>,667

y = (y>1 , . . . , y
>
M)>. Since we use the Euclidean norm, we have668

‖∇fi(x)−∇fi(y)‖2 =

M∑
m=1

‖∇fmi(xm)−∇fmi(ym)‖2 ≤
M∑
m=1

L2
i ‖xm − ym‖2 = L2

i ‖x− y‖2.

We can obtain a lower bound by doing the same derivation and applying strong convexity instead of669

smoothness:670

M∑
m=1

‖∇fmi(xm)−∇fmi(ym)‖2 ≥ µ2
M∑
m=1

‖xm − ym‖2 = µ2‖x− y‖2.

Thus, we have µ‖x− y‖ ≤ ‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖, which is exactly µ-strong convexity671

and Li-smoothness of fi. �672

E.3 Proof of Lemma 2673

Proof. By Theorem 1 we have674

σ2
rad ≤

Lmax

2

(
n2‖∇f(x∗)‖2 +

n

2
σ2
∗

)
.

Due to the separable structure of f , we have for the variance term675

nσ2
∗ :=

n∑
i=1

‖∇fi(x∗)−∇f(x∗)‖2 =

n∑
i=1

M∑
m=1

∥∥∥∥∇fmi(x∗)− 1

n
∇Fm(x∗)

∥∥∥∥2

.

The expression inside the summation is not exactly the variance due to the different normalization: 1
n676

instead of 1
Nm

. Nevertheless, we can expand the norm and try to get the actual variance:677

n∑
i=1

∥∥∥∥∇fmi(x∗)− 1

n
∇Fm(x∗)

∥∥∥∥2

=

Nm∑
i=1

(∥∥∥∥∇fmi(x∗)− 1

Nm
∇Fm(x∗)

∥∥∥∥2

+
(1

Nm
− 1

n

)2

‖∇Fm(x∗)‖2
)

+ 2

Nm∑
i=1

〈
∇fmi(x∗)−

1

Nm
∇Fm(x∗),

(1

Nm
− 1

n

)
∇Fm(x∗)

〉
= Nmσ

2
m,∗ +Nm

(1

Nm
− 1

n

)2

‖∇Fm(x∗)‖2

≤ nσ2
m,∗ + ‖∇Fm(x∗)‖2.

Moreover, the gradient term has the same block structure, so678

n2‖∇f(x∗)‖2 = n2

∥∥∥∥ 1

n

n∑
i=1

∇fi(x∗)
∥∥∥∥2

=

M∑
m=1

∥∥∥∥∥
n∑
i=1

∇fmi(x∗)

∥∥∥∥∥
2

=

M∑
m=1

‖∇Fm(x∗)‖2.

Plugging the last two bounds back inside the upper bound on σ2
rad, we deduce the lemma’s statement.679

�680

22

E.4 Proof of Theorem 4681

Proof. Since we assume that N1 = · · · = NM = n, we have N
M = n and the strong convexity682

constant of ψ = N
n (R+ ψC) is equal to N

n ·
µ
M = µ. By applying Theorem 3 we obtain683

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

µ
.

Since xT = proxγN(R+ψC)(x
n
T−1), we have xT ∈ C, i.e., all of its blocks are equal to each other684

and we have xT = (x>T , . . . , x
>
T)>. Since we use the Euclidean norm, it also implies685

E
[
‖xT − x∗‖2

]
= M‖xT − x∗‖2.

The same is true for x0, so we need to divide both sides of the upper bound on ‖xT − x∗‖2 by M .686

Doing so together with applying Lemma 2 yields687

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

Mµ

≤ (1 + 2γµn)
−T ‖x0 − x∗‖2 +

γ2Lmax

Mµ

M∑
m=1

(
‖∇Fm(x∗)‖2 +

n

4
σ2
m,∗

)
= (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2Lmax

Mµ

M∑
m=1

(
‖∇Fm(x∗)‖2 +

N

4M
σ2
m,∗

)
.

�688

E.5 Proof of Theorem 6689

Proof. According to Lemma 1, each fi is µ-strongly convex and Lmax-smooth, so we obtain the690

result by trivially applying Theorem 2 and upper bounding σ2
rad the same way as in the proof691

of Theorem 4. �692

F FedRR beats distributed GD and Local SGD693

F.1 Heterogeneous Data694

In this section we compare between FedRR and several known baseline algorithms for Federated695

Learning. In particular, we consider the following algorithms:696

1. Distributed gradient descent (DGD)697

2. Local SGD (with M nodes and n local steps per node)698

To be clear, the problem we are considering is699

min
x∈Rd

f(x) :=

[
1

M

M∑
m=1

Fm(x) +R(x)

]
,

where each objective fm can be written as700

Fm(x) =
1

n

n∑
i=1

fm,i(x).

We further assume that each objective is L-smooth and convex, and that R is µ-strongly convex. This701

implies that f is L-smooth and µ-strongly convex. Note that this is a special case of (10) where we702

keep N1 = N2 = . . . = n for simplicity.703

Corollary 1. Let c2 = ζ2
∗ + n

4σ
2
∗, where ζ2

∗ := 1
M

∑M
m=1 ‖∇Fm(x)‖2 and σ2

∗ =704

1
M

∑M
m=1 ‖∇F (x∗)−∇Fm(x∗)‖2. Then the communication complexity required by FedRR to705

reach an ε-accurate solution is706

T = Ω

((
κ

n
+

c

µn

√
κ

ε

)
log
(r0

ε

))
, (33)

where r0 = ‖x0 − x∗‖2.707

23

Proof. This is a straightforward consequence of Theorem 4. �708

F.1.1 Distributed gradient descent709

When we compute n gradients on each node per communication round, we are essentially running710

distributed gradient descent (DGD). In order to reach an ε-accurate solution, DGD requires the711

following number of iterations712

T = Ω
(
κ log

(r0

ε

))
.

Comparing against the result of Corollary 1, we see that FedRR is better whenever the accuracy ε713

satisfies714

1

µL

(
ζ2
∗
n2

+
σ2
∗
n

)
=

c2

µn2L
< ε.

Note that this guarantee grows more rigorous with increasing levels of heterogeneity– this has been715

observed for other local methods as well, such as Local SGD [Woodworth et al., 2020].716

F.1.2 Local SGD717

The best current lower bound for Local SGD is given by [Woodworth et al., 2020] in the stochastic718

case. By stochastic case, we mean that the problem considered is719

min
x∈Rd

Eξ∼D [fξ(x)] .

This is a more general problem than the finite-sum minimization problem (1) and is usually strictly720

harder to solve (i.e., requires more iterations to achieve an ε-accurate solution). We are not aware of721

any analysis of Local SGD specifically for the finite-sum problem, and thus we specialize the result722

of Woodworth et al. [2020] anyway. For Local SGD on µ-strongly convex and L smooth functions,723

and with n steps of local steps per node, the lower bound they give after T communication rounds is724

min

(
∆ exp

(
−µT
L

)
,
Lζ2
∗

µ2T 2

)
+

σ2

µMnT
+ min

(
∆,

Lσ2

µ2n2T 2

)
, (34)

where σ2 is a uniform bound on the variance (i.e., E[‖∇fξ(x)− f(x)‖2] ≤ σ2 for all x ∈ Rd), ζ2
∗ is725

defined as in Corollary 1, and ∆ is an upper bound on f(x0)− f∗. We note that this lower bound is726

not actually met by any of the existing analysis for Local SGD. Even ignoring the dependence on727

σ (which may not be tight because this is the stochastic case), the first term (i.e., the “optimization728

term”) in (34) scales with κ when T is large and
√
κζ∗√
µε when T is small. This is clearly worse than729

(33) for large n.730

G Nonconvex analysis731

We shall now present our theory for the nonconvex case. To quantify convergence, we define the732

proximal-gradient mapping, which was also used in the prior literature to show convergence of733

Proximal SGD.734

Definition 2. Given a stepsize γ > 0, a convex function ψ and arbitrary f , we define the proximal-735

gradient mapping as736

Gγ(x) :=
1

γ

[
x− proxγψ(x− γ∇f(x))

]
.

Similarly to Theorem 1, the analysis shows that a gradient term appears in the variance bound.737

However, in contrast to the convex settings of Theorem 1, there might not exist an optimum to which738

the iterates would converge and we cannot use ‖∇f(x∗)‖2 in the variance bound. For this reason, we739

resort to the following assumption that bounds full gradients in terms of proximal-gradient mapping740

and an extra constant.741

24

Assumption 3. There exists a constant ζ ≥ 0 such that the full gradient of f is uniformly bounded742

by the proximal-gradient mapping and ζ743

‖∇f(x)‖2 ≤ ‖Gγn(x)‖2 + ζ2

for any x ∈ dom(ψ) and γ > 0.744

We note that this assumption is trivially satisfied with ζ = 0 if ψ ≡ 0 because in that case,745

Gγ(x) ≡ ∇f(x). Therefore, when there is no proximal term, it is not an extra assumptions compared746

to the analysis of Mishchenko et al. [2020]. We will also rely on the following measure of gradient747

variance, which we need for the same reason that there might be no optimum x∗ to measure the748

variance the way we did for Theorem 1.749

An important property of Assumption 3 is that it is equivalent to the bounded dissimilarity assumption750

that was previously used for the nonconvex analysis of Local SGD. We formalize this in the following751

proposition.752

Proposition 1. Consider federated learning reformulation (11). If ψ ≡ ψC , i.e., R ≡ 0, then753

Assumption 3 with constant ζ
2

:= Mζ2 is equivalent to ζ-bounded dissimilarity (Assumption 2):754

1

M

M∑
m=1

∥∥∥∥∥∇Fm(x)− 1

M

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

≤ ζ2.

Proof. First, observe that if x ∈ dom(ψ), then x has all blocks equal to some x ∈ Rd, x =755

(x>, . . . , x>)>. Therefore, for the objective in reformulation (11) and x ∈ dom(ψ), we have756

∇f(x) =
1

n

n∑
i=1

∇fi(x) =
1

n

n∑
i=1

M∑
m=1

∇fmi(x) =
1

n

M∑
m=1

n∑
i=1

∇fmi(x)

=
1

n

M∑
m=1

Fm(x) =

1
n∇F1(x1)

...
1
n∇FM (xM)

 =

1
n∇F1(x)

...
1
n∇FM (x)

 . (35)

With the help of bias-variance decomposition, the left-hand side of Assumption 3 can be written as757

‖∇f(x)‖2 (35)
=

1

n2

M∑
m=1

‖∇Fm(x)‖2

(13)
=

1

Mn2

∥∥∥∥∥
M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

+
1

n2

M∑
m=1

∥∥∥∥∥∇Fm(x)− 1

M

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

.

Let us now work out the proximal-gradient mapping. According to Lemma 7, the proximal operator758

of ψ is simply the averaging of all blocks, while the full gradient is given in (35), which give when759

combined760

proxγnψ(x− γn∇f(x)) =

1
M

∑M
m=1(x− γ∇Fm(x))

...
1
M

∑M
m=1(x− γ∇Fm(x))

 . (36)

Therefore,761

‖Gγn(x)‖2 =
1

γ2n2
‖x− proxγnψ(x− γn∇f(x))‖2

(36)
=

1

γ2n2

M∑
l=1

∥∥∥∥∥x− 1

M

M∑
m=1

(x− γ∇Fm(x))

∥∥∥∥∥
2

=
M

n2

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

. (37)

Having the expressions for both sides, we can write762

‖∇f(x)‖2 = ‖Gγn(x)‖2 +

M∑
m=1

∥∥∥∥∥ 1

n
∇Fm(x)− 1

N

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

.

From this expression and the fact 1
N

∑M
l=1∇Fl(x) = ∇F (x), it is easy to see the equivalence. �763

25

To analyze ProxRR, we also need to measure variance differently from how it was done the strongly764

convex case because we cannot rely on convergence of iterates to x∗. To this end, we introduce the765

following assumption, which is quite standard in the literature on SGD.766

Assumption 4. There exists a constant σ > 0 such that 1
n

∑n
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ σ2 for any767

x ∈ Rd.768

This assumption is more restrictive than the one from Mishchenko et al. [2020] and, in fact, we769

could relax it a little by introducing extra terms in the right-hand side. Nevertheless, for the sake of770

simplicity and readability, we prefer the stronger version as presented above.771

G.1 A key lemma772

For notational convenience, we define773

gt :=
1

γn
(xt − xnt) =

1

n

n−1∑
i=0

∇fπi(xit),

which is equivalent to xnt = xt − γngt.774

Lemma 8. Let functions f1, . . . , fn be Lmax-smooth, Assumptions 3 and 4 be satisfied and γ ≤775
1

2Lmaxn
. Then,776

Et
[
‖∇f(xt)− gt‖2

]
≤ γ2L2

maxn
2(‖Gγn(xt)‖2 + ζ2) + γ2L2

maxnσ
2. (38)

Proof. We start with the observation that gradient Lipschitzness reduces the left-hand side to a777

difference of iterates:778

‖∇f(xt)− gt‖2 =

∥∥∥∥∥ 1

n

n−1∑
i=0

[
∇fπi(xt)−∇fπi(xit)

]∥∥∥∥∥
2

≤ 1

n

n−1∑
i=0

∥∥∇fπi(xt)−∇fπi(xit)∥∥2

≤ 1

n

n−1∑
i=0

L2
max

∥∥xt − xit∥∥2
.

Define Vt :=
∑n−1
i=0 ‖xit − xt‖2. Clearly, it is sufficient to bound E [Vt] to finish the proof. Also note779

that for any intermediate iterate xkt within epoch t we do not use proximal step, so the following780

identity holds:781

xkt = xt − γ
k−1∑
i=0

∇fπi(xit).

This identity only includes gradients, so to bound the deviation of xkt from xt we apply Jensen’s782

inequality and gradient Lipschitzness783

Et
[
‖xkt − xt‖2

]
= γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xit)

∥∥∥∥∥
2

≤ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

(
∇fπi(xit)−∇fπi(xt)

)∥∥∥∥∥
2
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2

≤ 2γ2k

k−1∑
i=0

Et
[∥∥∇fπi(xit)−∇fπi(xt)∥∥2

]
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2

≤ 2γ2L2
maxk

k−1∑
i=0

Et
[
‖xit − xt‖2

]
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2
.

26

Now we are going to use the fact that for any i in RR we have Et [∇fπi(xt)] = ∇f(xt). Note that784

this property does not hold if xt is not independent of πi, which is why the result does not hold for785

SO. Let us also define σ2
t := 1

n

∑n
j=1 ‖∇fj(xt)−∇f(xt)‖2. By Lemma 3 we have786

Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2
 = k2‖∇f(xt)‖2 + k2Et

∥∥∥∥∥1

k

k−1∑
i=0

(∇fπi(xt)−∇f(xt))

∥∥∥∥∥
2

(14)
= k2‖∇f(xt)‖2 +

k(n− k)

n− 1
σ2
t .

Plugging this back and using Assumption 4, we derive787

Et
[∥∥xkt − xt∥∥2

]
≤ 2γ2L2

maxk

k−1∑
i=0

Et
[∥∥xit − xt∥∥2

]
+ 2γ2k2‖∇f(xt)‖2 + 2γ2 k(n− k)

n− 1
σ2

≤ 2γ2L2
maxkE [Vt] + 2γ2k2‖∇f(xt)‖2 + 2γ2 k(n− k)

n− 1
σ2.

Let us use the obtained bound on a single iterate distance Et
[∥∥xkt − xt∥∥2

]
to upper bound E [Vt]:788

Et [Vt] =

n−1∑
i=0

Et
[
‖xit − xt‖2

]
≤ γ2L2

maxn(n− 1)Et [Vt] +
1

3
γ2(n− 1)n(2n− 1)‖∇f(xt)‖2 +

1

3
γ2n(n+ 1)σ2.

This inequality has Et [Vt] in both sides, so we can rearrange it and use the assumption γ ≤ 1
2Lmaxn

,789

which results in790

Et [Vt] ≤
4

3
(1− γ2L2

maxn(n− 1))Et [Vt]

≤ 4

9
γ2(n− 1)n(2n− 1)‖∇f(xt)‖2 +

4

9
γ2n(n+ 1)σ2

≤ γ2n3‖∇f(xt)‖2 + γ2n2σ2.

To conclude the proof, apply Assumption 3 to xt ∈ dom(ψ) and plug-in the bound on Et [Vt] into791

the bound on Et
[
‖∇f(xt)− gt‖2

]
. �792

G.2 Main theorem793

Theorem 8 (Convergence result in the nonconvex case). Let Assumptions 3 and 4 hold and choose794

any γ ≤ 1
5Lmaxn

. Then,795

min
t=0,...,T−1

E
[
‖Gγn(xt)‖2

]
≤ 4(P (x0)− P∗)

γnT
+ 2γ2Lmaxn

2ζ2 + 2γ2L2
maxnσ

2.

Proof. Let us introduce796

wt := proxγnψ(xt − γn∇f(xt)).

The idea of our proof is to first obtain a descent recursion for P (wt) and then bound P (xt+1)−P (wt).797

By convexity of ψ, we have for any g ∈ ∂ψ(wt)798

ψ(wt) ≤ ψ(xt) + 〈g, wt − xt〉.
Furthermore, the definition of wt implies by first-order optimality that xt − γn∇f(xt) − wt ∈799

γn∂ψ(wt), so we can plug it into the bound above to get800

ψ(wt) ≤ ψ(xt) +
1

γn
〈xt − γn∇f(xt)− wt, wt − xt〉

= ψ(xt)− 〈∇f(xt), wt − xt〉 −
1

γn
‖wt − xt‖2.

27

At the same time, by Lmax-smoothness of f we have801

f(wt) ≤ f(xt) + 〈∇f(xt), wt − xt〉+
Lmax

2
‖wt − xt‖2.

Adding the two recursion together yields802

P (wt) = f(xt) + ψ(wt) ≤ P (xt) +

(
Lmax

2
− 1

γn

)
‖wt − xt‖2.

Now we shall upper bound P (xt+1). Using the convexity of ψ for xnt − xt+1 ∈ γn∂ψ(xt+1), we803

derive804

ψ(xt+1) ≤ ψ(wt) +
1

γn
〈xnt − xt+1, xt+1 − wt〉 = ψ(wt)− 〈gt, xt+1 − wt〉+

1

γn
〈xt − xt+1, xt+1 − wt〉

= ψ(wt)− 〈gt, xt+1 − wt〉+
1

2γn

(
‖xt − wt‖2 − ‖xt − xt+1‖2 − ‖xt+1 − wt‖2

)
.

Next, we apply Lmax-smoothness of f two times, to upper bound Df (xt+1, xt) and to lower bound805

Df (wt, xt):806

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
Lmax

2
‖xt+1 − xt‖2,

and f(xt) ≤ f(wt) + 〈∇f(xt), xt − wt〉+
Lmax

2
‖xt − wt‖2.

Therefore,807

f(xt+1) ≤ f(wt) + 〈∇f(xt), xt+1 − wt〉+
Lmax

2

(
‖xt+1 − xt‖2 + ‖wt − xt‖2

)
.

Combining the inequalities for ψ(xt+1) and f(xt+1), we obtain808

P (xt+1) ≤ P (wt) + 〈∇f(xt)− gt, xt+1 − wt〉+

(
Lmax

2
− 1

2γn

)
‖xt+1 − xt‖2

+

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2 −

1

2γn
‖xt+1 − wt‖2.

By Young’s inequality and Lemma 8 we have809

Et [〈∇f(xt)− gt, xt+1 − wt〉]

≤ Et
[
γn

2
‖∇f(xt)− gt‖2 +

2

γn
‖xt+1 − wt‖2

]
(38)
≤ γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

2

γn
Et
[
‖xt+1 − wt‖2

]
.

If we plug this back, the term ‖xt+1 − wt‖2 will cancel out, giving us for γ ≤ 1
Lmaxn

810

Et [P (xt+1)]

≤ P (wt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2

+

(
Lmax

2
− 1

2γn

)
Et
[
‖xt+1 − xt‖2

]
≤ P (wt) +

γ3L2
maxn

3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2.

Using the recursion for P (wt) and our choice γ ≤ 1
5Lmaxn

, we finally obtain, after plugging-in811

‖xt − wt‖2 = γ2n2Gγn(xt),812

Et [P (xt+1)]

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 +

(
γnL2

max

2
+
Lmax

2
+

1

2γn
+
Lmax

2
− 1

γn

)
γ2n2‖Gγn(xt)‖2

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

10
+ Lmax −

1

2γn

)
γ2n2‖Gγn(xt)‖2

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 − 1

4γn
γ2n2‖Gγn(xt)‖2.

28

Recursing this to P (x0) and using P∗ ≤ P (xT), we get the Theorem’s claim. �813

Obtaining a complexity. To make the upper bound equal O(ε2), it is sufficient to ensure that every814

term is equal O(ε2). Therefore, we can impose the following conditions:815

γnT ≥ P (x0)− P∗
ε2

and γ2(Lmaxn
2ζ2 + L2

maxnσ
2) ≤ ε2

To satisfy these conditions, we can choose γ as816

γ = min

{
1

5Lmaxn
,

ε

Lmax
√
nσ +

√
Lmaxnζ

}
.

Then, denoting δ0 := P (x0) − P∗, we obtain complexity in terms of full number of stochastic817

gradients nT equal to818

nT = O
(
δ0Lmaxn

ε2
+
δ0Lmax

√
nσ

ε3
+
δ0
√
Lmaxnζ

ε3

)
.

G.3 Proof of Theorem 5819

The federated learning reformulation (11) has different constant scaling than the finite-sum federated820

learning problem (10), and the only constant that does not change at all is Lmax. For the initial error821

δ0 of the reformulation we have822

δ0 =
N

n
δ0 = Mδ0,

where δ0 := 1
N

∑M
m=1 Fm(x0) −minx

1
N

∑M
m=1 Fm(x) and we use only consider the simplified823

case N1 = · · · = NM = n so N
n = M . For the variance, we have824

σ2 = sup
x

E
[
‖∇fi(x)−∇f(x)‖2

]
= sup

x

M∑
m=1

E
[∥∥∥∇fmi(xm)− 1

n
∇Fm(xm)

∥∥∥2
]

= Mσ2.

As we derived in (37), the proximal-gradient mapping norm is equal to825

E
[
‖Gγn(x)‖2

]
=
M

n2

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

= M

∥∥∥∥∥ 1

N

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

= M‖∇F (x)‖2,

so to have ‖∇F (xT)‖2 ≤ ε2, we need E
[
‖Gγn(xT)‖2

]
≤ ε2 := Mε2. In addition, notice that by826

Proposition 1 the constant from Assumption 3 is ζ =
√
Mζ.827

Thus, Theorem 8 implies, if we ignore Lmax, that we need828

T = O
(
δ0

ε2 +
δ0σ√
nε3 +

δ0ζ

ε3

)
= O

(
δ0
ε2

+
δ0σ√
nε3

+
δ0ζ

ε3

)
communication rounds to achieve mint=0,...,T−1 E

[
‖∇F (xT)‖2

]
= O(ε2).829

H Further experimental details830

Implementation details. For each i, we have Li = 1
4‖ai‖. For the `1-regularized problem, we set831

λ2 = 3 · 10−5 · L and tune λ1 to obtain a solution with about 25% zero coordinates, which gives832

λ1 = 5 · 10−5. We use stepsizes decreasing as O(1
t) for all methods. We use the ‘w8a’ dataset4 for833

the experiment with `1 regularization.834

Proximal operator calculation. It is well-known (see, for instance, [Parikh and Boyd, 2014]) that835

the proximal operator for ψ(x) = λ1‖x‖1 + λ2

2 ‖x‖
2 is given by836

proxγψ(x) =
1

1 + γλ2
proxγλ1‖·‖1(x),

4The datasets were downloaded from LibSVM https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

29

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

where the j-th coordinate of proxγλ1‖·‖1(x) is837

[proxγλ1‖·‖1(x)]j =

{
sign([x]j)(|[x]j | − γλ1), if |[x]j | ≥ γλ1,

0, otherwise.

Federated experiments. The experiments for the comparison of FedRR, Local SGD and Scaffold838

use no `1 regularization and λ2 = 10−5 · L. To make comparison fair, all methods use n local steps.839

For FedRR, the initial stepsize was 1
L in the i.i.d. regime and 1

Ln in the heterogeneous regime. As840

per Theorem 3 in [Khaled et al., 2020], the stepsizes for Local SGD must satisfy γt = O(1/(LH)),841

where H is the number of local steps, a similar result holds for Scaffold Karimireddy et al. [2020].842

The parallelization of local runs is done using the Ray package5. We use the ‘w8a’ dataset for the843

i.i.d. experiment. For the heterogeneous experiment, we sort ‘a9a’ dataset with respect to the target844

labels b ∈ {0, 1} and then mix it with the original order in proportion 2:1. For all methods, the local845

workers used minibatch size 16. Exact implementation can be found in our code.846

5https://ray.io/

30

https://ray.io/

Part II847

Extensions848

Here we discuss two extensions of our theory that significantly matter in practice: using decreasing849

stepsizes and applying importance resampling.850

I Extension: Decreasing stepsizes851

Using the theoretical stepsize (8) requires knowing the desired accuracy ε ahead of time as well852

as estimating σrad. It also results in extra polylogarithmic factors in the iteration complexity (9), a853

phenomenon observed and fixed by using decreasing stepsizes in both vanilla RR [Ahn et al., 2020]854

and in SGD [Stich, 2019].855

We show that we can adopt the same technique to our setting. However, we depart from the stepsize856

scheme of Ahn et al. [2020] by only varying the stepsize once per epoch rather than every iteration.857

This is closer to the common practical heuristic of decreasing the stepsize once every epoch or once858

every few epochs [Sun, 2020, Tran et al., 2020]. The stepsize scheme we use is inspired by the859

schemes of [Stich, 2019, Khaled and Richtárik, 2020]: in particular, we fix T > 0, let t0 = dT/2e,860

and choose the stepsizes γt > 0 by861

γt =

{
1

Lmax
if T ≤ Lmax

2µn or t ≤ t0,
7

µn(s+t−t0) if T > Lmax

2µn and t > t0,
(39)

where s := 7Lmax/(4µn). Hence, we fix the stepsize used in the first T/2 iterations and then start862

decreasing it every epoch afterwards. Using this stepsize schedule, we can obtain the following863

convergence guarantee when each fi is smooth and convex and the regularizer ψ is µ-strongly convex.864

Theorem 9. Suppose that each fi is Lmax-smooth and convex, and that the regularizer ψ is µ-strongly865

convex. Fix T > 0. Then choosing stepsizes γt according to (39) we have that γt ≤ 1/Lmax for all t866

and the final iterate generated by Algorithm 1 satisfies867

E
[
‖xT − x∗‖2

]
= O

(
exp

(
− nT
κ+2n

)
r0 +

σ2
rad

µ3n2T 2

)
,

where κ := Lmax/µ, r0 := ‖x0 − x∗‖2 and O(·) hides absolute (non-problem-specific) constants.868

This guarantee holds for any number of epochs T > 0. We believe a similar guarantee can be obtained869

in the case each fi is strongly-convex and the regularizer ψ is just convex, but we did not include it as870

it adds little to the overall message.871

In the rest of the section we provide a proof of Theorem 9.872

I.1 A recursion Lemma873

We first state and prove the following algorithm-independent lemma. This lemma plays a key role in874

the proof of Theorem 9 and is heavily inspired by the stepsize schemes of Stich [2019] and Khaled875

and Richtárik [2020] and their proofs.876

Lemma 9. Suppose that there exist constants a, b, c ≥ 0 such that for all γt ≤ 1
b we have877

(1 + γtan) rt+1 ≤ rt + γ3
t c. (40)

Fix T > 0. Let t0 = dT2 e. Then choosing stepsizes γt > 0 by878

γt =

{
1
b , if t ≤ t0 or T ≤ b

an ,
7

an(s+t−t0) if t > t0 and T > b
an ,

where s = 7b
2an . Then879

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
.

31

Proof. If T ≤ 7b
an , then we have γt = γ = 1

b for all t. Hence recursing we have,880

rT ≤ (1 + γan)
−T

r0 +
γ3c

γan
= (1 + γan)

−T
r0 +

γ2c

an
.

Note that 1
1+x ≤ exp(− x

1+x) for all x, hence881

rT ≤ exp

(
− γanT

1 + γan

)
r0 +

γ2c

an

Substituting for γ yields882

rT ≤ exp

(
− nT

b/a+ n

)
r0 +

c

b2an
.

Note that by assumption we have 1
b ≤

7
Tan , hence883

rT ≤ exp

(
− nT

b/a+ n

)
r0 +

49c

T 2a3n3
. (41)

If T > 7b
an , then we have for the first phase when t ≤ t0 with stepsize γt = 1

b that884

rt0 ≤ exp

(
− nt0
b/a+ n

)
r0 +

c

b2an
≤ exp

(
− nT

2(b/a+ n)

)
r0 +

c

b2an
. (42)

Then for t > t0 we have885

(1 + γtan) rt+1 ≤ rt + γ3
t c = rt +

73c

a3n3 (s+ t− t0)
3 .

Multiplying both sides by (s+ t− t0)3 yields886

(s+ t− t0)
3

(1 + γtan) rt+1 ≤ (s+ t− t0)
3
rt +

73c

a3n3
. (43)

Note that because t and t0 are integers and t > t0, we have that t−t0 ≥ 1 and therefore s+t−t0 ≥ 1.887

We may use this to lower bound the multiplicative factor in the left hand side of (43) as888

(s+ t− t0)
3

(1 + γtan) = (s+ t− t0)
3

(
1 +

7

s+ t− t0

)
= (s+ t− t0)

3
+ 7 (s+ t− t0)

2

= (s+ t− t0)
3

+ 3 (s+ t− t0)
2

+ 3 (s+ t− t0)
2

+ (s+ t− t0)
2

≥ (s+ t− t0)
3

+ 3 (s+ t− t0)
2

+ 3 (s+ t− t0) + 1

= (s+ t+ 1− t0)
3
. (44)

Using (44) in (43) we obtain889

(s+ t+ 1− t0)
3
rt+1 ≤ (s+ t− t0)

3
rt +

73c

a3n3
.

Let wt = (s+ t− t0)
3. Then we can rewrite the last inequality as890

wt+1rt+1 − wtrt ≤
73c

a3n3
.

Summing up and telescoping from t = t0 to T yields891

wT rT ≤ wt0rt0 +
73c

a3n3
(T − t0) .

Note that wt0 = s3 and wT = (s+ T − t0)
3. Hence,892

rT ≤
s3

(s+ T − t0)
3 rt0 +

73c

a3n3 (s+ T − t0)
2

T − t0
s+ T − t0

≤ s3

(s+ T − t0)
3 rt0 +

73c

a3n3 (s+ T − t0)
2 .

32

Since we have s+ T − t0 ≥ T − t0 ≥ T/2, it holds893

rT ≤
8s3

T 3
rt0 +

4 · 73c

a3n3T 2
. (45)

The bound in (42) can be rewritten as894

s3

T 3
rt0 ≤

s3

T 3
exp

(
− nT

2 (b/a+ n)

)
r0 +

s3c

b2anT 3
.

We now rewrite the last inequality, use that T > 2s and further use the fact that s = 7b
2an :895

s3

T 3
rt0 ≤

(s
T

)3

︸ ︷︷ ︸
≤1/8

exp

(
− nT

2 (b/a+ n)

)
r0 +

s2c

b2anT 2

(s
T

)
︸ ︷︷ ︸
≤1/2

≤ 1

8
exp

(
− nT

2 (b/a+ n)

)
r0 +

s2c

2b2anT 2

=
1

8
exp

(
− nT

2 (b/a+ n)

)
r0 +

72c

8a3n3T 2
. (46)

Plugging in the estimate of (46) into (45) we obtain896

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

72c

a3n3T 2
+

4 · 73c

a3n3T 2

= exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
. (47)

Taking the maximum of (41) and (47) we see that for any T > 0 we have897

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
. �

I.2 Proof of Theorem 9898

Proof. Start with Lemma 6 with λ = 0, L = Lmax, and γ = γt,899

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3
t σ

2
rad.

Since γ ≤ 1/Lmax and Dfπ (xit, x∗) is nonnegative we may simplify this to900

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]

+ 2γ3
t σ

2
rad.

Unrolling this recursion for n steps we get901

E
[
‖xnt − xn∗‖

2
]
≤ E

[∥∥x0
t − x0

∗
∥∥2
]

+ 2nγ3
t σ

2
rad.

By Lemma 5 and a similar reasoning to Theorem 3 we have902

(1 + 2γtµn)E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xt − x∗‖2

]
+ 2γ3

t σ
2
rad.

We may then use Lemma 9 to obtain that903

E
[
‖xT − x∗‖2

]
≤ exp

(
− nT

2(Lmax/µ+ n)

)
‖x0 − x∗‖2 +

356σ2
rad

µ3n2T 2

= O
(

exp

(
− nT

κ+ 2n

)
‖x0 − x∗‖2 +

σ2
rad

µ3n2T 2

)
. �

33

J Extension: Importance resampling904

Suppose that each fi is Li-smooth. Then the iteration complexities of both SGD and RR depend905

on Lmax/µ, where Lmax is the maximum smoothness constant among the smoothness constants906

L1, L2, . . . , Ln. The maximum smoothness constant can be arbitrarily worse than the average907

smoothness constant L̄ = 1
n

∑n
i=1 Li. This situation is in contrast to the complexity of gradient908

descent which depends on the smoothness constant Lf of f = 1
n

∑n
i=1 fi, for which we have909

Lf ≤ L̄. This is a problem commonly encountered with stochastic optimization methods and910

may cause significantly degraded performance in practical optimization tasks in comparison with911

deterministic methods [Tang et al., 2020].912

Importance sampling is a common technique to improve the convergence of SGD (Algorithm 2):
we sample function (L̄/Li)fi with probability pi proportional to Li, where L̄ := 1

n

∑n
i=1 Li. In that

case, the SGD update is still unbiased since

Ei
[
L̄

Li
fi

]
=

n∑
i=1

pi
L̄

Li
fi = f.

Moreover, the smoothness of function (L̄/Li)fi is L̄ for any i, so the guarantees would depend on913

L̄ instead of maxi=1,...,n Li. Importance sampling successfully improves the iteration complexity914

of SGD to depend on L̄ [Needell et al., 2016], and has been investigated in a wide variety of915

settings [Gower et al., 2020, Gorbunov et al., 2020].916

Importance sampling is a neat technique but it relies heavily on the fact that we use unbiased sampling.917

How can we obtain a similar result if inside any permutation the sampling is biased? The answer918

requires us to think again as to what happens when we replace fi with (L̄/Li)fi. To make sure the919

problem remains the same, it is sufficient to have (L̄/Li)fi inside a permutation exactly Li/L̄ times.920

And since Li/L̄ is not necessarily integer, we should use ni = dLi/L̄e and solve921

min
x∈Rd

1

N

n∑
i=1

(1

ni
fi(x) + · · ·+ 1

ni
fi(x)︸ ︷︷ ︸

ni times

)
+ ψ(x), (48)

where

N := n1 + · · ·+ nn =

⌈
L1

L̄

⌉
+ · · ·+

⌈
Ln
L̄

⌉
.

Clearly, this problem is equivalent to the original formulation in 1. At the same time, we have922

improved all smoothness constants to L̄. It might seem that that the new problem has more functions,923

but it turns out that the new number of functions satisfies N ≤ 2n, so any related costs, such as924

longer loops or storing duplicates of the data, are negligible, as the next theorem shows.925

Theorem 10. For every i, assume that each fi is convex and Li-smooth, and let ψ be µ-strongly926

convex. Then, the number of functions N in (48) satisfies N ≤ 2n, and Algorithm 1 applied to927

problem (48) has the same complexity as (9) but proportional to L̄ rather than Lmax.928

Proof. We show that N ≤ 2n as the rest of the theorem’s claim trivially follows from Theorem 3.929

Firstly, note that for any number a ∈ R we have dae ≤ a+ 1. Therefore,930

N =

n∑
i=1

⌈
Li
L̄

⌉
≤

n∑
i=1

(
Li
L̄

+ 1

)
= n+

n∑
i=1

Li
L̄

= 2n. �

34

	Introduction
	Contributions
	Preliminaries
	Theory for strongly convex losses f1, …,fn
	Theory for strongly convex regularizer
	FedRR: application of ProxRR to federated learning
	Experiments
	I Proofs
	Basic notions and preliminaries
	Bregman divergence
	Properties of the proximal operator

	Proof of thm:shuffling-radius-bound (Bounding the shuffling radius)
	Proof of Convergence of Proximal SGD
	Proofs of thm:f-strongly-convex-psi-convex and thm:psi-strongly-convex-f-convex (Main convergence results)
	A key lemma for shuffling-based methods
	Proof of thm:f-strongly-convex-psi-convex
	Proof of thm:psi-strongly-convex-f-convex

	Proofs for federated learning
	Lemma for the extended proximal operator
	Proof of lem:fedreformproperties
	Proof of lem:fedsigma
	Proof of thm:fedhetero
	Proof of thm:fediid

	FedRR beats distributed GD and Local SGD
	Heterogeneous Data
	Distributed gradient descent
	Local SGD

	Nonconvex analysis
	A key lemma
	Main theorem
	Proof of th:fednonconvex

	Further experimental details

	II Extensions
	Extension: Decreasing stepsizes
	A recursion Lemma
	Proof of thm:psi-strongly-cvx-dec-stepsizes

	Extension: Importance resampling

