
Under review as a conference paper at ICLR 2022

Appendices
A OTHER ABC MODELS

A.1 SPARSE LOCAL-TO-GLOBAL ATTENTION

It sparsifies attention pattern to reduce the number of tokens that are attended to (Beltagy et al., 2020;
Zaheer et al., 2020, inter alia). All queries attend to a subset of n < N “global tokens,” while
ignoring others. Therefore the effective context size is reduced to n. The global tokens are usually
pre-selected by positions according to using some heuristics. Local-to-global attenion is an instance
of ABC: it can be recovered by letting �t = ei if xt is the ith global token (i = 1, . . . , n), and the
zero vectors for others.

A.2 RANDOM MEMORY CONTROL

As a baseline, ABCRD stores each token in a randomly-selected memory slot. This is achieved by
letting �t = eit , where it is uniformly drawn from {1, . . . , n} for each t. It is designed as a baseline
to ABCMLP and Linformer to quantify the differences between random and learned bounded memory
control.

Random sparse attention patterns are explored by Zaheer et al. (2020), where a subset of n < N
tokens are randomly selected to be attended to by all. ABCRD is different, and it attends to all tokens,
but “squash” them into an n-slot memory.

A.3 COMPRESSIVE TRANSFORMER WITH MEAN POOLING

The compressive transformer (Rae et al., 2020) explores various ways to “squash” long context
into smaller and more compact representations. It achieves state-of-the-art performance on several
language modeling benchmarks. We show that at least the mean-pooling variant of the compressive
transformer can be seen as an ABC instance.

The mean-pooling variant of the compressive transformer compresses the context by
K = [k1, . . . ,kN]> 2 RN⇥d

! eK =
⇥
(k1 + · · ·+ kc)| {z }

c

/c, (kc+1 + · · ·+ k2c)| {z }
c

/c . . . , (kN�c+1 + · · ·+ kN)| {z }
c

/c
⇤>

2 Rn⇥d.

where c = N/n is the compression ratio. Here N mod n = 0 is assumed, since otherwise the
sequence can be padded to.

The above model is an ABC instance by letting
�i = eb(i�1)/cc+1/c. (14)

A.4 DILATED CONVOLUTION ATTENTION PATTERNS

The dilated attention pattern is similar to the sliding window attention and only considers the context
within a predefined window. It differs in that it attends to every other token:

eKt = [kt�2n+2,kt�2n+4, ...,kt�2,kt]
>. (15)

It can be simulated with two separate queues eKodd and eKeven:

eKodd
t =

(
U eKodd

t�1 + en ⌦ kt, if t is odd
eKodd

t�1, otherwise
eKeven

t =

(
U eKeven

t�1 + en ⌦ kt, if t is even
eKeven

t�1, otherwise
Likewise for the values. Depending on t, the query attends to one of the two queues:

output =

(�eVodd
�>

softmax(eKoddqt), if t is odd� eVeven
�>

softmax(eKevenqt), otherwise.

13

Under review as a conference paper at ICLR 2022

The above implementation could incur considerable amount of overhead and may be actually more
expensive than the the original dilated window formulation. Therefore it has more conceptual value
than practical one.

A.5 SHARED WORKSPACE AND LINEAR UNIFIED NESTED ATTENTION

Concurrently to this work, shared workspace (SW; Goyal et al., 2021) and linear unified nested
attention (LUNA; Ma et al., 2021) also learn contextualized memory control strategies. Both can be
seen as instances of ABC. At layer `, their �`

i is a function of previous layer’s memory eX`�1
2 Rn⇥d

and current layer’s input X`
2 RN⇥d:

�i =
h
softmax

⇣
eX`�1X`>

⌘i

:,i
, (16)

where [·]:,i denotes the ith column of a matrix. Query, key, and value projections are suppressed for
notation clarity.

SW and LUNA reveal the entire sequence to the control vectors, by constructing � as a function of
previous layer’s memory. Although both admit the recurrent computation as all ABC models do, they
are ill-suited for causal attention and autoregressive decoding, since future information is “leaked”
to �i from the previous layer. LUNA resorts to a variant of Katharopoulos et al. (2020) in causal
attention (Ma et al., 2021). In contrast, ABCMLP never depends �i on previous layer’s memory, but
only on current layer’s input.

B MORE DETAILS ABOUT ABC-MLP

B.1 NORMALIZATION IN CAUSAL ATTENTION

An equivalent implementation to Eq. 12 is to normalize eK and eV instead of �i vectors:
↵i = exp (W�xi) , �i = ↵i,

K̄ = eK
,

NX

j=1

↵j . V̄ = eV
,

NX

j=1

↵j .

output = V̄> softmax(K̄q).
M/z divides the `th row of matrix M by vector z’s `th dimension. This admits a linear complexity
computation graph for the causal variant of ABCMLP.

B.2 HIGHER-DIMENSIONAL CASE OF EXAMPLE 1

This section generalizes Example 1 to higher dimensional cases. Assume that the constant-sized
memory has n slots. �i is cauculated as in Eq. 12. Then eK =

PN
i=1 �i ⌦ ki 2 Rn⇥d. Each row

of eK can be seen as a separate attention mechanism with a pseudo query. Let [·]` denote the `th
row/dimension of a matrix/vector. Then for any ` = 1, . . . , n

⇥ eK
⇤
`
=

NX

i=1

[�i]` ⌦ ki =
NX

i=1

exp([W�]` · xi)PN
j=1 exp([W�]` · xj)

k>
i

= attn
�
[W�]`, {xi}

N
i=1, {ki}

N
i=1

�>
2 R1⇥d.

In other words, there are n attention mechanisms in total, each with a separately-parameterized
pseudo-query [W�]`. They summarize the context for n times in parallel, each producing a d-
dimensional vectors. These output vectors are then stacked into n-by-d memory eK. eV is likewise.

B.3 COMPLEXITY ANALYSIS FOR ABC

Table 6 compares ABC’s time and space complexity against softmax attention’s. Its savings come
from a per-query complexity reduction from O(N) to O(n), for both time and space. Since the
memory eK and eV is shared across different queries, ABC comes with a linear complexity in sequence
lengths. Therefore significant efficiency improvements can be achieved when n ⌧ N .

14

Under review as a conference paper at ICLR 2022

Time Complexity Space Complexity
Model Mem. Per Query Overall Mem. Per Query Overall
Softmax Attn. - O(N) O(N2) - O(N) O(N2)

ABC O(N) O(n) O(nN) O(n) O(n) O(nN)

Table 6: ABC’s time and space complexity in sequence length against the softmax attention’s. “Mem.”
indicates the time and space needed for calculating and storing memory eK, eV. N denotes the
sequence length, and n the memory size. The time complexity analysis assumes that the softmax
attention cannot be parallelized across the queries. In practice, this is common in, e.g., autoregressive
decoding, or for long sequences where the accelerators (e.g., GPUs) do not have enough threads to
fully parallelize softmax attention’s computation across different queries.

The same analysis applies to ABCMLP.

C EXPERIMENTAL DETAILS

C.1 LANGUAGE MODELING

We closely build on Baevski & Auli (2019) and Kasai et al. (2021b). The hyperparameters are
summarized in Table 9. All models are trained on 4 A100 GPUs.

C.2 MACHINE TRANSLATION

We experiment with a sentence-level (WMT14 EN-DE, Bojar et al., 2014) and a document-level
benchmark (IWSLT14 ES-EN, Cettolo et al., 2014) to assess model performance over various
sequence lengths. The preprocessing and data splits of WMT14 EN-DE follow Vaswani et al. (2017).
A 32,768 byte pair encoding (BPE; Sennrich et al., 2016) vocabulary is shared between source and
target languages. For IWSLT14, we follow Miculicich et al. (2018) and use the dev2010 subset for
development and tst2010-2012 for testing. The tokenization is also the same as Miculicich et al.
(2018): we tokenize and truecase Spanish and English with Moses (Koehn et al., 2007) and run
byte-pair encoding with 30k splits, shared between the two languages. The final dataset contains 1421,
8, and 42 documents for training, development, and testing. On average, each document contains
126.7 sentences and each sentence contains 21.7(ES)/22.5(EN) BPE. We use a sliding window with
length-4 and stride-one to generate our dataset. During inference, we use predicted context at the
target side.

We average the checkpoints from the last five epochs to obtain the final model Vaswani et al. (2017).
In inference, we apply beam search with size 5 and length penalty 0.6. Other hyperparameters are
summarized in Table 10. All models are trained on 4 RTX 2080 Ti GPUs.

Additional machine translation results. In addition to the results presented in §5.2, Table 7
further compares, on the WMT14 EN-DE dataset, the clustering-based (§3.2) and sliding-window
(§3.3) models of ABC, as well as ReLU and sigmoid variants of ABCMLP. Clustering and sliding-
window ABC variants underperform ABCMLP with the same memory sizes by more than 0.5 BLEU.
Both ReLU and sigmoid underperform their exp counterpart. We observe that ABCMLP-ReLU
suffers a severe “the rich gets richer” issue: all tokens are stored in a handful of slots, no matter how
large the memory size is. This could be the reason for its suboptimal accuracy. Further investigations
are deferred to future work.

MLP-exp-all replaces the encoder’s softmax attention modules with ABC, in addition to the decoder’s.
It underperforms ABCMLP by 0.3 BLEU.

Figure 2 compares ABCMLP’s (32-8 memory sizes) attention memory overhead with softmax atten-
tion’s. Following Kasai et al. (2021b), we consider a synthetic sequence-to-sequence generation task
with varying sequence lengths. A batch size of 16 and greedy decoding is used. The models are of
the same size as those in §5.2.

15

Under review as a conference paper at ICLR 2022

Model � Cross n Causal n Encoder n BLEU
BASE - - - - 27.2

ABC

Window 32 32 - 26.3

Cluster 32 32 - 26.8

MLP-ReLU 32 8 - -
MLP-ReLU 32 32 - 26.4

MLP-sigmoid 32 8 - 26.8
MLP-sigmoid 32 32 - 27.0

MLP-exp 32 8 - 27.1
MLP-exp 32 32 - 27.3
MLP-exp-all 32 32 32 27.0

Table 7: ABC variants’ SacreBLEU on WMT14 EN-DE sentence-level machine translation test set.
MLP-ReLU with 32/8 memory sizes fails to converge. MLP-exp-all applies ABC in both the encoder
and the decoder, while others only in the decoders.

Figure 2: Machine translation decoding memory overhead of the attention computation. The setting
follows Kasai et al. (2021b), with greedy decoding and batch size 16.

C.3 MASKED LANGUAGE MODEL FINETUNING

Our data for continued pretraining is a concatenation of BookCorpus (Zhu et al., 2015), English
Wikipedia, OpenWebText (Gokaslan & Cohen, 2019), and RealNews (Zellers et al., 2019). Our
data differs from RoBERTa’s pretraining data, which we do not have access to. We replace their
CC-News (Nagel, 2016) with RealNews, and drop Stories (Trinh & Le, 2018). At the time of this
project, the public access to the Stories dataset is broken.9 Our machine does not have a large enough
memory to load all the data. We therefore split the training data into 20 shards, after shuffling. Other
preprocessing is the same as Liu et al. (2019).10 The hyperparameters for continued pretraining
follows base-sized RoBERTa, part of which summarized in Table 11. All models are trained on a
single TPU v3 accelerator.

For downstream task finetuning, we use the same hyperparameters as Liu et al. (2019).11 Table 12
briefly introduces the tasks. The readers are referred to Wang et al. (2018) for futher details.

9
https://console.cloud.google.com/storage/browser/commonsense-reasoning/

reproduce/stories_corpus?pli=1

10
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.

pretraining.md

11
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.

glue.md

16

https://console.cloud.google.com/storage/browser/commonsense-reasoning/reproduce/stories_corpus?pli=1
https://console.cloud.google.com/storage/browser/commonsense-reasoning/reproduce/stories_corpus?pli=1
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md

Under review as a conference paper at ICLR 2022

Data Train Dev. Test Vocab. Sent./doc
WikiText-103 103M 218K 246K 268K -

WMT14 EN-DE 4.5M 3K 3K 32K -

IWSLT14 ES-EN 1713 8 56 30K 121.5

Table 8: Statistics for the datasets. WikiText-103 split sizes are in number of tokens, WMT14 in
number of sentences, and IWSLT14 in number of documents.

Hyperprams. Baevski & Auli (2019) Kasai et al. (2021b)

Layers 16 32
Heads 8 8
Embedding Size 1024 1024
Head Size 128 128
FFN Size 4096 4096
Batch Size 64 64
Learning Rate 1.0 1.0
Dropout 0.3 0.3
Layer Dropout - 0.2
Memory size [32, 64] 64

Table 9: Hyperparameters used in the language modeling experiments.

Hyperprams. WMT14 IWSLT14
Layers 6 6
Heads 8 8
Embedding Size 512 512
Head Size 64 64
FFN Size 2048 1024
Warmup Steps 6000 4000
Dropout 0.1 0.3
Cross Attention Memory Size 32 128
Causal Attention Memory Size 8 64

Table 10: Hyperparameters used in the machine translation experiments.

Hyperprams. Values
Layers 12
Heads 12
Embedding Size 768
Head Size 64
FFN Size 3072
Dropout 0.1
Memory Size [64, 128]

Table 11: Hyperparameters for continued pre-
training in the masked language model finetun-
ing experiments.

Data Task Train Dev.
MNLI Entailment 392K 9.8K
QNLI Entailment 105K 5.5K
QQP Paraphrase 363K 40K
SST-2 Sentiment 67K 873

Table 12: GLUE datasets and statistics. MNLI:
Williams et al. (2018); QNLI is compiled by
GLUE’s authors using Rajpurkar et al. (2016);
QQP: Csernai (2017, accessed September 1,
2020); SST-2: Socher et al. (2013).

17

	Introduction
	An Outer-Product View of Attention
	Attention with Bounded-Memory Control
	Linformer
	Clustering-Based Attention
	Sliding-Window Attention

	Learned Memory Control
	Experiments
	Language Modeling
	Machine Translation
	Masked Language Model Finetuning

	Analysis
	Conclusion
	Appendices
	Other Abc Models
	Sparse Local-to-global Attention
	Random Memory Control
	Compressive Transformer with Mean Pooling
	Dilated Convolution Attention Patterns
	Shared Workspace and Linear Unified Nested Attention

	More Details about Abc-MLP
	Normalization in Causal Attention
	Higher-dimensional Case of Example 1
	Complexity Analysis for Abc

	Experimental Details
	Language Modeling
	Machine Translation
	Masked Language Model Finetuning

