A Summary of retractions on the generalized Stiefel manifold

For an update to a matrix $X \in \operatorname{St}_{B}(p, n)$ following the direction $Z \in \mathbb{R}^{n \times p}$ there are several ways to compute a retraction.

- The Polar decomposition (Yger et al. 2012) uses

$$
\begin{equation*}
\operatorname{Retr}_{\mathrm{St}_{B}}(X, Z)=(X+Z)\left(I_{p}+Z^{\top} B Z\right)^{-1 / 2} \tag{18}
\end{equation*}
$$

where it is necessary to compute matrix product and a matrix square root inverse, amounting to $\mathcal{O}\left(n^{2} p\right)$ flops.

- Mishra \& Sepulchre (2016) observed that the aforementioned polar decomposition can be expressed as $U V^{\top}$ in terms of an SVD-like decomposition of $X+Z=U \Sigma V^{\top}$, where U, V are orthogonal in respect to B-inner product, whose main cost is the eigendecomposition of $(X+Z)^{\top} B(X+Z)$.
- Recently, Sato \& Aihara (2019) proposed the Cholesky-QR based retraction

$$
\begin{equation*}
\operatorname{Retr}_{\operatorname{St}_{B}}(X, Z)=(X+Z) R^{-1} \tag{19}
\end{equation*}
$$

where $R \in \mathbb{R}^{p \times p}$ comes from Cholesky factorization of $R^{\top} R=(X+Z)^{\top} B(X+Z)$. The flops required for the computation amount to $\mathcal{O}\left(n^{2} p\right)$, which comes from the matrix multiplications, the Cholesky factorization of an $p \times p$ matrix, and finally, the inverse multiplication by a small triangular $p \times p$ matrix requires $\mathcal{O}\left(p^{3}\right)$ to form and $\mathcal{O}\left(n p^{2}\right)$ to multiply with.

B Additional Experiments and figures

For the experiment showed in Fig. [2] we pick the step-size η parameter to be $\eta=0.01$ for the Riemannian gradient descent, the landing with $\Psi_{B}^{\mathrm{R}}(X)$, and PLAM, and $\eta=200$ for the landing with $\Psi_{B}(X)$. The normalizing parameter ω is chosen to be $\omega=10^{5}$ for the landing with $\Psi_{B}^{\mathrm{R}}(X)$, $\omega=0.1$ for the landing with $\Psi_{B}(X)$, and $\omega=200$ for PLAM.

Figure 4: Deterministic computation of the generalized eigenvalue problem with $n=1000, p=500$, the condition number of the two matrices $\kappa=100$. Each algorithm is given a time limit of 120 seconds.

C Proofs for Section 2

C. 1 Proof of Proposition 2.2

Proof. It follows from the definition (7) and $\mathrm{D} h(x) \mathrm{D} h(x)^{*}\left(\mathrm{D} h(x)^{*}\right)^{\dagger}=\mathrm{D} h(x)$ that $\mathrm{D} h(x)(\operatorname{grad} f(x))=0$, which implies the first condition in Definition 2.1 holds, i.e., $\langle\operatorname{grad} f(x), v\rangle=0$ for all $v \in \operatorname{span}\left(\mathrm{D} h(x)^{*}\right)$. Since $\mathrm{D} h(x)^{*}\left(\mathrm{D} h(x)^{*}\right)^{\dagger} \nabla f(x) \in \operatorname{span}\left(\mathrm{D} h(x)^{*}\right)$,

Figure 5: Stochastic canonical correlation analysis on the split MNIST dataset for $p=5$ canonical components.

Figure 6: Comparison of per-iteration computational time for different problem sizes of the descent directions of algorithms in Fig. 2 and the cost of retractions compared to $\nabla \mathcal{N}(X)$, both in the deterministic setting when $n=p=r$, for which the matrix multiplication in $\Psi_{B}(X)$ and $\nabla_{\mathcal{N}}(X)$ are at the disadvantage. Computation time of randomly generated $B, X \in \mathbb{R}^{n \times n}$ averaged over 100 runs with CUDA implementation using cupy.
we have

$$
\begin{aligned}
\|\operatorname{grad} f(x)\|^{2} & =\langle\operatorname{grad} f(x), \operatorname{grad} f(x)\rangle \\
& =\left\langle\operatorname{grad} f(x), \nabla f(x)-\mathrm{D} h(x)^{*}\left(\mathrm{D} h(x)^{*}\right)^{\dagger} \nabla f(x)\right\rangle \\
& =\langle\operatorname{grad} f(x), \nabla f(x)\rangle,
\end{aligned}
$$

which verifies the second condition with $\rho=1$ and the third condition with $\operatorname{grad} f(x)=0$ for a critical point $x \in \mathcal{M}$.

C. 2 Proof of Lemma 2.4

Proof. For ease of notation we denote the current iterate x and the subsequent iterate as $\tilde{x}=$ $x-\eta \Lambda(x)$. From $L_{\mathcal{N}}$-Lipschitz of \mathcal{N} we have

$$
\begin{align*}
\mathcal{N}(\tilde{x}) & \leq \mathcal{N}(x)+\langle\nabla \mathcal{N}(x),-\eta \Lambda(x)\rangle+\frac{\eta^{2} L_{\mathcal{N}}}{2}\|\Lambda(x)\|^{2} \tag{20}\\
& =\mathcal{N}(x)-\eta \omega\|\nabla \mathcal{N}(x)\|^{2}+\frac{\eta^{2} L_{\mathcal{N}}}{2}\|\Lambda(x)\|^{2}, \tag{21}
\end{align*}
$$

Figure 7: Comparison of the sensitivity to the choice of the step-size η and ω of the landing with $\Psi_{B}(X)$ and the PLAM method (Gao et al. 2022a) in the generalized eigenvalue problem experiment presented in Fig. 2 with $n=1000, p=500$, and the condition number of the two matrices $\kappa=100$. On the right we show $\log -\log$ scale to better see the effect in earlier iterations. Both parameters are picked as in the experiment for Fig. 2 and multiplied by a scalar from the set $\{0.25,0.75,1.25,1.75\}$ for all possible pair combinations.

Figure 8: Numerical evaluation of the upper safe-step bound $\eta(X)$ in Lemmma 2.4 per time, which ensures that the iterates stay in $\mathrm{St}_{B}^{\varepsilon}(p, n)$, for the two landing methods tested in Fig. 2 with the $L_{\mathcal{N}}$ bounded for the GEVP as in Lemma D. 1 We see that the upper bound is only mildly restricting and becomes even less restricting as the iterates come close to a stationary point.
where in the first line we use that $\mathcal{N}(x)$ has Lipschitz gradient with the constants $L_{\mathcal{N}}$ for x in the safe-region. To guarantee $h(\tilde{x}) \leq \varepsilon$, we have to ensure that

$$
\begin{equation*}
\mathcal{N}(x)-\eta \omega\|\nabla \mathcal{N}(x)\|^{2}+\frac{\eta^{2} L_{\mathcal{N}}}{2}\|\Lambda(x)\|^{2} \leq \frac{\varepsilon^{2}}{2} . \tag{22}
\end{equation*}
$$

Solving the quadratic inequality in (22) for the positive root $\eta>0$ yields the results.

C. 3 Proof of Lemma 2.5

Proof. Assume that $\|\nabla \mathcal{N}(x)\| \geq \bar{C}_{h}\|h(x)\|$ is lower bounded in $\mathcal{M}^{\varepsilon}$. We proceed to lower bound the numerator of the safe-step size bound in Lemma 2.4 by making it independent of $x \in \mathcal{M}^{\varepsilon}$ as follows

$$
\begin{align*}
\omega\|\nabla \mathcal{N}(x)\|^{2}+ & \sqrt{\omega^{2}\|\nabla \mathcal{N}(x)\|^{4}+L_{\mathcal{N}}\|\Lambda(x)\|^{2}\left(\varepsilon^{2}-\|h(x)\|^{2}\right)} \\
& \geq \omega \bar{C}_{h}^{2}\|h(x)\|^{2}+\sqrt{\omega^{2} \bar{C}_{h}^{4}\|h(x)\|^{4}+L_{\mathcal{N}}\|\Psi(x)\|^{2}\left(\varepsilon^{2}-\|h(x)\|^{2}\right)} \tag{23}\\
& \geq \omega \bar{C}_{h}^{2}\|h(x)\|^{2}\left(1+\frac{1}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}\|\Psi(x)\| \sqrt{L_{\mathcal{N}}\left(\varepsilon^{2}-\|h(x)\|^{2}\right)} \tag{24}\\
& \geq \sqrt{\frac{L_{\mathcal{N}}}{2}}\|\Psi(x)\|(\varepsilon-\|h(x)\|)+\left(1+\frac{1}{\sqrt{2}}\right) \omega \bar{C}_{h}^{2}\|h(x)\|^{2} \tag{25}
\end{align*}
$$

Figure 9: Robustness of the convergence towards the $\mathrm{St}_{B}(p, n)$ for the landing with $\Psi_{B}(X)$ in the experiment for Fig. 2 based on the multiplied perturbations of η and ω parameters with the values from $\{1 / 8,1 / 4,1 / 2,2,4\}$.
where the first inequality comes from using bounds from Assumption 2.2, the second inequality comes from $\sqrt{a+b} \geq(\sqrt{a}+\sqrt{b}) / \sqrt{2}$ for $a, b \geq 0$, and the final inequality from the fact that $\sqrt{a-b} \geq \sqrt{a}-\sqrt{b}$ for $a, b \geq 0$ and $a \geq b$. As a result we have that the upper bound in Lemma 2.4 is lower-bounded by

$$
\begin{equation*}
\eta(x) \geq \frac{\sqrt{\frac{L_{\mathcal{N}}}{2}}\|\Psi(x)\|(\varepsilon-\|h(x)\|)+\left(1+\frac{1}{\sqrt{2}}\right) \omega \bar{C}_{h}^{2}\|h(x)\|^{2}}{L_{\mathcal{N}}\left(\|\Psi(x)\|^{2}+\omega^{2} C_{h}^{2}\|h(x)\|^{2}\right)} \tag{26}
\end{equation*}
$$

using the fact that $\|\Lambda(x)\|^{2}=\|\Psi(x)\|^{2}+\omega^{2}\|\nabla \mathcal{N}(x)\|^{2}$ and $\|\nabla \mathcal{N}(x)\|^{2} \leq C_{h}^{2}\|h(x)\|^{2}$. Since the minimum of (26) in terms of $\|h(x)\| \in[0, \varepsilon]$ is on the boundary, when $\|h(x)\|=0$ or $\|h(x)\|=\varepsilon$, we can further lower bound the safe step size as

$$
\begin{equation*}
\eta(x) \geq \min \left\{\frac{\varepsilon}{\sqrt{2 L_{\mathcal{N}}} C_{\Psi}}, \frac{\omega \bar{C}_{h}^{2} \varepsilon^{2}}{L_{\mathcal{N}}\left(C_{\Psi}^{2}+\omega^{2} C_{h} \varepsilon^{2}\right)}\right\} \tag{27}
\end{equation*}
$$

where we used for the minimum at $\|h(x)\|=0$ and the bound $\sup _{x \in \mathcal{M}^{\varepsilon}}\|\Psi(x)\| \leq C_{\Psi}$.

C. 4 Proof of Lemma 2.6

Proof. The inner product has two parts

$$
\begin{equation*}
\langle\nabla \mathcal{L}(x), \Lambda(x)\rangle=\mathrm{D} \mathcal{L}(x)[\Lambda(x)]=\mathrm{D} \mathcal{L}(x)[\Psi(x)]+\omega \mathrm{D} \mathcal{L}(x)[\nabla \mathcal{N}(x)] . \tag{28}
\end{equation*}
$$

We expand the first term in 28) as

$$
\begin{align*}
\mathrm{D} \mathcal{L}(x)[\Psi(x)]= & \langle\nabla f(x), \Psi(x)\rangle-\left\langle\left(\mathrm{D} h(x)^{*}\right)^{\dagger} \nabla f(x), \mathrm{D} h(x) \Psi(x)\right\rangle \tag{29}\\
& -\langle\mathrm{D} \lambda(x)[\Psi(x)], h(x)\rangle+2 \beta\langle\nabla \mathcal{N}(x), \Psi(x)\rangle \tag{30}\\
= & \langle\nabla f(x), \Psi(x)\rangle-\langle\mathrm{D} \lambda(x)[\Psi(x)], h(x)\rangle \tag{31}
\end{align*}
$$

where we use that $\nabla\|h(x)\|^{2}=2 \nabla \mathcal{N}(x)$ and that the second and the third term are zero due to the orthogonality of $\Psi(x)$ with the span of $\mathrm{D} h(x)^{*}$. We expand the second term in (28) as

$$
\begin{align*}
\mathrm{D} \mathcal{L}(x)[\nabla \mathcal{N}(x)]= & \langle\nabla f(x), \nabla \mathcal{N}(x)\rangle-\left\langle\left(\mathrm{D} h(x)^{*}\right)^{\dagger} \nabla f(x), \mathrm{D} h(x) \nabla \mathcal{N}(x)\right\rangle \tag{32}\\
& -\langle\mathrm{D} \lambda(x)[\nabla \mathcal{N}(x)], h(x)\rangle+2 \beta\|\nabla \mathcal{N}(x)\|^{2} \tag{33}\\
= & \left\langle\left(I_{n}-\mathrm{D} h(x)^{*}\left(\mathrm{D} h(x)^{*}\right)^{\dagger}\right) \nabla f(x), \nabla \mathcal{N}(x)\right\rangle \tag{34}\\
& -\langle\mathrm{D} \lambda(x)[\nabla \mathcal{N}(x)], h(x)\rangle+2 \beta\|\nabla \mathcal{N}(x)\|^{2} \tag{35}\\
= & -\langle\mathrm{D} \lambda(x)[\nabla \mathcal{N}(x)], h(x)\rangle+2 \beta\|\nabla \mathcal{N}(x)\|^{2} \tag{36}
\end{align*}
$$

where in the second equality we move the adjoint $\mathrm{D} h(x)^{*}$ in the second inner product to the left side and join it with the first inner product. The third equality comes from the fact that due to the projection of $\nabla f(x)$ on the orthogonal complement of $\mathrm{D} h(x)^{*}$ and $\nabla \mathcal{N}(x)=\mathrm{D} h(x)^{*} h(x)$ are orthogonal.
Joining the two components (31) and (36) together we get

$$
\begin{align*}
\langle\nabla \mathcal{L}(x), \Lambda(x)\rangle & =\langle\nabla f(x), \Psi(x)\rangle-\langle\mathrm{D} \lambda(x)[\Lambda(x)], h(x)\rangle+2 \beta \omega\|\nabla \mathcal{N}(x)\|^{2} \tag{37}\\
& \geq \rho\|\Psi(x)\|^{2}-C_{\lambda}(\|\Psi(x)\|+\omega\|\nabla \mathcal{N}(x)\|)\|h(x)\|+2 \beta \omega\|\nabla \mathcal{N}(x)\|^{2} \tag{38}\\
& \geq \rho\|\Psi(x)\|^{2}+\omega\left(2 \beta C_{h}-C_{\lambda}\right) C_{h}\|h(x)\|^{2}-C_{\lambda}\|\Psi(x)\|\|h(x)\| \tag{39}\\
& \geq \rho\|\Psi(x)\|^{2}+\omega\left(2 \beta C_{h}-C_{\lambda}\right) C_{h}\|h(x)\|^{2}-C_{\lambda}\left(\alpha\|\Psi(x)\|^{2}+\alpha^{-1}\|h(x)\|^{2}\right) \tag{40}\\
& \geq\left(\rho-C_{\lambda} \alpha\right)\|\Psi(x)\|^{2}+\left(2 \omega \beta C_{h}^{2}-\omega C_{h} C_{\lambda}-\alpha^{-1} C_{\lambda}\right)\|h(x)\|^{2} \tag{41}\\
& \geq \frac{\rho}{2}\left(\|\Psi(x)\|^{2}+\|h(x)\|^{2}\right) \tag{42}
\end{align*}
$$

where the first inequality comes from $\langle\nabla f(x), \Psi(x)\rangle \geq \rho\|\Psi(x)\|^{2}$ in Def. 2.1 combined with the bound $\sup _{x \in \mathcal{M}^{\varepsilon}}\|\mathrm{D} \lambda(x)\| \leq C_{\lambda}$ and the triangle inequality, the second inequality comes from bounding $\|\nabla \mathcal{N}(x)\| \leq C_{h}\|\bar{h}(x)\|$ using Assumption 2.2 and rearranging terms, the third inequality comes from using the AG-inequality $\sqrt{a b} \leq(a+b) / 2$ with $a=\alpha\|h(x)\|$ and $b=\alpha^{-1}\|\Psi(x)\|$ for an arbitrary $\alpha>0$, in the fourth inequality we only rearrange terms, and finally, in the fifth inequality we choose $\alpha=\rho /\left(2 C_{\lambda}\right)$ and use that $\beta=\left(\frac{\rho}{4 C_{h}^{2}}+\frac{C_{\lambda}}{2 C_{h}}+\frac{C_{\lambda}^{2}}{C_{h}^{2}}\right) / \omega$.

C. 5 Proof of Theorem 2.7

Proof. Due to $x_{0} \in \mathcal{M}^{\varepsilon}$ and the step size being smaller than the bound in Lemma 2.5, we have that all iterates remain in the safe region $x^{k} \in \mathcal{M}^{\varepsilon}$. By smoothness of Fletcher's augmented Lagrangian we can expand

$$
\begin{align*}
\mathcal{L}\left(x^{k+1}\right) & \leq \mathcal{L}\left(x^{k}\right)-\eta\left\langle\Lambda\left(x^{k}\right), \nabla \mathcal{L}\left(x^{k}\right)\right\rangle+\frac{L_{\mathcal{L}} \eta^{2}}{2}\left\|\Lambda\left(x^{k}\right)\right\|^{2} \tag{43}\\
& \leq \mathcal{L}\left(x^{k}\right)-\frac{\eta \rho}{2}\left(\left\|\Psi\left(x^{k}\right)\right\|^{2}+\omega^{2}\left\|h\left(x^{k}\right)\right\|^{2}\right)+\frac{L_{\mathcal{L}} \eta^{2}}{2}\left\|\Lambda\left(x^{k}\right)\right\|^{2} \tag{44}\\
& \leq \mathcal{L}\left(x^{k}\right)-\frac{\eta}{2}\left(\left(\rho-L_{\mathcal{L}} \eta\right)\left\|\Psi\left(x^{k}\right)\right\|^{2}+\omega^{2}\left(\rho-\eta L_{\mathcal{L}} C_{h}^{2}\right)\left\|h\left(x^{k}\right)\right\|^{2}\right), \tag{45}
\end{align*}
$$

where in the second inequality we used the results of Lemma 2.6 and in the third inequality we use the bound on $\|\nabla \mathcal{N}(x)\| \leq C_{h}\|h(x)\|$ by Assumption 2.2 By the step $\operatorname{size} \eta<\min \left\{\frac{\rho}{2 L_{\mathcal{L}}}, \frac{\rho}{2 L_{\mathcal{L}} C_{h}^{2}}\right\}$ we have

$$
\begin{equation*}
\frac{\eta \rho}{4}\left\|\Psi\left(x^{k}\right)\right\|^{2}+\frac{\eta \rho \omega^{2}}{4}\|h(x)\|^{2} \leq \mathcal{L}\left(x^{k}\right)-\mathcal{L}\left(x^{k+1}\right) \tag{46}
\end{equation*}
$$

Telescopically summing the first K terms gives

$$
\begin{equation*}
\frac{\eta \rho}{4} \sum_{k=0}^{K}\left\|\Psi\left(x^{k}\right)\right\|^{2}+\frac{\eta \rho \omega^{2}}{4} \sum_{k=0}^{K}\|h(x)\|^{2} \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}\left(x^{K+1}\right) \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*} \tag{47}
\end{equation*}
$$

which implies that the inequalities hold individually also

$$
\begin{equation*}
\frac{\eta \rho}{4} \sum_{k=0}^{K}\left\|\Psi\left(x^{k}\right)\right\|^{2} \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*} \quad \text { and } \quad \frac{\eta \rho \omega^{2}}{4} \sum_{k=0}^{K}\|h(x)\|^{2} \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*} . \tag{48}
\end{equation*}
$$

C. 6 Proof of Theorem 2.8

Proof. By the Lipschitz continuity of the gradient of Fletcher's augmented Lagrangian we have

$$
\begin{align*}
\mathbb{E}\left[\tilde{\mathcal{L}}\left(x^{k+1}\right)\right] & \leq \mathbb{E}\left[\mathcal{L}\left(x^{k}\right)-\eta\left\langle\tilde{\Lambda}\left(x^{k}\right), \nabla \mathcal{L}\left(x^{k}\right)\right\rangle+\frac{L_{\mathcal{L}} \eta^{2}}{2}\left\|\tilde{\Lambda}\left(x^{k}\right)\right\|^{2}\right] \tag{49}\\
& \leq \mathcal{L}\left(x^{k}\right)-\eta\left\langle\Lambda\left(x^{k}\right), \nabla \mathcal{L}\left(x^{k}\right)\right\rangle+\frac{L_{\mathcal{L}} \eta^{2}}{2}\left(\left\|\Lambda\left(x^{k}\right)\right\|^{2}+\gamma^{2}\right) \tag{50}\\
& \leq \mathcal{L}\left(x^{k}\right)-\frac{\eta \rho}{2}\left(\left\|\Psi\left(x^{k}\right)\right\|^{2}+\omega^{2}\|h(x)\|^{2}\right)+\frac{L_{\mathcal{L}} \eta^{2}}{2}\left(\left\|\Lambda\left(x^{k}\right)\right\|^{2}+\gamma^{2}\right) \tag{51}\\
& \leq \mathcal{L}\left(x^{k}\right)-\frac{\eta}{2}\left(\left(\rho-L_{\mathcal{L}} \eta\right)\left\|\Psi\left(x^{k}\right)\right\|^{2}+\omega^{2}\left(\rho-\eta L_{\mathcal{L}} C_{h}^{2}\right)\left\|h\left(x^{k}\right)\right\|^{2}\right)+\frac{L_{\mathcal{L}} \eta^{2}}{2} \gamma^{2} \tag{52}
\end{align*}
$$

where the first inequality comes from taking an expectation of the Lipschitz-continuity of $\mathcal{L}(x)$, in the second inequality we take the expectation inside of the inner product using the fact that $\tilde{\Lambda}\left(x^{k}\right)$ is zero-centered and has bounded variance, the third and the last inequality comes as a consequence of Lemma 2.6. By the step size being smaller than $\eta<\min \left\{\frac{\rho}{2 L_{\mathcal{L}}}, \frac{\rho}{2 L_{\mathcal{L}} C_{h}^{2}}\right\}$

$$
\begin{equation*}
\frac{\eta \rho}{4}\left\|\Psi\left(x^{k}\right)\right\|^{2}+\frac{\eta \rho \omega^{2}}{4}\|h(x)\|^{2} \leq \mathcal{L}\left(x^{k}\right)-\mathcal{L}\left(x^{k+1}\right)+\frac{L_{\mathcal{L}} \eta^{2}}{2} \gamma^{2} \tag{53}
\end{equation*}
$$

Telescopically summing the first K terms gives

$$
\begin{align*}
\frac{\eta \rho}{4} \sum_{k=1}^{K}\left\|\Psi\left(x^{k}\right)\right\|^{2}+\frac{\eta \rho \omega^{2}}{4} \sum_{k=0}^{K}\left\|h\left(x^{k}\right)\right\|^{2} & \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}\left(x^{K+1}\right)+\frac{L_{\mathcal{L}} \eta^{2} \gamma^{2}}{2} \sum_{k=0}^{K}(1+k)^{-1} \tag{54}\\
& \leq \mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*}+\frac{L_{\mathcal{L}} \eta^{2} \gamma^{2}}{2} \log (K) \tag{55}
\end{align*}
$$

which implies that the inequalities hold also individually

$$
\begin{align*}
& \inf _{k \leq K}\left\|\Psi\left(x^{k}\right)\right\|^{2} \leq \frac{4}{\rho \eta_{0} \sqrt{K}}\left(\mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*}+\frac{\eta_{0} L_{\mathcal{L}} \gamma^{2}}{2} \log (K)\right) \tag{56}\\
& \inf _{k \leq K}\left\|h\left(x^{k}\right)\right\|^{2} \leq \frac{4}{\rho \omega^{2} \eta_{0} \sqrt{K}}\left(\mathcal{L}\left(x^{0}\right)-\mathcal{L}^{*}+\frac{\eta_{0} L_{\mathcal{L}} \gamma^{2}}{2} \log (K)\right) \tag{57}
\end{align*}
$$

where we used that $\inf _{k \leq K}\left\|\Psi\left(x^{k}\right)\right\|^{2} \leq \sum_{k=0}^{K} \eta_{k}\left\|\Psi\left(x^{k}\right)\right\|^{2}\left(\sum_{k=0}^{K} \eta_{k}\right)^{-1}$ and the fact that $\sum_{k \leq K} \eta_{k} \geq \eta_{0} \sqrt{K}$.

D Proofs for Section 3

D. $1 \quad$ Specific forms of $\mathrm{D} h(x), \lambda(X)$ For $\operatorname{St}_{B}(p, n)$

We begin by showing the specific form of the formulations derived in the previous section for the case of the generalized Stiefel manifold. Differentiating the generalized Stiefel constraint yields $\mathrm{D} h(X)[V]=X^{\top} B V+V^{\top} B X$ and the adjoint is derived as

$$
\begin{equation*}
\left\langle\mathrm{D} h(X)^{*}[V], W\right\rangle=\langle V, \mathrm{D} h(X)[W]\rangle=\left\langle V, W^{T} B X+X^{T} B W\right\rangle=\langle 2 B X \operatorname{sym}(V), W\rangle, \tag{58}
\end{equation*}
$$

as such we have that $\mathrm{D} h(X)^{*}[V]=2 B X \operatorname{sym}(V)$. Consequently

$$
\begin{equation*}
\operatorname{D} h(X) \mathrm{D} h(X)^{*}[V]=2 \operatorname{sym}(V) X^{\top} B^{2} X+2 X^{\top} B^{2} X \operatorname{sym}(V) \tag{59}
\end{equation*}
$$

and the Lagrange multiplier $\lambda(X)$ is defined in the case of the generalized Stiefel manifold as the solution to the following Lyapunov equation

$$
\begin{equation*}
\lambda(X) X^{\top} B^{2} X+X^{\top} B^{2} X \lambda(X)=X^{\top} B \nabla f(X)+\nabla f(X)^{\top} B X \tag{60}
\end{equation*}
$$

Importantly, due to $\lambda(X)$ being the unique solution to the linear equation and $\nabla f(X)$ being smooth, $\lambda(X)$ is also smooth with respect to X, and as a smooth function defined over a compact set $\mathrm{St}_{B}^{\varepsilon}(p, n)$, its operator norm is bounded $\sup _{X \in \mathrm{St}_{B}^{\varepsilon}(p, n)}\|\mathrm{D} \lambda(X)\|_{F} \leq C_{\lambda}$ as required by Assumption 2.3.

D. 2 Proof of Proposition 3.1

Proof. For $\left\|X^{\top} B X-I_{p}\right\|_{F} \leq \varepsilon, X=U \Sigma V^{\top}$ be the singular value decomposition of X, and $Q D Q^{\top}$ be the spectral decomposition of B. We then have

$$
\begin{equation*}
\varepsilon^{2} \geq\left\|X^{\top} B X-I_{p}\right\|_{\mathrm{F}}^{2}=\left\|\Sigma U^{\top} Q D\left(U^{\top} Q\right)^{\top} \Sigma-I_{p}\right\|_{\mathrm{F}}^{2} \tag{61}
\end{equation*}
$$

where β_{i}, σ_{i} are the positive eigenvalues of B and the singular values of X respectively in the decreasing order. This implies that

$$
\begin{equation*}
\sqrt{(1-\varepsilon) / \beta_{1}} \leq \sigma_{i} \leq \sqrt{(1+\varepsilon) / \beta_{n}} \tag{62}
\end{equation*}
$$

The above bound gives that the singular values of $\mathrm{D} h(X)^{*}=2 B X$ are in the interval $\left[2 \sqrt{(1-\varepsilon) \kappa^{-1}}, 2 \sqrt{(1+\varepsilon) \kappa}\right]$ which in turn gives the constants C_{h}, \bar{C}_{h}.
Lemma D. 1 (Lipschitz constants for the generalized eigenvalue problem). Let $f=-\frac{1}{2} \operatorname{Tr}\left(X^{\top} A X\right)$ and $\mathcal{N}(X)=\left\|X^{\top} B X-I_{p}\right\|_{F}^{2}$ as in the optimization problem corresponding to the generalized eigenvalue problem. We have that, for $X \in \operatorname{St}_{B}^{\varepsilon}(p, n)$, the Lipschitz constant for $\nabla \mathcal{N}$ is $L_{\mathcal{N}}=$ $\beta_{1} \varepsilon+2(1+\varepsilon) \kappa$ and the for ∇f is $L_{f}=\alpha_{1}$ where α_{1} is the largest eigenvalue of A.

Proof. Take $X, Y \in \operatorname{St}_{B}(p, n)$, we have that $\nabla \mathcal{N}(X)=B X\left(X^{\top} B X\right)$, thus

$$
\begin{align*}
\nabla \mathcal{N}(X)-\nabla \mathcal{N}(Y) & =B\left(X\left(X^{\top} B X-I_{p}\right)-Y\left(Y^{\top} B Y\right)\right) \tag{63}\\
& =B(X-Y)\left(X^{\top} B X-I_{p}\right)+B\left(X^{\top} B X-Y^{\top} B Y\right) \tag{64}\\
& =B(X-Y)\left(X^{\top} B X-I_{p}\right)+B Y(X-Y)^{\top} B X+B Y Y^{\top} B(X-Y) \tag{65}
\end{align*}
$$

Taking the Frobenius norm and by the triangle inequality we get

$$
\begin{align*}
\|\nabla \mathcal{N}(X)-\nabla \mathcal{N}(Y)\| & \leq\|X-Y\|\left(\|B\|\left\|X^{\top} B X-I_{p}\right\|+\|B\|^{2}\|X\|\|Y\|+\|B\|^{2}\|Y\|^{2}\right) \tag{66}\\
& \leq\|X-Y\|\left(\beta_{1} \varepsilon+2(1+\varepsilon) \kappa\right) \tag{67}
\end{align*}
$$

where we used the fact that $X \in \operatorname{St}_{B}^{\varepsilon}(p, n)$ and we have that $\|X\|_{2} \leq \sqrt{(1+\varepsilon) \kappa}$ and the same for $Y \in \operatorname{St}_{B}^{\varepsilon}(p, n)$.
When $f=\frac{1}{2} \operatorname{Tr}\left(X^{\top} A X\right)$, we have that $\|\nabla f(X)-\nabla f(Y)\| \leq\|A\|_{2}\|X-Y\|$.

D. 3 Proof of Proposition 3.2

Proof. For ease of notation we denote $G=\nabla f(X) \in \mathbb{R}^{n \times p}$. The first property Definition 2.1(i) comes from

$$
\begin{equation*}
\left\langle\operatorname{skew}\left(G X^{\top} B\right) B X, B X S\right\rangle=0 \tag{68}
\end{equation*}
$$

which holds for a symmetric matrix S, since a skew-symmetric matrix is orthogonal in the trace inner product to a symmetric matrix,
The second property (ii) is a consequence of the following

$$
\begin{equation*}
\left\langle\Psi_{B}(X), G\right\rangle=\left\langle\operatorname{skew}\left(G X^{T} B\right) B X, G\right\rangle=\left\|\operatorname{skew}\left(G X^{T} B\right)\right\|_{\mathrm{F}}^{2} \geq \frac{1}{(1+\varepsilon) \kappa}\left\|\Psi_{B}(X)\right\|_{\mathrm{F}}^{2} \tag{69}
\end{equation*}
$$

where we use the bounds on $\|B X\|_{2} \leq \sqrt{(1+\varepsilon) \kappa}$ derived in the proof of Proposition 3.1 in (62) for $\kappa=\beta_{1} / \beta_{n}$ the condition number of B.
To show the third property (iii), we first consider a critical point $X \in \operatorname{St}_{B}(p, n)$, for which must hold

$$
\begin{equation*}
G=B X S, \tag{70}
\end{equation*}
$$

for some $S \in \operatorname{sym}(p)$ due to the constraints being symmetric and that $X^{\top} B X=I_{p}$ by feasibility. We have that at the critical point defined in (70), the relative descent direction is

$$
\begin{equation*}
\Psi_{B}(X)=\operatorname{skew}\left(G X^{\top} B\right) B X=\operatorname{skew}\left(B X S X^{\top} B\right) B X=0 \tag{71}
\end{equation*}
$$

where the second equality is the consequence of (70) and the third equality comes from the fact that $B X S X^{\top} B$ is symmetric.
To show the other side of the implication, that $\Psi_{B}(X)=0$ combined with feasibility imply that X is a critical point, we consider

$$
\begin{equation*}
0=\Psi(x)=\operatorname{skew}\left(G X^{\top} B\right) B X=G X^{\top} B^{2} X-B X G^{\top} B X \tag{72}
\end{equation*}
$$

which, since $X^{\top} B^{2} X \in \mathbb{R}^{p \times p}$ is invertible, is equivalent to

$$
\begin{equation*}
G=B X G^{\top} B X\left(X^{\top} B^{2} X\right)^{-1} \tag{73}
\end{equation*}
$$

For X to be a critical point, we must have that $G^{\top} B X\left(X^{\top} B^{2} X\right)^{-1}$ is symmetric:

$$
\begin{equation*}
G^{\top} B X\left(X^{\top} B^{2} X\right)^{-1}=\left(X^{\top} B^{2} X\right)^{-1} X^{\top} B G, \tag{74}
\end{equation*}
$$

which, after multiplying by $\left(X^{\top} B^{2} X\right)$ from both sides and rearranging terms, is equivalent to

$$
\begin{equation*}
X^{\top} B \operatorname{skew}\left(B X G^{\top}\right) B X=0 \tag{75}
\end{equation*}
$$

that is true from multiplying (72) by $X^{\top} B$ from the left.
For the other choice of relative gradient $\Psi_{B}^{\mathrm{R}}(X)=\operatorname{skew}\left(B^{-1} G X^{\top}\right) B X$, letting $M=B^{-1} G X^{\top}$, we find

$$
\begin{align*}
\left\langle\Psi_{B}^{\mathrm{R}}(X), G\right\rangle & =\langle\operatorname{skew}(M), B M B\rangle \tag{76}\\
& =\langle\operatorname{skew}(M), \operatorname{skew}(B M B)\rangle \tag{77}\\
& =\langle\operatorname{skew}(M), B \operatorname{skew}(M) B\rangle \tag{78}\\
& \geq\|\operatorname{skew}(M)\|_{\mathrm{F}}^{2} \beta_{n}^{2} \tag{79}
\end{align*}
$$

and similarly as before, it holds $\left\|\Psi_{B}^{\mathrm{R}}(X)\right\|^{2} \leq\|\operatorname{skew}(M)\|_{\mathrm{F}}^{2}(1+\varepsilon) \kappa$ which in turn leads to $\left\langle\Psi_{B}^{\mathrm{R}}(X), G\right\rangle \geq \frac{\beta_{n}^{2}}{(1+\varepsilon) \kappa}\left\|\Psi_{B}\right\|^{2}$

D. 4 Proof of Proposition 3.3

Proof. We start by deriving the bound on the variance of the normalizing component $\nabla \mathcal{N}(X)$. Consider U and V to be two independent random matrices taking i.i.d. values from the distribution of B_{ζ} with variance σ_{B}^{2}. We have that

$$
\begin{equation*}
\operatorname{Var}\left[U X\left(X^{\top} V X-I_{p}\right)\right]=\mathbb{E}_{U, V}\left[\left\|U X\left(X^{\top} V X-I_{p}\right)-B X\left(X^{\top} B X-I_{p}\right)\right\|^{2}\right] \tag{80}
\end{equation*}
$$

Introducing the random marginal $B X\left(X^{\top} V X-I_{p}\right)$, we further decompose

$$
\begin{align*}
& \operatorname{Var}\left[U X\left(X^{\top} V X-I_{p}\right)\right]=\mathbb{E}_{U, V}\left[\left\|U X\left(X^{\top} V X-I_{p}\right)-B X\left(X^{\top} V X-I_{p}\right)\right\|^{2}\right] \tag{81}\\
&+\mathbb{E}_{V}\left[\left\|B X\left(X^{\top} V X-I_{p}\right)-B X\left(X^{\top} B X-I_{p}\right)\right\|^{2}\right] . \tag{82}
\end{align*}
$$

The first term in the above is upper bounded as

$$
\begin{equation*}
\mathbb{E}_{U, V}\left[\left\|U X\left(X^{\top} V X-I_{p}\right)-B X\left(X^{\top} V X-I_{p}\right)\right\|^{2}\right] \leq \mathbb{E}_{U, V}\left[\|U-B\|_{\mathrm{F}}^{2}\left\|X\left(X^{\top} V X-I_{p}\right)\right\|_{2}^{2}\right] \tag{83}
\end{equation*}
$$

and the second is controlled by

$$
\begin{align*}
\mathbb{E}_{V}\left[\left\|B X\left(X^{\top} V X-I_{p}\right)-B X\left(X^{\top} B X-I_{p}\right)\right\|^{2}\right] & =\mathbb{E}_{V}\left[\left\|B X X^{\top}(V-B) X\right\|^{2}\right] \tag{85}\\
& \leq \sigma_{B}^{2}\|B\|_{2}^{2}\|X\|_{2}^{6} . \tag{86}
\end{align*}
$$

Taking things together

$$
\begin{align*}
\operatorname{Var}\left[U X\left(X^{\top} V X-I_{p}\right)\right] & \leq\left(\mathbb{E}_{V}\left[\left\|X\left(X^{\top} V X-I_{p}\right)\right\|_{2}^{2}\right]+\|B\|_{2}^{2}\|X\|_{2}^{6}\right) \sigma_{B}^{2} \tag{87}\\
& \leq\left(\frac{1+\varepsilon}{\beta_{n}} \mathbb{E}_{V}\left[\left\|X^{\top} V X-I_{p}\right\|_{2}^{2}\right]+\frac{(1+\varepsilon)^{3}}{\beta_{n}}\right) \sigma_{B}^{2} \tag{88}
\end{align*}
$$

where for the second inequality we can use the bounds on the singular values of $X \in \operatorname{St}_{B}^{\varepsilon}(p, n)$.
Similarly, the variance of the first term in the landing is controlled by introducing yet another random variable G that takes values from $\nabla f_{\xi}(X)$. We use the U -statistics variance decomposition twice to get

$$
\begin{align*}
\operatorname{Var}\left[\text { skew }\left(G X^{\top} U\right) V X\right] & =\mathbb{E}_{G, U, V}\left[\left\|\operatorname{skew}\left((G-\nabla f(X)) X^{\top} U\right) V X\right\|^{2}\right] \tag{89}\\
& +\mathbb{E}_{U, V}\left[\left\|\operatorname{skew}\left(\nabla f(X) X^{\top}(U-B)\right) V X\right\|^{2}\right] \tag{90}\\
& +\mathbb{E}_{V}\left[\left\|\operatorname{skew}\left(\nabla f(X) X^{\top} B\right)(V-B) X\right\|^{2}\right] \tag{91}
\end{align*}
$$

which leads to the bound
$\operatorname{Var}\left[\right.$ skew $\left.\left(G X^{\top} U\right) V X\right] \leq \sigma_{G}^{2} \mathbb{E}_{U}\left[\|U X\|_{2}^{2}\right]^{2}+\sigma_{B}^{2}\left(\left\|\nabla f(X) X^{\top}\right\|_{2}^{2} \mathbb{E}_{U}\left[\|U X\|_{2}^{2}\right]+\left\|\nabla f(X) X^{\top} B\right\|_{2}^{2}\|X\|_{2}^{2}\right)$
Joining the two bounds above, we get the result.

D. 5 Proof of Proposition 3.4

Proof. Same as in the proof of Theorem 2.8, by telescopically summing and averaging the iterates in (54), we arrive at the inequality

$$
\begin{equation*}
\frac{\eta \rho}{4 K} \sum_{k=1}^{K}\left\|\Psi_{B}\left(X^{k}\right)\right\|^{2}+\frac{\eta \rho \omega^{2}}{4 K} \sum_{k=0}^{K}\left\|h\left(X^{k}\right)\right\|^{2} \leq \frac{\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K+1}\right)}{K}+\frac{L_{\mathcal{L}} \eta^{2} \gamma^{2}}{2} \tag{93}
\end{equation*}
$$

which implies also that the following two inequalities hold individually

$$
\begin{align*}
& \frac{1}{K} \sum_{k=1}^{K}\left\|\Psi_{B}\left(X^{k}\right)\right\|^{2} \leq \frac{2}{\rho}\left(2 \frac{\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K+1}\right)}{K \eta}+L_{\mathcal{L}} \eta \gamma^{2}\right) \tag{94}\\
& \frac{1}{K} \sum_{k=0}^{K}\left\|h\left(X^{k}\right)\right\|^{2} \leq \frac{2}{\rho \omega^{2}}\left(2 \frac{\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K+1}\right)}{K \eta}+L_{\mathcal{L}} \eta \gamma^{2}\right) \tag{95}
\end{align*}
$$

In the above we see that the optimal step-size given K iterations is

$$
\begin{equation*}
\eta^{*}=\frac{\sqrt{2\left(L\left(X^{K+1}\right)-L\left(X^{0}\right)\right)}}{\sqrt{K L_{\mathcal{L}}} \gamma} \tag{96}
\end{equation*}
$$

and the value of the parenthesis on the right-hand side becomes $2 \sqrt{2\left(\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K}\right)\right) L_{\mathcal{L}} / K} \gamma$. We thus need

$$
\begin{equation*}
K=32 L_{\mathcal{L}} \gamma^{2} \frac{\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K}\right)}{e^{2} \rho^{2}} \tag{97}
\end{equation*}
$$

iterations to decrease $\inf _{k \leq K} \mathbb{E}\left\|\Psi\left(X^{k}\right)\right\| \leq e$ and similarly, but with extra ω^{4} in the denominator, for the constraint $\inf _{k \leq K} \mathbb{E}\left\|h\left(X^{k}\right)\right\| \leq e$.
Consider batch $r=1$, since each iteration cost $n p r$, we have the following number flops to get e-critical point

$$
\begin{equation*}
32 L_{\mathcal{L}} \gamma^{2} \frac{\mathcal{L}\left(X^{0}\right)-\mathcal{L}\left(X^{K}\right)}{e^{2} \rho^{2}} n p \tag{98}
\end{equation*}
$$

Taking that $L_{\mathcal{L}}=\mathcal{O}\left(\alpha_{1}+\beta_{1}+\kappa\right)$ from the previous LemmaD.1 and by the fact that $\rho=\mathcal{O}(1 / \kappa)$, we have that we require $\mathcal{O}\left(\gamma^{2} \kappa^{2}\left(\kappa+\alpha_{1}+\beta_{1}\right) n p / e^{2}\right)$ flops.
It remains to estimate the variance of the landing γ in terms of the variances of σ_{G}, σ_{B} using Proposition 3.3. which states:

$$
\begin{equation*}
\gamma^{2} \leq \sigma_{G}^{2} p_{B}^{2} \frac{(1+\varepsilon)^{2}}{\beta_{n}^{2}}+\sigma_{B}^{2} \frac{1+\varepsilon}{\beta_{n}}\left(4 \Delta\left(p_{B}+\beta_{1}^{2}\right)+p_{N}+(1+\varepsilon)^{2}\right) . \tag{99}
\end{equation*}
$$

Here we have that $p_{N}=\frac{1+\varepsilon}{\beta_{n}} \sigma_{B}^{2}+\varepsilon, \Delta=\sup _{X \in \mathrm{St}_{B}^{\varepsilon}(p, n)}\left\|\nabla f(X) X^{\top}\right\|_{2}^{2}$, and $p_{B}=\mathbb{E}_{\zeta}\left\|B_{\zeta}\right\|_{2}^{2}$ which can be bounded as $p_{B} \leq \beta_{1}^{2}+\sigma_{B}^{2}$. When the variance of the constraint is small and we have that $\sigma_{B}<\beta_{1}$ we get $p_{B} \leq 2 \overline{\beta_{1}^{2}}$ and

$$
\begin{equation*}
\gamma^{2} \leq 8 \kappa^{2} \beta_{1}^{2} \sigma_{G}^{2}+\left(24 \beta_{1} \kappa+10 / \beta_{n}\right) \sigma_{B}^{2}+\frac{4}{\beta_{n}} \sigma_{B}^{4} \tag{100}
\end{equation*}
$$

where we also use that $\varepsilon<1$. This gives an asymptotic bound

$$
\begin{equation*}
\gamma^{2} \leq \mathcal{O}\left(\kappa^{2} \beta_{1}^{2} \sigma_{G}^{2}+\left(\beta_{1} \kappa+\beta_{n}^{-1}\right) \sigma_{B}^{2}+\sigma_{B}^{4} / \beta_{n}\right) \tag{101}
\end{equation*}
$$

leading to the asymptotic number of floating point operations for e-criticality to be

$$
\begin{equation*}
\left(\kappa^{2} \beta_{1}^{2} \sigma_{G}^{2}+\left(\beta_{1} \kappa+\beta_{n}^{-1}\right) \sigma_{B}^{2}+\sigma_{B}^{4} / \beta_{n}\right) \frac{\kappa^{2}\left(\kappa+\alpha_{1}+\beta_{1}\right) n p}{e^{2}} \tag{102}
\end{equation*}
$$

where the leading term is

$$
\begin{equation*}
\left(\kappa \beta_{1} \sigma_{G}^{2}+\left(1+\beta_{1}^{-2}\right) \sigma_{B}^{2}\right) \frac{\beta_{1} \kappa^{3}\left(\kappa+\alpha_{1}+\beta_{1}\right) n p}{e^{2}} \tag{103}
\end{equation*}
$$

E Riemannian interpretation of $\Psi_{B}^{\mathrm{R}}(X)$ in Prop. 3.2

Similar to the work of (Gao et al, 2022b), we can provide a geometric interpretation of the relative descent direction $\Psi_{B}^{\mathrm{R}}(\bar{X})$ as a Riemannian gradient in a canonical-induced metric and the isometry between the standard Stiefel manifold $\operatorname{St}(p, n)$ and the generalized Stiefel manifold $\operatorname{St}_{B}(p, n)$. Let

$$
\mathrm{St}_{B, M}(p, n):=\left\{X: X^{\top} B X=M\right\},
$$

for $B, M \succ 0$, which is the sheet manifold of $\operatorname{St}_{B}(p, n)$, and consider a map

$$
\Phi_{B, M}: \operatorname{St}(p, n) \rightarrow \operatorname{St}_{B, M}(p, n): Y \mapsto B^{-\frac{1}{2}} Y M^{\frac{1}{2}}
$$

The map $\Phi_{B, M}$ acts as a diffeomorphism of the set of the full rank $\mathbb{R}^{n \times p}$ matrices onto itself and maps the standard Stiefel manifold $\operatorname{St}(p, n)$ to the generalized Stiefel manifold $\mathrm{St}_{B, M}(p, n)$. It is easy to obtain the tangent space at $X \in \operatorname{St}_{B, M}(p, n)$ via the standard definition:

$$
\begin{aligned}
\mathrm{T}_{X} \mathrm{St}_{B, M}(p, n) & =\left\{\xi \in \mathbb{R}^{n \times p}: \xi^{T} B X+X^{T} B \xi=0\right\} \\
& =\left\{X\left(X^{T} B X\right)^{-1} \Omega+B^{-1} X_{\perp} K: \Omega^{T}+\Omega=0, \Omega \in \mathbb{R}^{p \times p}, K \in \mathbb{R}^{(n-p) \times p}\right\} \\
& =\left\{W B X: W^{T}+W=0, W \in \mathbb{R}^{n \times n}\right\} \\
& =\left\{\Phi_{B, M}(\zeta): \zeta \in \mathrm{T}_{\Phi_{B, M}^{-1}(X)} \operatorname{St}(p, n)\right\}
\end{aligned}
$$

Consider the canonical metric on the standard Stiefel manifold $\operatorname{St}(p, n)$:

$$
g_{Y}^{\operatorname{St}(p, n)}\left(Z_{1}, Z_{2}\right)=\left\langle Z_{1},\left(I-\frac{1}{2} Y Y^{T}\right) Z_{2}\right\rangle
$$

Using the map $\Phi_{B, M}$, we define the metric $g^{\mathrm{St}_{B, M}(p, n)}$ which makes $\Phi_{B, M}$ an isometry as. Hence, we have that this metric is defined as

$$
\begin{aligned}
g_{X}^{\mathrm{St}_{B, M}(p, n)}(\xi, \zeta) & =g_{\Phi_{B}^{-1}(X)}^{\mathrm{St}(p, n)}\left(\Phi_{B}^{-1}(\xi), \Phi_{B}^{-1}(\zeta)\right) \\
& =\left\langle\xi,\left(B-\frac{1}{2} B X\left(X^{T} B X\right)^{-1} X^{T} B\right) \zeta\left(X^{T} B X\right)^{-1}\right\rangle
\end{aligned}
$$

Consequently, the corresponding normal space of $\operatorname{St}_{B, M}(p, n)$ is

$$
\mathrm{N}_{X} \operatorname{St}_{B, M}(p, n)=\left\{X\left(X^{T} B X\right)^{-1} S: S^{T}=S, S \in \mathbb{R}^{p \times p}\right\} .
$$

The form of the derived tangent and normal spaces allow us to derive their projection operators P_{X} and P_{X}^{\perp} respectively as

$$
\begin{aligned}
& P_{X}^{\perp}(Y)=X\left(X^{T} B X\right)^{-1} \operatorname{sym}\left(X^{T} B Y\right) \\
& P_{X}(Y)=Y-X\left(X^{T} B X\right)^{-1} \operatorname{sym}\left(X^{T} B Y\right)
\end{aligned}
$$

Since $\Phi_{B, M}$ is isometric, the Riemannian gradient w.r.t. $g^{\mathrm{St}_{B, M}(p, n)}$ can be computed directly by

$$
\begin{aligned}
\operatorname{grad}_{B, M} f(X) & =\Phi_{B, M}\left(\operatorname{grad}_{Y} f(Y)\right) \\
& =\Phi_{B, M}\left(\operatorname{grad}_{\Phi_{B, M}^{-1}(X)} f\left(\Phi_{B, M}^{-1}(X)\right)\right) \\
& =B^{-\frac{1}{2}} \operatorname{grad}_{\Phi_{B, M}^{-1}(X)} f\left(\Phi_{B, M}^{-1}(X)\right) M^{\frac{1}{2}} \\
& =2 B^{-\frac{1}{2}} \operatorname{skew}\left(\nabla f\left(\Phi_{B, M}^{-1}(X)\right)\left(\Phi_{B, M}^{-1}(X)\right)^{T}\right) \Phi_{B, M}^{-1}(X) M^{\frac{1}{2}} \\
& =2 \operatorname{skew}\left(B^{-\frac{1}{2}} \nabla f\left(B^{\frac{1}{2}} X M^{-\frac{1}{2}}\right) M^{-\frac{1}{2}} X^{T}\right) B X \\
& =2 \operatorname{skew}\left(B^{-\frac{1}{2}} B^{-\frac{1}{2}} \nabla f(X) M^{\frac{1}{2}} M^{-\frac{1}{2}} X^{T}\right) B X \\
& =2 \operatorname{skew}\left(B^{-1} \nabla f(X) X^{T}\right) B X .
\end{aligned}
$$

Hence, akin to the work of (Gao et al. 2022b) for the standard Stiefel manifold, we derived the equivalent Riemannian interpretation of $\Psi_{B}^{\mathrm{K}}(X)$ and the landing algorithm for the generalized Stiefel manifold $\mathrm{St}_{B}(p, n)$. Note, the formula for $\Psi_{B}^{\mathrm{R}}(X)$ involves computing an inverse of B and thus does not allow a simple unbiased estimator to be used in the stochastic case, as opposed to $\Psi_{B}(X)$.

