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Appendix

Contents

The following items are included in the supplementary material:

– Exploration of the source domain shift in Section A.

– Class-wise performance of semantic segmentation in Section B.

– Ablation study on the scalar weight λ and the number of iterations for
distribution optimization training in Section C.

– More visualization results in Section D.
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Fig.A: Impact of the source do-
main shifts. Performance of the adapta-
tion parameters that are trained in Day-
time → Fog and evaluated in Synthetic
Daytime → Fog is illustrated.
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Fig. B: Impact of the number of
distribution optimization iterations.
The averaged mIoU of ProGBA adapta-
tion from Cityscapes to all target domains
in ACDC is provided.

A Exploration of the source domain shift

To further investigate the generalizability of distributions learned by ProGBA,
we initially train a augmentation distribution tailored for Daytime → Fog. This
distribution is then utilized to assess performance in Synthetic Daytime → Fog
scenario. Similar operations are conducted on an ERM-based approach for com-
parison. We evaluate the model’s ability to capture crucial characteristics by
examining if the adaptation distributions developed for Daytime → Fog en-
hance performance in the Synthetic Daytime → Fog scenario. Results shown
in Fig. A indicate that the adaptive augmentation learned by the ERM-based
method underperforms in Synthetic Daytime → Fog, suggesting its ineffective-
ness in discerning the fundamental disparities between daytime and foggy day.
Conversely, despite the shift from actual to the synthetic daytime scenario, the
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Table A: Zero-shot domain adaptation in semantic segmentation. Perfor-
mance of ProGBA compared against PØDA [2] and source-only baseline. This ta-
ble provides details of the main results in Table 1. All models are trained on the
Cityscapes [1]. The best performance in each column is highlighted in bold.
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ACDC
Night

Source-only 78.84 26.73 58.84 20.88 18.39 26.36 22.16 16.39 45.94 8.86 4.53 14.27 0.30 44.14 0.71 0.00 56.06 7.12 23.93 26.36
PØDA [2] 81.06 33.11 60.46 28.11 25.66 27.42 21.16 18.78 43.92 10.58 0.34 24.78 0.01 40.65 1.07 0.00 55.02 10.17 26.14 28.24
ProGBA 80.87 34.03 56.05 28.49 27.26 28.97 17.92 22.66 47.32 12.74 1.00 23.06 2.59 47.69 0.00 0.00 65.38 8.93 38.33 30.18

ACDC
Snow

Source-only 75.95 34.35 76.73 39.33 33.54 30.10 47.72 48.14 79.28 9.99 94.41 38.82 0.86 73.54 70.36 28.07 65.29 29.94 26.48 47.47
PØDA [2] 77.73 41.26 78.71 41.82 31.12 28.12 57.83 43.75 79.85 7.60 94.87 42.52 0.64 72.04 71.73 26.11 66.88 29.38 31.70 48.61
ProGBA 81.54 46.43 77.70 44.01 31.59 26.66 55.68 43.59 79.92 8.91 94.90 43.34 0.04 73.83 73.42 26.89 70.80 28.07 22.53 48.93

ACDC
Rain

Source-only 77.82 31.98 80.84 21.57 24.78 31.28 49.69 45.64 87.19 53.41 96.34 45.34 0.55 77.86 36.91 79.81 38.76 16.23 9.24 47.64
PØDA [2] 78.81 33.80 80.74 21.68 25.20 32.41 52.19 42.65 86.32 52.74 96.42 46.78 0.18 77.23 36.14 85.25 31.70 10.10 19.63 47.89
ProGBA 80.62 44.83 82.84 26.40 30.72 28.17 51.74 42.78 87.07 51.49 96.44 45.24 0.59 77.18 49.85 75.29 42.03 15.73 14.28 49.65

ACDC
Fog

Source-only 92.58 70.48 82.29 47.47 33.30 37.87 57.79 49.06 84.52 51.53 95.86 27.80 35.47 78.89 76.84 82.57 89.90 19.11 23.50 59.83
PØDA [2] 92.91 71.05 81.27 42.18 31.00 38.09 56.98 44.36 83.10 25.10 96.10 28.10 16.38 77.42 71.86 84.55 87.86 50.53 31.20 59.84
ProGBA 92.81 71.47 81.84 49.85 34.08 30.11 56.94 46.52 84.45 53.59 95.57 31.61 34.68 77.52 72.73 90.78 87.84 28.67 25.46 60.34

GTA5
Source-only 76.69 27.19 78.67 40.03 14.74 27.47 30.02 12.52 68.10 41.34 89.00 61.44 39.68 78.71 62.58 63.05 0.00 44.84 23.08 46.27
PØDA [2] 77.44 29.20 78.69 40.53 13.83 27.21 30.75 11.16 67.69 43.13 88.66 63.61 41.77 78.48 64.34 62.75 0.00 40.82 22.77 46.46
ProGBA 79.27 37.27 79.59 39.75 16.44 27.73 31.11 11.39 67.95 42.55 88.60 65.21 43.05 78.69 61.93 57.90 0.00 53.29 24.43 47.69

Table B: Zero-shot domain adaptation in semantic segmentation. This table
provides details of the main results in Table 1. All models are trained on the GTA5 [4].
The best performance in each column is highlighted in bold.

Target eval Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
affi

c
lig

ht

tr
affi

c
si

gn

ve
ge

ta
ti

on

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

mIoU

Cityscapes
Source-only 85.77 23.11 83.02 38.59 31.64 20.83 32.90 16.83 84.60 45.58 87.45 54.64 11.22 78.89 25.80 48.38 0.15 18.73 31.37 43.13
PØDA [2] 78.47 31.17 83.66 43.12 32.97 23.23 31.59 20.44 85.00 29.66 87.01 55.60 13.92 78.08 28.63 43.18 0.00 18.56 43.20 43.55
ProGBA 84.46 25.98 82.75 44.65 28.76 19.96 32.16 16.69 83.93 43.95 86.95 53.62 16.26 79.70 30.13 49.31 0.00 17.79 32.76 43.67

augmentation distribution learned by ProGBA successfully adjusts to foggy day
conditions, maintaining the same level of performance as in Daytime → Fog. This
highlights ProGBA’s capacity to discern more profound distinctions between
source and target domains, thereby affirming its efficiency and robustness.



3

B Class-wise performance

Table C: Performance evaluation of different λ values. ProGBA adaptation
results(mIoU) from Cityscapes to ACDC are reported. The best performance in each
column is highlighted in bold.

λ ACDC Fog ACDC Night ACDC Rain ACDC Snow Mean

0.001 60.69 30.00 48.93 46.89 47.59
0.01 59.57 29.55 49.88 47.69 48.45
0.1 58.82 30.53 46.72 48.83 48.18
1.0 60.10 27.85 48.69 47.29 47.44

We present class-wise IoUs for semantic segmentation in Table A and Table B.
In detail, Table A showcases outcomes from models trained on the Cityscapes
dataset [1] and evaluated on various domain validation sets from ACDC [5].
Meanwhile, Table B details results from models trained on the GTA5 [4] dataset
and assessed on the Cityscapes [1] validation set, which represents the CS → Syn-
thesis scenario. Specifically, the lower IoU results for certain classes may be due
to their complexity and distinct characteristics. Traffic signs are smaller and less
frequent, while vegetation has high variability. These factors challenge retaining
consistent semantic information during domain adaptation.

C Additional ablation study

C.1 Scalar weights

Table C showcases a performance comparison across various target domains
within the ACDC dataset [5], evaluating the effect of different λ parameter
values. With an increase in λ, there’s a noticeable uptick in the mean IoU,
peaking at λ = 0.01. Beyond this point, performance begins to decline with
further increases in λ. Therefore, 0.01 as the optimal value for λ is selected.

C.2 Number of iterations

In all experiments conducted, we carry out 2500 iterations of distribution opti-
mization. Fig. B illustrates the impact of varying the total number of iterations,
where we identify a critical inflection point at 2500 iterations. Iterations below
this threshold prove inadequate for achieving style alignment, whereas exceed-
ing 2500 iterations leads to a decline in performance. This phenomenon may be
caused by over-stylization [3].
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ProGBA PØDA[2]

Fig. C: The t-SNE visualization of features. Different categories and the use of
domain adaptation are indicated by colors.

D Visualization

D.1 Feature visualization

Fig. C shows the t-SNE visualizations of PØDA and ProGBA. PØDA’s features
are more dispersed due to randomly sampling stored (µi, σi), leading to less clear
decision boundaries. In contrast, ProGBA produces clearer feature boundaries
because augmented features are sampled from the same distribution for the same
target domain, ensuring less deviation.

D.2 More qualitative examples

We offer additional visualization results for semantic segmentation of Cityscapes
→ ACDC in Fig. D and Cityscapes → GTA5(Synthesis) in Fig. E. As for
Cityscapes → ACDC, our predictions with ProGBA show better performance in
dark light or with heavy occlusion, demonstrating superior object segmentation
visual results compared to both the source-only approach and the model utiliz-
ing PØDA [2]. In the context of Cityscapes → GTA5(Synthesis), the ProGBA-
enhanced model excels in handling large objects, yielding precise segmentation
outcomes.
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Ground TruthInput Source-only PØDA [2] ProGBA
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Fig.D: Qualitative examples on Cityscapes → ACDC validation set.

Ground TruthInput Source-only PØDA [2] ProGBA

Fig. E: Qualitative examples on Cityscapes → GTA5(Synthesis) validation set.
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