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A SUMMARY OF RETRACTIONS ON THE GENERALIZED STIEFEL MANIFOLD

For an update to a matrix X 2 StB(p, n) following the direction Z 2 Rn⇥p there are several ways to
compute a retraction.

• The Polar decomposition (Yger et al., 2012) uses

RetrStB (X,Z) = (X + Z)
�
Ip + Z>BZ

��1/2
, (18)

where it is necessary to compute matrix product and a matrix square root inverse, amounting
to O(n2p) flops.

• Mishra & Sepulchre (2016) observed that the aforementioned polar decomposition can be
expressed as UV > in terms of an SVD-like decomposition of X+Z = U⌃V >, where U, V
are orthogonal in respect to B-inner product, whose main cost is the eigendecomposition of
(X + Z)>B(X + Z).

• Recently, Sato & Aihara (2019) proposed the Cholesky-QR based retraction

RetrStB (X,Z) = (X + Z)R�1, (19)

where R 2 Rp⇥p comes from Cholesky factorization of R>R = (X + Z)>B(X + Z).
The flops required for the computation amount to O(n2p), which comes from the matrix
multiplications, the Cholesky factorization of an p ⇥ p matrix, and finally, the inverse
multiplication by a small triangular p ⇥ p matrix requires O(p3) to form and O(np2) to
multiply with.

B ADDITIONAL EXPERIMENTS AND FIGURES

For the experiment showed in Fig. 2, we pick the step-size ⌘ parameter to be ⌘ = 0.01 for the
Riemannian gradient descent, the landing with  R

B(X), and PLAM, and ⌘ = 200 for the landing
with  B(X). The normalizing parameter ! is chosen to be ! = 105 for the landing with  R

B(X),
! = 0.1 for the landing with  B(X), and ! = 200 for PLAM.
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Figure 4: Deterministic computation of the generalized eigenvalue problem with n = 1000, p = 500,
the condition number of the two matrices  = 100. Each algorithm is given a time limit of 120
seconds.

C PROOFS FOR SECTION 2

C.1 PROOF OF PROPOSITION 2.2

Proof. It follows from the definition (7) and Dh(x)Dh(x)⇤ (Dh(x)⇤)† = Dh(x) that
Dh(x)(gradf(x)) = 0, which implies the first condition in Definition 2.1 holds, i.e.,
hgradf(x), vi = 0 for all v 2 span(Dh(x)⇤). Since Dh(x)⇤ (Dh(x)⇤)† rf(x) 2 span(Dh(x)⇤),
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Figure 5: Stochastic canonical correlation analysis on the split MNIST dataset for p = 5 canonical
components.
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(a) Descent directions.
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Figure 6: Comparison of per-iteration computational time for different problem sizes of the descent
directions of algorithms in Fig. 2 and the cost of retractions compared to rN (X), both in the
deterministic setting when n = p = r, for which the matrix multiplication in  B(X) and rN (X)
are at the disadvantage. Computation time of randomly generated B,X 2 Rn⇥n averaged over 100
runs with CUDA implementation using cupy.

we have

kgradf(x)k2 = hgradf(x), gradf(x)i

=
D
gradf(x), rf(x)�Dh(x)⇤ (Dh(x)⇤)† rf(x)

E

= hgradf(x), rf(x)i ,

which verifies the second condition with ⇢ = 1 and the third condition with gradf(x) = 0 for a
critical point x 2 M.

C.2 PROOF OF LEMMA 2.4

Proof. For ease of notation we denote the current iterate x and the subsequent iterate as x̃ =
x� ⌘⇤(x). From LN -Lipschitz of N we have

N (x̃)  N (x) + hrN (x), �⌘⇤(x)i+
⌘2LN

2
k⇤(x)k2 (20)

= N (x)� ⌘!krN (x)k2 +
⌘2LN

2
k⇤(x)k2, (21)
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Figure 7: Comparison of the sensitivity to the choice of the step-size ⌘ and ! of the landing with
 B(X) and the PLAM method (Gao et al., 2022a) in the generalized eigenvalue problem experiment
presented in Fig. 2 with n = 1000, p = 500, and the condition number of the two matrices  = 100.
On the right we show log-log scale to better see the effect in earlier iterations. Both parameters are
picked as in the experiment for Fig. 2 and multiplied by a scalar from the set {0.25, 0.75, 1.25, 1.75}
for all possible pair combinations.
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Figure 8: Numerical evaluation of the upper safe-step bound ⌘(X) in Lemmma 2.4 per time, which
ensures that the iterates stay in St"B(p, n), for the two landing methods tested in Fig. 2 with the LN

bounded for the GEVP as in Lemma D.1. We see that the upper bound is only mildly restricting and
becomes even less restricting as the iterates come close to a stationary point.

where in the first line we use that N (x) has Lipschitz gradient with the constants LN for x in the
safe-region. To guarantee h(x̃)  ", we have to ensure that

N (x)� ⌘!krN (x)k2 +
⌘2LN

2
k⇤(x)k2 

"2

2
. (22)

Solving the quadratic inequality in (22) for the positive root ⌘ > 0 yields the results.

C.3 PROOF OF LEMMA 2.5

Proof. Assume that krN (x)k � C̄hkh(x)k is lower bounded in M
". We proceed to lower bound

the numerator of the safe-step size bound in Lemma 2.4 by making it independent of x 2 M
" as

follows
!krN (x)k2+

p
!2krN (x)k4 + LN k⇤(x)k2("2 � kh(x)k2)

� !C̄2
hkh(x)k

2 +
q

!2C̄4
hkh(x)k

4 + LN k (x)k2 ("2 � kh(x)k2) (23)

� !C̄2
hkh(x)k

2

✓
1 +

1
p
2

◆
+

1
p
2
k (x)k

p
LN ("2 � kh(x)k2) (24)

�

r
LN

2
k (x)k("� kh(x)k) +

✓
1 +

1
p
2

◆
!C̄2

hkh(x)k
2 (25)
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Figure 9: Robustness of the convergence towards the StB(p, n) for the landing with  B(X) in the
experiment for Fig. 2 based on the multiplied perturbations of ⌘ and ! parameters with the values
from {1/8, 1/4, 1/2, 2, 4}.

where the first inequality comes from using bounds from Assumption 2.2, the second inequality
comes from

p
a+ b � (

p
a +

p
b)/

p
2 for a, b � 0, and the final inequality from the fact that

p
a� b �

p
a�

p
b for a, b � 0 and a � b. As a result we have that the upper bound in Lemma 2.4

is lower-bounded by

⌘(x) �

q
LN
2 k (x)k("� kh(x)k) +

⇣
1 + 1

p
2

⌘
!C̄2

hkh(x)k
2

LN (k (x)k2 + !2C2
hkh(x)k

2)
, (26)

using the fact that k⇤(x)k2 = k (x)k2 + !2
krN (x)k2 and krN (x)k2  C2

hkh(x)k
2. Since the

minimum of (26) in terms of kh(x)k 2 [0, "] is on the boundary, when kh(x)k = 0 or kh(x)k = ",
we can further lower bound the safe step size as

⌘(x) � min

⇢
"

p
2LNC 

,
!C̄2

h"
2

LN (C2
 + !2Ch"2)

�
(27)

where we used for the minimum at kh(x)k = 0 and the bound supx2M" k (x)k  C .

C.4 PROOF OF LEMMA 2.6

Proof. The inner product has two parts
hrL(x), ⇤(x)i = DL(x)[⇤(x)] = DL(x)[ (x)] + !DL(x)[rN (x)]. (28)

We expand the first term in (28) as
DL(x)[ (x)] = hrf(x),  (x)i �

⌦
(Dh(x)⇤)†rf(x), Dh(x) (x)

↵
(29)

� hD�(x)[ (x)], h(x)i+ 2� hrN (x),  (x)i (30)
= hrf(x),  (x)i � hD�(x)[ (x)], h(x)i (31)

where we use that rkh(x)k2 = 2rN (x) and that the second and the third term are zero due to the
orthogonality of  (x) with the span of Dh(x)⇤. We expand the second term in (28) as

DL(x)[rN (x)] = hrf(x), rN (x)i �
⌦
(Dh(x)⇤)†rf(x), Dh(x)rN (x)

↵
(32)

� hD�(x)[rN (x)], h(x)i+ 2�krN (x)k2 (33)

=
⌦
(In �Dh(x)⇤(Dh(x)⇤)†)rf(x), rN (x)

↵
(34)

� hD�(x)[rN (x)], h(x)i+ 2�krN (x)k2 (35)

= �hD�(x)[rN (x)], h(x)i+ 2�krN (x)k2 (36)
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where in the second equality we move the adjoint Dh(x)⇤ in the second inner product to the left
side and join it with the first inner product. The third equality comes from the fact that due to the
projection of rf(x) on the orthogonal complement of Dh(x)⇤ and rN (x) = Dh(x)⇤h(x) are
orthogonal.

Joining the two components (31) and (36) together we get

hrL(x), ⇤(x)i = hrf(x),  (x)i � hD�(x)[⇤(x)], h(x)i+ 2�!krN (x)k2 (37)

� ⇢k (x)k2 � C�(k (x)k+ !krN (x)k)kh(x)k+ 2�!krN (x)k2 (38)

� ⇢k (x)k2 + !(2�Ch � C�)Chkh(x)k
2
� C�k (x)kkh(x)k (39)

� ⇢k (x)k2 + !(2�Ch � C�)Chkh(x)k
2
� C�

�
↵k (x)k2 + ↵�1

kh(x)k2
�

(40)

� (⇢� C�↵) k (x)k
2 + (2!�C2

h � !ChC� � ↵�1C�)kh(x)k
2 (41)

�
⇢

2

�
k (x)k2 + kh(x)k2

�
(42)

where the first inequality comes from hrf(x),  (x)i � ⇢k (x)k2 in Def. 2.1 combined with the
bound supx2M" kD�(x)k  C� and the triangle inequality, the second inequality comes from
bounding krN (x)k  Chkh(x)k using Assumption 2.2 and rearranging terms, the third inequality
comes from using the AG-inequality

p
ab  (a+ b)/2 with a = ↵kh(x)k and b = ↵�1

k (x)k for
an arbitrary ↵ > 0, in the fourth inequality we only rearrange terms, and finally, in the fifth inequality
we choose ↵ = ⇢/(2C�) and use that � = ( ⇢

4C2
h
+ C�

2Ch
+ C2

�

C2
h
)/!.

C.5 PROOF OF THEOREM 2.7

Proof. Due to x0 2 M
" and the step size being smaller than the bound in Lemma 2.5, we have that

all iterates remain in the safe region xk
2 M

". By smoothness of Fletcher’s augmented Lagrangian
we can expand

L(xk+1)  L(xk)� ⌘
⌦
⇤(xk), rL(xk)

↵
+

LL⌘2

2
k⇤(xk)k2 (43)

 L(xk)�
⌘⇢

2

�
k (xk)k2 + !2

kh(xk)k2
�
+

LL⌘2

2
k⇤(xk)k2 (44)

 L(xk)�
⌘

2

�
(⇢� LL⌘) k (x

k)k2 + !2
�
⇢� ⌘LLC

2
h

�
kh(xk)k2

�
, (45)

where in the second inequality we used the results of Lemma 2.6, and in the third inequality we use
the bound on krN (x)k  Chkh(x)k by Assumption 2.2. By the step size ⌘ < min

n
⇢

2LL
, ⇢
2LLC2

h

o

we have
⌘⇢

4
k (xk)k2 +

⌘⇢!2

4
kh(x)k2  L(xk)� L(xk+1). (46)

Telescopically summing the first K terms gives

⌘⇢

4

KX

k=0

k (xk)k2 +
⌘⇢!2

4

KX

k=0

kh(x)k2  L(x0)� L(xK+1)  L(x0)� L
⇤, (47)

which implies that the inequalities hold individually also

⌘⇢

4

KX

k=0

k (xk)k2  L(x0)� L
⇤ and

⌘⇢!2

4

KX

k=0

kh(x)k2  L(x0)� L
⇤. (48)
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C.6 PROOF OF THEOREM 2.8

Proof. By the Lipschitz continuity of the gradient of Fletcher’s augmented Lagrangian we have

E
h
L̃(xk+1)

i
 E


L(xk)� ⌘

D
⇤̃(xk), rL(xk)

E
+

LL⌘2

2
k⇤̃(xk)k2

�
(49)

 L(xk)� ⌘
⌦
⇤(xk), rL(xk)

↵
+

LL⌘2

2

�
k⇤(xk)k2 + �2

�
(50)

 L(xk)�
⌘⇢

2

�
k (xk)k2 + !2

kh(x)k2
�
+

LL⌘2

2

�
k⇤(xk)k2 + �2

�
(51)

 L(xk)�
⌘

2

�
(⇢� LL⌘) k (x

k)k2 + !2
�
⇢� ⌘LLC

2
h

�
kh(xk)k2

�
+

LL⌘2

2
�2,

(52)

where the first inequality comes from taking an expectation of the Lipschitz-continuity of L(x), in
the second inequality we take the expectation inside of the inner product using the fact that ⇤̃(xk) is
zero-centered and has bounded variance, the third and the last inequality comes as a consequence of
Lemma 2.6. By the step size being smaller than ⌘ < min

n
⇢

2LL
, ⇢
2LLC2

h

o

⌘⇢

4
k (xk)k2 +

⌘⇢!2

4
kh(x)k2  L(xk)� L(xk+1) +

LL⌘2

2
�2 (53)

Telescopically summing the first K terms gives

⌘⇢

4

KX

k=1

k (xk)k2 +
⌘⇢!2

4

KX

k=0

kh(xk)k2  L(x0)� L(xK+1) +
LL⌘2�2

2

KX

k=0

(1 + k)�1 (54)

 L(x0)� L
⇤ +

LL⌘2�2

2
log(K) (55)

which implies that the inequalities hold also individually

inf
kK

k (xk)k2 
4

⇢⌘0
p
K

✓
L(x0)� L

⇤ +
⌘0LL�2

2
log(K)

◆
(56)

inf
kK

kh(xk)k2 
4

⇢!2⌘0
p
K

✓
L(x0)� L

⇤ +
⌘0LL�2

2
log(K)

◆
, (57)

where we used that infkK k (xk)k2 
PK

k=0 ⌘kk (x
k)k2

⇣PK
k=0 ⌘k

⌘�1
and the fact that

P
kK ⌘k � ⌘0

p
K.

D PROOFS FOR SECTION 3

D.1 SPECIFIC FORMS OF Dh(x),�(X) FOR StB(p, n)

We begin by showing the specific form of the formulations derived in the previous section for the
case of the generalized Stiefel manifold. Differentiating the generalized Stiefel constraint yields
Dh(X)[V ] = X>BV + V >BX and the adjoint is derived as

hDh(X)⇤[V ], W i = hV, Dh(X)[W ]i =
⌦
V, WTBX +XTBW

↵
= h2BXsym(V ), W i , (58)

as such we have that Dh(X)⇤[V ] = 2BXsym(V ). Consequently

Dh(X)Dh(X)⇤[V ] = 2sym(V )X>B2X + 2X>B2Xsym(V ), (59)
and the Lagrange multiplier �(X) is defined in the case of the generalized Stiefel manifold as the
solution to the following Lyapunov equation

�(X)X>B2X +X>B2X�(X) = X>Brf(X) +rf(X)>BX. (60)
Importantly, due to �(X) being the unique solution to the linear equation and rf(X) being smooth,
�(X) is also smooth with respect to X , and as a smooth function defined over a compact set St"B(p, n),
its operator norm is bounded supX2St"B(p,n) kD�(X)kF  C� as required by Assumption 2.3.
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D.2 PROOF OF PROPOSITION 3.1

Proof. For kX>BX � IpkF  ", X = U⌃V > be the singular value decomposition of X , and
QDQ> be the spectral decomposition of B. We then have

"2 � kX>BX � Ipk
2
F = k⌃U>QD(U>Q)>⌃� Ipk

2
F (61)

where �i,�i are the positive eigenvalues of B and the singular values of X respectively in the
decreasing order. This implies that

p
(1� ")/�1  �i 

p
(1 + ")/�n. (62)

The above bound gives that the singular values of Dh(X)⇤ = 2BX are in the interval
[2
p
(1� ")�1, 2

p
(1 + ")] which in turn gives the constants Ch, C̄h.

Lemma D.1 (Lipschitz constants for the generalized eigenvalue problem). Let f = �
1
2 Tr(X

>AX)
and N (X) = kX>BX � Ipk2F as in the optimization problem corresponding to the generalized

eigenvalue problem. We have that, for X 2 St"B(p, n), the Lipschitz constant for rN is LN =
�1"+ 2(1 + ") and the for rf is Lf = ↵1 where ↵1 is the largest eigenvalue of A.

Proof. Take X,Y 2 StB(p, n), we have that rN (X) = BX(X>BX), thus

rN (X)�rN (Y ) = B
�
X(X>BX � Ip)� Y (Y >BY )

�
(63)

= B(X � Y )(X>BX � Ip) +B(X>BX � Y >BY ) (64)

= B(X � Y )(X>BX � Ip) +BY (X � Y )>BX +BY Y >B(X � Y )
(65)

Taking the Frobenius norm and by the triangle inequality we get

krN (X)�rN (Y )k  kX � Y k
�
kBkkX>BX � Ipk+ kBk

2
kXkkY k+ kBk

2
kY k

2
�

(66)
 kX � Y k(�1"+ 2(1 + ")), (67)

where we used the fact that X 2 St"B(p, n) and we have that kXk2 
p

(1 + ") and the same for
Y 2 St"B(p, n).

When f = 1
2 Tr(X

>AX), we have that krf(X)�rf(Y )k  kAk2kX � Y k.

D.3 PROOF OF PROPOSITION 3.2

Proof. For ease of notation we denote G = rf(X) 2 Rn⇥p. The first property Definition 2.1 (i)

comes from ⌦
skew(GX>B)BX, BXS

↵
= 0, (68)

which holds for a symmetric matrix S, since a skew-symmetric matrix is orthogonal in the trace inner
product to a symmetric matrix,

The second property (ii) is a consequence of the following

h B(X), Gi =
⌦
skew(GXTB)BX, G

↵
= kskew(GXTB)k2F �

1

(1 + ")
k B(X)k2F, (69)

where we use the bounds on kBXk2 
p

(1 + ") derived in the proof of Proposition 3.1 in (62)
for  = �1/�n the condition number of B.

To show the third property (iii), we first consider a critical point X 2 StB(p, n), for which must hold

G = BXS, (70)

for some S 2 sym(p) due to the constraints being symmetric and that X>BX = Ip by feasibility.
We have that at the critical point defined in (70), the relative descent direction is

 B(X) = skew(GX>B)BX = skew(BXSX>B)BX = 0, (71)
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where the second equality is the consequence of (70) and the third equality comes from the fact that
BXSX>B is symmetric.

To show the other side of the implication, that  B(X) = 0 combined with feasibility imply that X is
a critical point, we consider

0 =  (x) = skew(GX>B)BX = GX>B2X �BXG>BX (72)

which, since X>B2X 2 Rp⇥p is invertible, is equivalent to

G = BXG>BX
�
X>B2X

��1
. (73)

For X to be a critical point, we must have that G>BX
�
X>B2X

��1 is symmetric:

G>BX
�
X>B2X

��1
=

�
X>B2X

��1
X>BG, (74)

which, after multiplying by
�
X>B2X

�
from both sides and rearranging terms, is equivalent to

X>Bskew(BXG>)BX = 0, (75)

that is true from multiplying (72) by X>B from the left.

For the other choice of relative gradient  R
B(X) = skew(B�1GX>)BX , letting M = B�1GX>,

we find

h R
B(X), Gi = hskew(M), BMBi (76)

= hskew(M), skew(BMB)i (77)
= hskew(M), Bskew(M)Bi (78)

� kskew(M)k2F�
2
n (79)

and similarly as before, it holds k R
B(X)k2  kskew(M)k2F(1 + ") which in turn leads to

h R
B(X), Gi �

�2
n

(1+")k Bk
2

D.4 PROOF OF PROPOSITION 3.3

Proof. We start by deriving the bound on the variance of the normalizing component rN (X).
Consider U and V to be two independent random matrices taking i.i.d. values from the distribution
of B⇣ with variance �2

B . We have that

Var
⇥
UX(X>V X � Ip)

⇤
= EU,V

⇥
kUX(X>V X � Ip)�BX(X>BX � Ip)k

2
⇤

(80)

Introducing the random marginal BX(X>V X � Ip), we further decompose

Var
⇥
UX(X>V X � Ip)

⇤
= EU,V

⇥
kUX(X>V X � Ip)�BX(X>V X � Ip)k

2
⇤

(81)

+ EV

⇥
kBX(X>V X � Ip)�BX(X>BX � Ip)k

2
⇤
. (82)

The first term in the above is upper bounded as

EU,V

⇥
kUX(X>V X � Ip)�BX(X>V X � Ip)k

2
⇤
 EU,V

⇥
kU �Bk

2
FkX(X>V X � Ip)k

2
2

⇤

(83)

= �2
BEV [kX(X>V X � Ip)k

2
2] (84)

and the second is controlled by

EV

⇥
kBX(X>V X � Ip)�BX(X>BX � Ip)k

2
⇤
= EV

⇥
kBXX>(V �B)Xk

2
⇤

(85)

 �2
BkBk

2
2kXk

6
2. (86)

Taking things together

Var
⇥
UX(X>V X � Ip)

⇤
 (EV [kX(X>V X � Ip)k

2
2] + kBk

2
2kXk

6
2)�

2
B (87)



✓
1 + "

�n
EV [kX

>V X � Ipk
2
2] +

(1 + ")3

�n

◆
�2
B , (88)
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where for the second inequality we can use the bounds on the singular values of X 2 St"B(p, n).

Similarly, the variance of the first term in the landing is controlled by introducing yet another random
variable G that takes values from rf⇠(X). We use the U-statistics variance decomposition twice to
get

Var[skew
�
GX>U

�
V X] = EG,U,V [kskew((G�rf(X))X>U)V Xk

2] (89)

+ EU,V [kskew(rf(X)X>(U �B))V Xk
2] (90)

+ EV [kskew(rf(X)X>B)(V �B)Xk
2] (91)

which leads to the bound
Var[skew

�
GX>U

�
V X]  �2

GEU [kUXk
2
2]

2+�2
B(krf(X)X>

k
2
2EU [kUXk

2
2]+krf(X)X>Bk

2
2kXk

2
2)

(92)
Joining the two bounds above, we get the result.

D.5 PROOF OF PROPOSITION 3.4

Proof. Same as in the proof of Theorem 2.8, by telescopically summing and averaging the iterates in
(54), we arrive at the inequality

⌘⇢

4K

KX

k=1

k B(X
k)k2 +

⌘⇢!2

4K

KX

k=0

kh(Xk)k2 
L(X0)� L(XK+1)

K
+

LL⌘2�2

2
, (93)

which implies also that the following two inequalities hold individually

1

K

KX

k=1

k B(X
k)k2 

2

⇢

✓
2
L(X0)� L(XK+1)

K⌘
+ LL⌘�

2

◆
(94)

1

K

KX

k=0

kh(Xk)k2 
2

⇢!2

✓
2
L(X0)� L(XK+1)

K⌘
+ LL⌘�

2

◆
. (95)

In the above we see that the optimal step-size given K iterations is

⌘⇤ =

p
2(L(XK+1)� L(X0))

p
KLL�

(96)

and the value of the parenthesis on the right-hand side becomes 2
p
2(L(X0)� L(XK))LL/K�.

We thus need

K = 32LL�
2L(X

0)� L(XK)

e2⇢2
(97)

iterations to decrease infkK Ek (Xk)k  e and similarly, but with extra !4 in the denominator,
for the constraint infkK Ekh(Xk)k  e.

Consider batch r = 1, since each iteration cost npr, we have the following number flops to get
e-critical point

32LL�
2L(X

0)� L(XK)

e2⇢2
np. (98)

Taking that LL = O(↵1 + �1 + ) from the previous Lemma D.1 and by the fact that ⇢ = O(1/),
we have that we require O(�22(+ ↵1 + �1)np/e2) flops.

It remains to estimate the variance of the landing � in terms of the variances of �G,�B using
Proposition 3.3, which states:

�2
 �2

Gp
2
B
(1 + ")2

�2
n

+ �2
B
1 + "

�n

�
4�(pB + �2

1) + pN + (1 + ")2
�
. (99)

Here we have that pN = 1+"
�n

�2
B + ", � = supX2St"B(p,n) krf(X)X>

k
2
2, and pB = E⇣kB⇣k

2
2

which can be bounded as pB  �2
1 + �2

B . When the variance of the constraint is small and we have
that �B < �1 we get pB  2�2

1 and

�2
 82�2

1�
2
G + (24�1+ 10/�n)�

2
B +

4

�n
�4
B (100)
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where we also use that " < 1. This gives an asymptotic bound

�2
 O

�
2�2

1�
2
G +

�
�1+ ��1

n

�
�2
B + �4

B/�n

�
, (101)

leading to the asymptotic number of floating point operations for e-criticality to be

�
2�2

1�
2
G +

�
�1+ ��1

n

�
�2
B + �4

B/�n

� 2(+ ↵1 + �1)np

e2
, (102)

where the leading term is

�
�1�

2
G +

�
1 + ��2

1

�
�2
B

� �13(+ ↵1 + �1)np

e2
. (103)

E RIEMANNIAN INTERPRETATION OF  R
B(X) IN PROP. 3.2

Similar to the work of (Gao et al., 2022b), we can provide a geometric interpretation of the relative
descent direction  R

B(X) as a Riemannian gradient in a canonical-induced metric and the isometry
between the standard Stiefel manifold St(p, n) and the generalized Stiefel manifold StB(p, n). Let

StB,M (p, n) := {X : X>BX = M},

for B,M � 0, which is the sheet manifold of StB(p, n), and consider a map

�B,M : St(p, n) ! StB,M (p, n) : Y 7! B�
1
2YM

1
2 .

The map �B,M acts as a diffeomorphism of the set of the full rank Rn⇥p matrices onto itself and
maps the standard Stiefel manifold St(p, n) to the generalized Stiefel manifold StB,M (p, n). It is
easy to obtain the tangent space at X 2 StB,M (p, n) via the standard definition:

TXStB,M (p, n) = {⇠ 2 Rn⇥p : ⇠TBX +XTB⇠ = 0}

= {X(XTBX)�1⌦+B�1X?K : ⌦T + ⌦ = 0,⌦ 2 Rp⇥p,K 2 R(n�p)⇥p
}

= {WBX : WT +W = 0,W 2 Rn⇥n
}

= {�B,M (⇣) : ⇣ 2 T��1
B,M (X)St(p, n)}

Consider the canonical metric on the standard Stiefel manifold St(p, n):

gSt(p,n)Y (Z1, Z2) =

⌧
Z1, (I �

1

2
Y Y T )Z2

�

Using the map �B,M , we define the metric gStB,M (p,n) which makes �B,M an isometry as. Hence,
we have that this metric is defined as

g
StB,M (p,n)
X (⇠, ⇣) = gSt(p,n)

��1
B (X)

(��1
B (⇠),��1

B (⇣))

=

⌧
⇠, (B �

1

2
BX(XTBX)�1XTB)⇣(XTBX)�1

�
.

Consequently, the corresponding normal space of StB,M (p, n) is

NXStB,M (p, n) = {X(XTBX)�1S : ST = S, S 2 Rp⇥p
}.

The form of the derived tangent and normal spaces allow us to derive their projection operators PX

and P?

X respectively as

P?

X (Y ) = X(XTBX)�1sym(XTBY ),

PX(Y ) = Y �X(XTBX)�1sym(XTBY ).
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Since �B,M is isometric, the Riemannian gradient w.r.t. gStB,M (p,n) can be computed directly by

gradB,Mf(X) = �B,M (gradY f(Y ))

= �B,M (grad��1
B,M (X)f(�

�1
B,M (X)))

= B�
1
2 grad��1

B,M (X)f(�
�1
B,M (X))M

1
2

= 2B�
1
2 skew

⇣
rf(��1

B,M (X))(��1
B,M (X))T

⌘
��1

B,M (X)M
1
2

= 2skew(B�
1
2rf(B

1
2XM�

1
2 )M�

1
2XT )BX

= 2skew(B�
1
2B�

1
2rf(X)M

1
2M�

1
2XT )BX

= 2skew(B�1
rf(X)XT )BX.

Hence, akin to the work of (Gao et al., 2022b) for the standard Stiefel manifold, we derived the
equivalent Riemannian interpretation of  R

B(X) and the landing algorithm for the generalized Stiefel
manifold StB(p, n). Note, the formula for  R

B(X) involves computing an inverse of B and thus does
not allow a simple unbiased estimator to be used in the stochastic case, as opposed to  B(X).
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