
A Proof of Theorem

Proof of Theorem 1:

Beginning with triangular inequality |x+ y| ≤ |x|+ |y| for x, y ∈ R, we have Equation (2)∣∣∣Exi∼P (xi|ai=0)L(c(zi), pi)− Exj∼P (xj |aj=1)L(c(zj), pj)
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For x1 ∼ P (x1 | ai = 0), z1 = g(x1) and x2 ∼ P (x2 | ai = 1), z2 = g(x2), L(c(z1), p1) and
L(c(z2), p2) are bounded by:

L(c(z1), p2)− εpεL ≤ L(c(z1), p1) ≤ L(c(z1), p2) + εpεL,

L(c(z2), p1)− εpεL ≤ L(c(z2), p2) ≤ L(c(z2), p1) + εpεL,
(9)

which is specified in Proposition 1. Taking the upper and lower bound of L(c(z1), p1) and
L(c(z2), p2) into |L(c(z1), p1)− L(c(z2), p2)|, we have∣∣∣L(c(z1), p1)− L(c(z2), p2)

∣∣∣
≤

∣∣∣∣∣12
(
L(c(z1), p1) + L(c(z1), p2) + εpεL

)
− 1

2

(
L(c(z2), p2) + L(c(z2), p1)− εpεL

)∣∣∣∣∣
≤

∣∣∣∣∣12
(
L(c(z1), p1) + L(c(z1), p2)

)
− 1

2

(
L(c(z2), p2) + L(c(z2), p1)

)∣∣∣∣∣+ εpεL

=

∣∣∣∣∣L
(
c(z1),

p1 + p2
2

)
− L

(
c(z2),

p1 + p2
2

)∣∣∣∣∣+ εpεL

(10)

To obtain the upper bound of Equation (10), we consider the second-order taylor expansion for
L(c(z1), (p1 + p2)/2) and L(c(z2), (p1 + p2)/2) given by
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We relax L(c(z1), (p1 + p2)/2) and L(c(z2), (p1 + p2)/2) by its second-order taylor expansion,
respectively. |L(c(z1), (p1 + p2)/2)− L(c(z2), (p1 + p2)/2)| is bounded by∣∣∣∣∣L
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Hence, Equation (10) is bounded by∣∣∣L(c(z1), p1)− L(c(z2), p2)

∣∣∣ ≤ λzεpεc + εpεL (11)

Finally, we conclude the proof by∣∣∣Exi∼P (xi|ai=0)L(c(zi), pi)− Exj∼P (xj |aj=1)L(c(zj), pj)
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Proposition 1 For x1 ∼ P (x1 | ai = 0), z1 = g(x1) and x2 ∼ P (x2 | ai = 1), z2 = g(x2),
L(c(z1), p1) and L(c(z2), p2) are bounded by:

L(c(z1), p2)− εpεL ≤ L(c(z1), p1) ≤ L(c(z1), p2) + εpεL,

L(c(z2), p1)− εpεL ≤ L(c(z2), p2) ≤ L(c(z2), p1) + εpεL,
(13)

Proof : Without the loss of generality, we only prove the bound of L(c(z1), p1), because that
of L(c(z2), p2) can be achieved based on similar deviation. Specifically, we begin with having
L(c(z1), p2) given by:

L(c(z1), p2) = L(c(z1), p1) + L(c(z1), p2)− L(c(z1), p1)

≤ L(c(z1), p1) +
∣∣L(c(z1), p2)− L(c(z1), p1)

∣∣
L(c(z1), p2) ≥ L(c(z1), p1)−

∣∣L(c(z1), p2)− L(c(z1), p1)
∣∣ (14)

Note that |p1 − p2| ≤ εp and l(c(z1), y = j) ≤ εL for j = 0, 1, we have the upper bound of
|L(c(z1), p2)− L(c(z1), p1)| given by∣∣L(c(z1), p2)− L(c(z1), p1)

∣∣ =
∣∣(p1 − p2)l(c(z1), y = 0) + (p2 − p1)l(c(z1), y = 1)
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(15)

Hence, L(c(z1), p1) is bounded by the follow inequality, where that of L(c(z2), p2) can be achieved
based on similar derivation process.

L(c(z1), p2)− εpεL ≤ L(c(z1), p1) ≤ L(c(z1), p2) + εpεL (16)

B Justification for Uncertainty-based Proxy Annotation

Generating proxy annotations for sensitive attributes is based on the observation that the bias-amplified
model tends to assign the privileged group more desired outcome, while assigning the under-privileged
group less-desired outcome. For instance in the Adult dataset, the average prediction probability of
the desired label (higher income) for the male group is 0.078 higher than that of the female group.
Note that this comparison is performed for both groups with the same desired ground truth label. In
contrast, the average probability of the less-desired label for the female group is 0.113 higher than that
of the male group. Similarly for the MEPS dataset, the average probability of assigning the desired
label to the priviledged ‘white’ group is 0.128 higher than that of the under-priviledged ‘non-white’
group; whereas the average probability of assigning the less-desired label to the ‘non-white’ group
is 0.075 higher than that of the ‘white’ group. Note that these numbers are statistically significant,
given that the prediction probability for each instance is within [0, 1].

C Benchmark Datasets

In this section, we introduce more details about the three benchmark datasets we used.

• Adult Income Dataset (Adult3): The main goal of this task is to predict whether a person makes
over 50K a year or not. There are many protected attributes in this dataset, including gender, race,
age, etc. In this work, we focus on gender bias, where the DNN models trained using standard
cross entropy loss would show discrimination towards females. A sample belonging to the female
group will be given much lower probability for making over 50k a year compared to a male, even if
they have the same profile.

• Medical Expenditure Dataset (MEPS4): This is used to predict whether a person has high
utilization or not. Here the utilization is determined by the total number of trips requiring some sort
of medical care. We examine race bias for this dataset, where DNN models trained via cross entropy
loss will be biased towards the non-white group. Here the privileged white group includes the
original features RACEV2X = 1 (White) and HISPANX = 2 (non Hispanic), while the unprivileged
non-white group includes all other demographic groups.

3https://archive.ics.uci.edu/ml/datasets/adult
4https://github.com/Trusted-AI/AIF360/blob/master/examples/tutorial_medical_

expenditure.ipynb
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Table 5: Comparison with several baseline methods

Debiasing Encoder Debiasing Classification Head Requiring Sensitive Attribute

Vanilla 7 7 7
Adversarial X 7 X
EOR X X X
RNF 7 X 7
RNF_GT 7 X X

• CelebFaces Attributes (CelebA5): This is a large-scale face attributes dataset consisting of more
than 200K celebrity images. Each image is labelled with 40 attribute annotations, where we only
use Male and Wavy_Hair two attributes. We formulate it as a binary classification task, targeting to
predict whether an image contains wavy hair or not. We focus on gender bias, where DNN models
trained with standard cross entropy loss will show discrimination towards males.

D Comparing Baselines

In this section, we introduce more details about the comparing baselines.

• Vanilla: This model is trained using standard cross entropy loss. The learning rate is fixed as 10−3

for tabular datasets and 3 ∗ 10−5 for image dataset respectively. For tabular datasets, we use the
batch size of 64, and train the model for a maximum of 20 epochs. For image dataset, we use
batch size of 390 and train the model for a maximum of 8 epochs. For all tasks, we use the Adam
optimizer, and early stopping is used to avoid the overfitting.

• Adversarial Training (Adversarial): Consider that the classification model is f(x) = c(g(x))
where g(x) is the encoder and c(·) is the classification head. For adversarial training, another
adversarial classifier cadv(·) is also constructed. The classification head c(·) and the adversarial
classifier cadv(·) are trained simultaneously. The goal of the classification head is to maximize
the encoder’s ability to predict the main classification task labels, while the goal of the adversarial
classifier is to minimize the encoder’s ability to predict the protected attributes. The adversarial
training process is denoted as follows:

arg min
cadv

L(cadv(g(x)), a)

arg min
g,c

L(c(g(x)), y)− β1L(cadv(g(x)), a),
(17)

The adversarial classifier cadv(·) and the combination of encoder g(x) and classification head c(·)
are trained iteratively. Note that the protected attribute annotation a is required in order to train the
adversarial classifier cadv(·). The hyperparameter β1 controls the fairness-accuracy trade-off. A
higher β1 value will lead to better mitigation performance, while at the expense of lower accuracy.

• Equalized Odds Regularization (EOR): It directly optimizes the EO metric in Eq. (7):

LEOR = LCE + β2∆EO, (18)

where LCE indicates the standard cross entropy loss, and ∆EO denotes the Equalized Odds
metric. Note that the Equalized Odds metric is calculated within a training batch, and instance-
level protected attribute annotations are needed to calculate the Equalized Odds metric. The
hyperparameter β2 is used to control the fairness-accuracy trade off, where a larger β2 value will
impose a stronger regularization, leading to better mitigation performance and worse accuracy.

We list the comparison between different comparing methods in Table 5, including whether the
debiasing is performed at the encoder-level or at the classification-head-level, as well as whether
sensitive attributes annotations are needed in the model training process.

E More on Experimental Analysis

E.1 Classification Models

In this section, we introduce more details about the classification models. Since the goal of this work
is not to achieve state-of-the-art prediction performance, we only use standard classification models.

5http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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• MLP: It contains three layers, where the dimension for both hidden layers is fixed as 50. The
dimension for the input layer is 98 for Adult dataset and 138 for MEPS dataset respectively. We use
Relu activation after each linear layer and also utilize the Dropout with probability of 0.2. Except
Section 4.5, we use the first layer as the encoder and the rest two layers as the classification head
for all other sections throughout this work.

• CNN: It is based on ResNet-18 [1]. Note that different from the original ResNet-18, we use
two fully connected layers. The dimension for two layers is 512 and 100 respectively. Except
Section 4.5, we use the convolutional layers as the encoder, and the rest two fully connected layers
as the classification head for all other sections throughout this work.

E.2 Experimental Settings

In this section, we introduce more details about the experimental settings.

• Fairness-accuracy Curve: In Section 4.2, we reported the fairness-accuracy trade off curve. For
RNF and RNFGT, we vary hyper-parameter α in Eq. (4) to draw the curve. For Adversarial and
EOR, we vary the value of β1 and β2 respectively to get the fairness-accuracy curve.

• A Single Point: Besides the curve in Section 4.2, we also reported a single point in the curve as in
Section 4.5 and in Section 4.6. This is obtained by fixing the hyper-parameter α in Eq. (4).

E.3 Applications with Non-binary Sensitive Attributes

Our RNF can also be applied to applications with non-binary sensitive attributes. Suppose we have
three groups with corresponding ground truth sensitive annotations, the loss function in Eq.(3) can be
modified as follows:∣∣∣∣c(λ1z1 + λ2z2 + λ3z3

λ1 + λ2 + λ3

)
− c (1/3z1 + 1/3z2 + 1/3z3)

∣∣∣∣ , (19)

where all three lambda values are sampled from the interval [0, 1].

Assign Proxy Annotations among Groups Another question is that how does RNF assign proxy
annotations among multiple groups using the GCE framework. A simple extension of the RNF
framework to the non-binary attribute setting is to use a similar strategy to that of many multi-
class classification works and treat this as one-versus-all classification task for each of the sensitive
attributes. For instance, given three race groups Caucasian, African-American, and Hispanic, the
GCE framework can generate proxy annotations considering the privileged Caucasian group and
under-priviledged African-American and Hispanic groups. Given a sample with multiple proxy
annotations corresponding to the different sensitive attributes, we can either use the soft annotations
or the hard one (by argmax) to train the DNN model.

E.4 Variability in Performance of the Models

Table 6: Variability in performance.
MEPS

Models Accuracy DP ∆EO

Run 1 0.817 0.918 -0.041
Run 2 0.817 0.931 -0.048
Run 3 0.808 0.928 -0.056
Run 4 0.811 0.921 -0.051
Run 5 0.819 0.917 -0.049

Mean 0.814 0.923 -0.049
Standard deviation 0.004 0.006 0.005

In this section, we analyze the variability effect of fairness
metrics performance in model training. DNN model training
exhibits large variability due to factors like the choice of
random seeds, training/validation/test splits, data loading
order, batch size, optimizer, learning rate, training epochs,
etc. We report the performance of RNF over 5 runs with
different seeds along with standard deviation for the Adult
dataset. Note that we use the same train/test/valid split for
our model and the results correspond to a single point on
the fairness accuracy curve. Please refer to Section 4.1.2
for hyper-parameters and other experimental settings. The
performance with 5 runs and the corresponding mean and standard deviation are given in Table 6.
We observe that there is variability effect for the fairness metrics performance when using different
random seeds. However, the performance of RNF is relatively consistent across different runs with a
very small standard deviation.
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