
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE EXPONENTIAL DECAY RATES FOR ADAM-
APPENDIX

Anonymous authors
Paper under double-blind review

1 SIMULATION EXPERIMENTS AND DISCUSSIONS

1.1 SETUP OF EXPERIMENTS

In this section, we undertake an assessment of the efficiency and effectiveness of AdamE. Our ex-
perimental approach involves the utilization of various tasks, including language modeling, node
classification and graph clustering. To gauge the performance of AdamE, we compare it with sev-
eral optimization algorithms, namely AdaBelief, AdaBound, AdamW, RAdam, Adam, EAdam and
Padam. Diverse architectural models, such as LSTM, ProtGNN+GIN Zhang et al. (2022), Graph-
MLP Hu et al. (2021), DCRN Liu et al. (2022), and UniSAGE Huang & Yang (2021), are employed,
along with different learning rates, to ensure the robustness and stability of the results. All experi-
ments are executed within the PyTorch 1.7 framework, utilizing NVIDIA Quadro RTX 8000 GPUs.
The source code of LSTM, ProtGNN+GIN, Graph-MLP, DCRN, UniSAGE can be found in the
Appendix 8.4.

Table 1: The data-sets and architectures used in our experiments

Data-set Architecture Task

WikiText-2 LSTM Language Modeling
BBBP ProtGNN+GIN Node Classification
Cora Graph-MLP Node Classification
Citeseer UniSAGE Node Classification
DBLP DCRN Graph Clustering

1.2 EXPERIMENTS ON LANGUAGE MODELING

We carry out experiment on language modeling task and consider 1-layer, 2-layer, 3-layer and 4-
layer LSTM network on the WikiText-2 dataset for validating the performance of AdamE. For ex-
periments of language modeling, the weight decay is set as 1.2 × 10−6 for all optimizers and train
LSTM network for 200 epochs with batch-size 20. At 100th epoch and 145th epoch, the learning
rates is multiplied by 0.1. The initial learning rate of Adam, AdamW, AdaBound and RAdam is set
as 0.001. The initial learning rate of AdaBelief and EAdam is set as 0.01, and the initial learning
rate of AdamE and PAdam is set as 0.1. The results of the experiment for perplexity on the test set
in Fig. 1(a), Fig. 1(b), Fig. 1(c), and Fig. 1(d), the perplexity of AdamE is lower than other methods.
Moreover, the convergence of AdamE is better than other methods as in acceleration methods and
good accuracy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) For 1-layer LSTM (b) For 2-layer LSTM

(c) For 3-layer LSTM (d) For 4-layer LSTM

Figure 1: Test perplexity on WikiText-2.

1.3 EXPERIMENTS ON NODE CLASSIFICATION

Prototype GNN is formed by merging three parts: GNN encoder, prototype layer and the fully
connected layer. The conditional subgraph sampling module is incorporated in ProtGNN + GIN to
output subgraphs most similar to each learned propotype. The hyperparameters of ProtGNN + GIN
are set as Clst=0.01 and Sep=0.05. Following Zhang et al. (2022), we adopt AdamE, AdaBelief,
AdaBound, AdamW, RAdam and Adam, EAdam and Padam optimizers with fixed learning rate of
0.05, and the split for train, validation and test of BBBP dataset are set as 80%, 10%, 10%. The
model of ProtGNN + GIN is trained for 100 epochs. The experiment results is shown in Fig. 2. We
can see that the testing accuracy curve value fluctuations for all optimizers, but the performance of
AdamE is better than other optimizers after 50 epoch.

Graph-MLP includes 256 hidden layer nodes for each linear layer which is shown in Hu et al. (2021).
The activation function of Graph-MLP is Gelu, and the weighting coefficient α to balance the two
losses is 0.6. For Graph-MLP, the initial leaning rates of AdaBelief, PAdam, AdamE and EAdam are
set to 0.01, and the initial leaning rates of AdaBound, AdamW, RAdam and Adam are set to 0.001.
The number of epochs is 600, and get average test accuracy of 10 epoch. The attenuation occurs
every 100 iterations, and the attenuation ratio is 0.1. The results are represented in Fig. 3. Compared
with other optimizers, AdamE is fast converge speed before epoch 30. The test accuracy of AdamE,
AdamW, AdaBound and Adam is close after epoch 30. The overall performance of AdamE is the
best.

Following Huang & Yang (2021), UniSAGE is the variant of GraphSAGE with general ag-
gregating function (such as LSTM aggregator) and is naturally generalized as x̃i = W (xi +
AGGREGATE({he}e∈Ei

)). UniSAGE employs the SUM function for second-stage aggregation.
We reiterate experiment of node classification over 10 data divide into 8 different random seeds.
The learning rate of Adam, AdamW and AdaBound is 0.001, and the learning rate of AdamE, Ad-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

aBelief, RAdam and EAdam is 0.01. 0.1 is set as the learning rate of Padam. The weight decay
of all optimizers is 0.001. As shown in Fig. 4, convergence speed of AdamE is better than other
optimizers before epoch 80. After epoch 100, testing accuracy on Citeseer for UniSAGE for all
optimizers some volatility and the testing accuracy is approaching except for Adam.

Figure 2: Testing accuracy on BBBP for ProtGNN+GIN.

Figure 3: Testing accuracy on Cora for Graph-MLP.

Figure 4: Testing accuracy on Citeseer for UniSAGE.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

REFERENCES

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
node classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956, 2021.

Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, and En Zhu. Deep
graph clustering via dual correlation reduction. In Proc. of AAAI, 2022.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards self-
explaining graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 9127–9135, 2022.

4


	Simulation Experiments and Discussions
	Setup of Experiments
	Experiments on Language Modeling
	Experiments on Node Classification


