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A: Forward-mode Hypergradient Derivations

Recall that we are interested in calculating

Zt = AtZt−1 +Bt

recursively during the inner loop, where

Zt =
dθt
dλ

At =
∂θt
∂θt−1

∣∣∣∣
λ

Bt =
∂θt
∂λ

∣∣∣∣
θt−1

so that we can calculate the hypergradients on the final step using

dLval
dλ

=
∂Lval
∂θT

ZT

Each type of hyperparameter needs its own matrix Zt, and therefore its own matrices At, and Bt.
Consider first the derivation of these matrices for the learning rate, namely λ = α. Recall that the
update rule of SGD with momentum and weight decay after substituting the velocity vt in is

θt = θt−1 − αt
(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)
and therefore it follows directly that

Aα
t = 1− αt

(
∂2Ltrain
∂θ2t−1

+ ξt1

)
The calculation ofBα

t is a bit more involved in our work because when using momentum, vt−1 is
now itself a function of α. First we write

Bα
t = −βt

(
∂αt
∂α

vt−1 + αt
∂vt−1
∂α

)
− ∂αt
∂α

(
∂Ltrain
∂θt−1

+ ξtθt−1

)
= −βtαt

∂vt−1
∂α

− δ⊗t
(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)
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Now since

vt = βtvt−1 +
∂Ltrain
θt−1

+ ξtθt−1

we can write the partial derivative of the velocity as an another recursive rule:

Cα
t =

∂vt
∂α

= βtC
α
t−1 +

∂2Ltrain
∂α∂θt−1

+ ξt
∂θt−1
∂α

= βtC
α
t−1 +

(
ξt1 +

∂2Ltrain
∂θ2t−1

)
∂θt−1
∂α

And putting all together recovers the system:



Aα
t = 1− αt

(
∂2Ltrain
∂θ2t−1

+ ξt1

)
Bα
t = −βtαtCα

t−1 − δ⊗t
(
βtvt−1 +

∂Ltrain
∂θt−1

+ ξtθt−1

)
Cα
t = βtC

α
t−1 +

(
ξt1 +

∂2Ltrain
∂θ2t−1

)
Zα
t−1

For learning the momentum and weight decay, a very similar approach yields


Aβ
t = 1− αt

(
∂2Ltrain
∂θ2t−1

+ ξt1

)
Bβ
t = −βtαtCβ

t−1 − δ⊗t (αtvt−1)

Cβ
t = δ⊗t (vt) + βtC

β
t−1 +

(
ξt1 +

∂2Ltrain
∂θ2t−1

)
Zβ
t−1

and


Aξ
t = 1− αt

(
∂2Ltrain
∂θ2t−1

+ ξt1

)
Bξ
t = −βtαtCξ

t−1 − δ⊗t (αtθt−1)

Cξ
t = δ⊗t (θt−1) + βtC

ξ
t−1 +

(
ξt1 +

∂2Ltrain
∂θ2t−1

)
Zξ
t−1
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B: Theorem 4.1: Proof

Preamble Consider that each time step t ∈ {1, 2, ..., T} has a corresponding hyperparameter λt
and hypergradient gt = ∂Lval(θT )/∂λt. Each gt is viewed as a random variable due to the sampling
process of the weight initialization θ0 and the inner loop minibatch selection. Assume that g =
[g1, g2, . . . , gT ] is sufficiently well approximated by a Gaussian distribution, where g ∼ N (µ,Σ),
with mean µ = [µ1, µ2, ..., µT ] and covariance matrix Σ. Assume that the values of µ can be written
as the ε-Lipschitz function µt+1 = µt + εt, where εt ∈ [−ε, ε]. Note that in general, the gradients at
different time steps may be correlated. Let the magnitude of the correlation be bounded by c ∈ [0, 1]:

|Σtt′ |√
ΣttΣt′t′

≤ c ∀ t 6= t′ (1)

Let W define the size of a non-overlapping window over which hypergradients are averaged. This
produces K windows, where each window k ∈ {1, 2, ...,K} contains the time steps S(k) i.e.
S(1) = {1, 2, . . .W}, S(2) = {W + 1,W + 2, . . . 2W}, etc. For simplicity of analysis 1 we assume
the chosen window sizes are divisors of T such that K = T/W . Sharing hyperparameters over W
contiguous time steps amounts to using the average hypergradient ḡ(k) for each step in that window,
where

ḡ(k) :=
1

W

∑
t∈S(k)

gt (2)

We can now consider the mean squared error across all time steps when averaging contiguous
hypergradients in non-overlapping windows of size W :

MSEW =
1

K

∑
k

1

W

∑
t∈S(k)

E

[(
ḡ(k) − µt

)2]
(3)

where all expectations in our proof are over g ∼ N (µ,Σ). Note the case MSE1 gives the standard
case where no averaging occurs (K = T ).

Theorem Then

MSE1 =
1

T

∑
t

Σtt (4)

MSEW ≤
(1 + c(W − 1))

W
MSE1 + ε2

(W 2 − 1)

12
(5)

Proof The case for MSE1 follows trivially from the definition of variance:

MSE1 =
1

T

∑
t

E[(gt − µt)2] =
1

T

∑
t

Σtt (6)

and so the mean squared error is the average of the variances. We now focus on the W > 1
case. Consider a window enumerated by k, and the vector of gradients within that window g(k) =
(gt|t ∈ S(k)). Under the Gaussian assumption, that vector is Gaussian distributed with covariance
Σ(k), which is a block of the covariance matrix Σ corresponding to the variables in g(k). Let
µ̄(k) = (1/W )

∑
t∈S(k) µt be the average of means in window k. We consider the mean squared

error from window k as :

1This assumption is unnecessary and can be relaxed but would result in a more cumbersome theorem
statement, as the final window of size < W would need to be considered.
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MSE(k) =
1

W

∑
t∈S(k)

E

[(
ḡ(k) − µt

)2]
(7)

=
1

W

∑
t∈S(k)

E

[(
ḡ(k) − µ̄(k)

)2
+
(
µt − µ̄(k)

)2
− 2

(
ḡ(k) − µ̄(k)

)(
µt − µ̄(k)

)]
(8)

= E

[(
ḡ(k) − µ̄(k)

)2]
+

1

W

∑
t∈S(k)

(
µt − µ̄(k)

)2
(9)

Now ḡ(k) = (1/W )1Tg(k), and µ̄(k) = (1/W )1Tµ(k), and so ḡ(k)−µ̄(k) = (1/W )1T (g(k)−µ(k)).
Hence

E

[(
ḡ(k) − µ̄(k)

)2]
=

1

W 2
E

[
1T
(
g(k) − µ(k)

)(
g(k) − µ(k)

)T
1

]
(10)

=
1

W 2
1TΣ(k)1 (11)

Now letD be the diagonal matrix of variances, i.e. Dii = Σ
(k)
ii ∀i andDij = 0 ∀i 6= j. We use the

correlation bound (1), which can be written as |Σ(k)
ij | < c

[
D

1
2 11TD

1
2

]
ij
∀i 6= j, and this allows

us to write an upper bound for the expression above:

E
[
(ḡ(k) − µ̄(k))2

]
≤ 1

W 2
1T [(1− c)D + cD

1
2 11TD

1
2 ]1 (12)

=
(1− c)
W 2

∑
i

Dii + c

[
1

W
1TD

1
2 1

] [
1

W
1TD

1
2 1

]
(13)

=
(1− c)
W 2

∑
i

Dii + c

[
1

W

∑
i

√
Dii

]2
(14)

=
(1− c)
W 2

∑
i

Σ
(k)
ii + c

[
1

W

∑
i

√
Σ

(k)
ii

]2
(15)

This expression can be simplified further using Jensen’s inequality for square roots:

E
[
(ḡk − µ̄k)2

]
≤ (1− c)

W 2

∑
i

Σ
(k)
ii +

cW

W 2

∑
i

Σ
(k)
ii (16)

=
1 + c(W − 1)

W 2

∑
i

Σ
(k)
ii (17)

Now we return to the second part of (9). This second term can be bounded using the Lipschitz
constraints. In particular for window size W , the maximum error is given when there is maximum
deviation from the mean, which occurs when µt = µt−1 + ε. If we write the first mean in window
k as µ(k)

1 we have µt = µ
(k)
1 + (t− 1)ε ∀t ∈ S(k) and in that case µ̄(k) = 1

W (µ
(k)
1 + (µ

(k)
1 + ε) +

(µ
(k)
1 + 2ε) + . . .+ (µ

(k)
1 + (W − 1)ε) = µ

(k)
1 + (W−1)ε

2 and so µt− µ̄k = (t− 1)ε+ (W−1)ε
2 . Note

that this quantity is the same for all windows k. We can use it to write an upper bound as follows:
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1

W

∑
t∈S(k)

(
µt − µ̄(k)

)2
≤ 1

W

W∑
j=1

ε2
(

(j − 1)− W − 1

2

)2

(18)

=
ε2

W

W−1∑
j=0

(
j − W − 1

2

)2

(19)

=
ε2

W

W−1∑
j=0

j2 − (W − 1)j +
(W − 1)2

4
(20)

=
ε2

W

(
W (W − 1)(2W − 1)

6
− (W − 1)

W (W − 1)

2
+
W (W − 1)2

4

)
(21)

= ε2
(W 2 − 1)

12
(22)

Hence combining (17) and (22) together into (9) we have

MSE(k) ≤ 1 + c(W − 1)

W 2

∑
i

Σ
(k)
ii + ε2

(W 2 − 1)

12
(23)

and so incorporating it into (3) we get

MSEW =
1

K

K∑
k=1

MSE(k) (24)

≤ W

T

K∑
k=1

(
(1 + c(W − 1))

W 2

∑
i

Σ
(k)
ii + ε2

(W 2 − 1)

12

)
(25)

=
(1 + c(W − 1))

WT

∑
i

Σii + ε2
(W 2 − 1)

12
(26)

=
(1 + c(W − 1))

W
MSE1 + ε2

(W 2 − 1)

12
�

For sufficiently small ε and c we have with certainty, MSEW < MSE1 for some W > 1.

Discussion We assume that means µ can be written as the ε-Lipschitz function µt+1 = µt + εt,
where εt ∈ [−ε, ε] . Generally speaking, contiguous hyperparameters have optimal values which are
close, and therefore have close hypergradients during outer optimization. This assumption breaks
if hyperparameters are initialized randomly, and so we initialize all of our hyperparameters to zero
in our experiments. Ideally, we would solve for whole inner loop several times so that we can use
the mean hypergradient [µ0, µ1, ..., µH ] for each individual step, without doing any sharing. While
we consider this to be the optimal hypergradients, this is too expensive in practice, and instead we
consider averaging hypergradients from neighbouring inner steps. The result above indicates that
when contiguous hypergradients are sufficiently de-correlated (small c), we can reduce the mean
squared error by a factor W compared to not averaging. However, if means µt drift over time by
an amount εt ≤ ε this introduces some bias which increases the error and eventually results in
MSEW > MSE1.

Finally, it is worth considering the simpler scenario when each hypergradient is considered to be
drawn independently, i.e. g ∼ N (µ, σ21). In that case, c = 0 and the mean squared errors become:

MSE1 = σ2 (27)

MSEW ≤
MSE1

W
+ ε2

(W 2 − 1)

12
(28)
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Visualizing the MSE for various µt profiles . Since the mean squared error depends on the
specific shape of µt, we sample random µt profiles and show how their MSE evolves as a function
of W . This illustrates how tight the upper bound is.
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Figure 1: Several µt profiles and their corresponding mean squared error when sharing over W
contiguous steps, as a function of W . The blue and yellow curve correspond to the maximal and
minimal drifts scenarios respectively.
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C: Implementation Details

We use a GeForce RTX 2080 Ti GPU for all experiments. We found that much of the literature on
greedy methods uses the test set as the validation set, which creates a risk of meta-overfitting to the
test set. Instead, we always carve out a validation set from our training set.

Figure 1 Here we used very similar settings as Figure 4 for FDS, except we learned 7 learning rates
to make the search space a bit more challenging. We use the HyperBanster HPO package for RS, BO,
HB and BOHB. For HB and BOHB, the minimum budget argument is set to 1 epoch to allow for
lots of fast evaluations, and the maximum budget is set to 50 epochs. We also use this technique to
bring down our convergence time from ∼ 10 hours to ∼ 3 hours, namely we calculate hypergradients
based on 10 epochs for some outer steps, rather than calculate all hypergradients on 50 epochs. Since
HD needs the user to specify initial hyperparameter values, we random search over those for several
consecutive HD runs.

Figure 2 We calculate the hypergradient with respect to some learning rate schedule over 100
seeds, where each seed corresponds to a different training set ordering and network initialization. The
learning rate schedule is fixed, and initialized to be a cosine decay over the full 250 batches, starting
at 0.01. The batch size is set to 128, and 1000 fixed images are used for the validation data.

Figure 3 Here we used a batch size of 128 for both datasets to allow 1 epoch worth of inner
optimization in about 500 inner steps. Clipping was restricted to ±3 to show the effect of noisy
hypergradients more clearly. Since MNIST and SVHN are cheap datasets to run on a LeNet
architecture, we can afford 50 outer steps and early stopping based on validation accuracy. All
learning rates were initialized to zero.

Figure 4 We learn 5 values for the learning rates, 1 for the momentum and 1 for the weight decay,
to make it comparable to the hyperparameters used in the literature for CIFAR-10. A batch size
256 is used, with 5% of the training set of each epoch set aside for validation. We found larger
validation sizes not to be helpful. Hypergradient descent uses hyperparameters initialized at zero as
well, and trains all hyperparameters online with an SGD outer optimizer with learning rate 0.2 and±1
clipping of the hypergradients. As described in appendix G, we used a sign based outer optimizer with
adaptive step sizes rather than some hand-tuned outer learning rate schedule. We used initial values
γα = 0.1, γβ = 0.15 and γξ = 4 × 10−4 but the performance barely changed when these values
were multiplied or divided by 2. Since we take 10 outer steps and initialize all hyperparameters at
zero, this defines a search ranges: α ∈ [−1, 1], β ∈ [−1.5, 1.5], and γ ∈ [−4× 10−3, 4× 10−3]. The
Hessian matrix product is clipped to ±10 to prevent one batch from having a dominating contribution
to hypergradients.
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D: Other hypergradient examples

Figure 2 depends on the value of α at which hypergradients are calculated. For some learning rate
schedules, contiguous hypergradients are sampled from closer distribution (ε small) and so sharing
over larger windows is beneficial, as shown in the figure below.
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Figure 2: Similar to Figure 2 but for a smaller ε. We can see that averaging hypergradients helps even
more.
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E: Hypergradients

Here we provide the raw hypergradients corresponding to the outer optimization shown in Appendices:
Figure 1. Note that the range of these hypergradients is made reasonable by the averaging of gradients
coming from contiguous hyperparameters.
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Figure 3: Hypergradients have a reasonable range but fail to always converge to zero when the
validation performance stops improving.
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F: Baselines

The objective here is to select the best hyperparameter setting that a deep learning practitioner
would reasonably be expected to use in our experimental setting, based on the hyperparameters
used by the community for the datasets at hand. For CIFAR-10, the most common hyperparameter
setting is the following: α is initialized at α0 = 0.2 (for batch size 256, as used in our experiments)
and decayed by a factor η = 0.2 at 30%, 60% and 80% of the run (MultiStep in Pytorch); the
momentum β is constant at 0.9, and the weight decay ξ is constant at 5 × 10−4. We search
for combinations of hyperparameters around this setting. More specifically, we search over all
combinations of α0 = {0.05, 0.1, 0.2, 0.4, 0.6}, η = {0.1, 0.2, 0.4}, β = {0.45, 0.9, 0.99}, and
ξ = {2.5× 10−4, 5× 10−4, 1× 10−3}. This makes up a total of 135 hyperparameter settings, which
we each run 3 times to get a mean and standard deviation. The distribution of those means are
provided in Figure 4, and the best hyperparameter setting is picked based on validation performance,
which corresponds to 89.2 ± 0.2%. Preliminary experiments showed that using schedules for the
momentum and weight decay did not improve test accuracy.
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Figure 4: The combination of hyperparameters searched over for CIFAR-10 (top row) and the
corresponding distribution of test accuracies (bottom row).
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G: Using Hypergradient Signs

While hyperparameter sharing produces stable hypergradients with a reasonable range (see Appendix
E), tuning the outer learning rate schedule can be tedious and unintuitive, and doesn’t allow the user
to specify a range to search hyperparameters over. A simple and fairly common learning rate schedule
consists in decaying the learning rate (e.g. by a factor of 2) every time the gradient changes sign [1].
The idea of using the sign of gradients to improve the efficiency of gradient descent dates back to the
RPROP optimizer [2]. More recently, gradient signs have also been used to improve efficiency in the
context of distributed learning [3], which has led to the discovery of robust convergence properties of
sign-based SGD even in the case of biased gradients [4]. Using such a learning rate schedule for the
outer optimizer frees us from having to tune the outer learning rate, but fails to define a search range
for HPO. We can achieve this by updating each hyperparameter by an amount sgn(g)× γ, and letting
γ ← γ/2 when the hypergradient g changes sign across 2 consecutive outer steps. This allows for
convergence after hypergradients have changed signs a few times. Being able to define the range of
hyperparameter search more explicitly is especially useful to compare FDS to other HPO algorithms
which also use a fixed search range (section 5.4).

Algorithm 1 FDS algorithm similar to algorithm
1 but using hypergradient signs to update hyperpa-
rameters.

Initialize: Nα,W = T/Nα,α = 0N
α

,
γ ∈ RN

α

#outer loop
for o in 1, 2, ... do

Initialize: Dtrain, Dval, θ0 ∈ RD,
Zα = 0D×N

α

, Cα = 0D×N
α

#inner loop
for t in 1, 2, ..., T do
xtrain,ytrain ∼ Dtrain
gtrain = ∂Ltrain(xtrain,ytrain)/∂θ

#hyperparameter sharing
i = dt/W e
HZα

[1:i] = ∂(gtrainZ
α
[1:i])/∂θ

Zα
[1:i] = AαZα

[1:i] +Bα
[1:i]

update Cα (Eq 4)
θt+1 = Φ(θt, gtrain)

end for

gval = ∂Lval(Dval)/∂θ
so = sgn(gvalZ

α/W )

for n in 1, 2, ..., Nα do
if so,[n] 6= so−1,[n] then

γα
[n] ← γα

[n]/2

end if
end for

α← α− so � γα

end for
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