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ABSTRACT

Implementing a reward function that perfectly captures a complex task in the
real world is impractical. As a result, it is often appropriate to think of the
reward function as a proxy for the true objective rather than as its definition.
We study this phenomenon through the lens of Goodhart’s law, which predicts
that increasing optimisation of an imperfect proxy beyond some critical point
decreases performance on the true objective. First, we propose a way to quantify
the magnitude of this effect and show empirically that optimising an imperfect
proxy reward often leads to the behaviour predicted by Goodhart’s law for a
wide range of environments and reward functions. We then provide a geometric
explanation for why Goodhart’s law occurs in Markov decision processes. We
use these theoretical insights to propose an optimal early stopping method that
provably avoids the aforementioned pitfall and derive theoretical regret bounds for
this method. Moreover, we derive a training method that maximises worst-case
reward, for the setting where there is uncertainty about the true reward function.
Finally, we evaluate our early stopping method experimentally. Our results support
a foundation for a theoretically-principled study of reinforcement learning under
reward misspecification.

1 INTRODUCTION

To solve a problem using Reinforcement Learning (RL), it is necessary first to formalise that problem
using a reward function (Sutton & Barto, 2018). However, due to the complexity of many real-world
tasks, it is exceedingly difficult to directly specify a reward function that fully captures the task in
the intended way. However, misspecified reward functions will often lead to undesirable behaviour
(Paulus et al., 2018; Ibarz et al., 2018; Knox et al., 2023; Pan et al., 2021). This makes designing good
reward functions a major obstacle to using RL in practice, especially for safety-critical applications.

An increasingly popular solution is to learn reward functions from mechanisms such as human or
automated feedback (e.g. Christiano et al., 2017; Ng & Russell, 2000). However, this approach
comes with its own set of challenges: the right data can be difficult to collect (e.g. Paulus et al.,
2018), and it is often challenging to interpret it correctly (e.g. Mindermann & Armstrong, 2018;
Skalse & Abate, 2023). Moreover, optimising a policy against a learned reward model effectively
constitutes a distributional shift (Gao et al., 2023); i.e., even if a reward function is accurate under the
training distribution, it may fail to induce desirable behaviour from the RL agent.

Therefore in practice it is often more appropriate to think of the reward function as a proxy for
the true objective rather than being the true objective. This means that we need a more principled
understanding of what happens when a proxy reward is maximised, in order to know how we should
expect RL systems to behave, and in order to design better algorithms. For example, we aim to
answer questions such as: When is a proxy safe to maximise without constraint? What is the best way
to maximise a misspecified proxy? What types of failure modes should we expect from a misspecified
proxy? Currently, the field of RL largely lacks rigorous answers to these types of questions.

In this paper, we study the effects of proxy misspecification through the lens of Goodhart’s law,
an informal principle often stated as “any observed statistical regularity will tend to collapse once
pressure is placed upon it for control purposes” (Goodhart, 1984), or more simply: “when a measure
becomes a target, it ceases to be a good measure”. For example, a students’ knowledge of a subject
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may be correlated with their ability to pass exams on that subject by default. However, students who
have sufficiently strong incentives to do well in exams may also include strategies such as cheating
for increasing their test score without increasing their understanding. In the context of RL, we can
think of a misspecified proxy reward as a measure correlated, but not robustly aligned, with the true
objective across some distribution of policies. Goodhart’s law then says, informally, that we should
expect optimisation of the proxy to initially lead to improvements on the true objective, up until a
point where the correlation between the proxy reward and the true objective breaks down, after which
further optimisation should lead to worse performance according to the true objective (Figure 1).

Figure 1: A cartoon of
Goodharting.

In this paper, we present several novel contributions. First, we show
that “Goodharting” occurs with high probability for a wide range of
environments and pairs of true and proxy reward functions. Next, we
provide a mechanistic explanation of why Goodhart’s law emerges in RL.
We use this to derive two new policy optimisation methods and show that
they provably avoid Goodharting. Finally, we evaluate these methods
empirically. We thus contribute towards building a better understanding of
the dynamics of optimising towards imperfect proxy reward functions, and
show that these insights may be used to design new algorithms.

1.1 RELATED WORK

Goodhart’s law was first introduced by Goodhart (1984), and has later been elaborated upon by
works such as Manheim & Garrabrant (2019). Goodhart’s law has also previously been studied in
the context of machine learning. In particular, Hennessy & Goodhart (2023) investigate Goodhart’s
law analytically in the context where a machine learning model is used to evaluate an agent’s actions
– unlike them, we specifically consider the RL setting. Ashton (2021) shows by example that RL
systems can be susceptible to Goodharting in certain situations. In contrast, we show that Goodhart’s
law is a robust phenomenon across a wide range of environments, explain why it occurs in RL, and
use it to devise new solution methods.

In the context of RL, Goodhart’s law is closely related to reward gaming. Specifically, if reward
gaming means an agent finding an unintended way to increase its reward, then Goodharting is an
instance of reward gaming where optimisation of the proxy initially leads to desirable behaviour,
followed by a decrease after some threshold. Krakovna et al. (2020) list illustrative examples of
reward hacking, while Pan et al. (2021) manually construct proxy rewards for several environments
and then demonstrate that most of them lead to reward hacking. Zhuang & Hadfield-Menell (2020)
consider proxy rewards that depend on a strict subset of the features which are relevant to the true
reward and then show that optimising such a proxy in some cases may be arbitrarily bad, given certain
assumptions. Skalse et al. (2022) introduce a theoretical framework for analysing reward hacking.
They then demonstrate that, in any environment and for any true reward function, it is impossible
to create a non-trivial proxy reward that is guaranteed to be unhackable. Also relevant, Everitt et al.
(2017) study the related problem of reward corruption, Song et al. (2019) investigate overfitting in
model-free RL due to faulty implications from correlations in the environment, and Pang et al. (2022)
examine reward gaming in language models. Unlike these works, we analyse reward hacking through
the lens of Goodhart’s law and show that this perspective provides novel insights.

Gao et al. (2023) consider the setting where a large language model is optimised against a reward
model that has been trained on a “gold standard” reward function, and investigate how the performance
of the language model according to the gold standard reward scales in the size of the language model,
the amount of training data, and the size of the reward model. They find that the performance of the
policy follows a Goodhart curve, where the slope gets less prominent for larger reward models and
larger amounts of training data. Unlike them, we do not only focus on language, but rather, aim to
establish to what extent Goodhart dynamics occur for a wide range of RL environments. Moreover,
we also aim to explain Goodhart’s law, and use it as a starting point for developing new algorithms.

2 PRELIMINARIES

A Markov Decision Process (MDP) is a tuple xS,A, τ, µ,R, γy, where S is a set of states, A is a
set of actions, τ : SˆA Ñ ∆pSq is a transition function describing the outcomes of taking actions
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at certain states, µ P ∆pSq is the distribution of the initial state, R P R|SˆA| gives the reward
for taking actions at each state, and γ P r0, 1s is a time discount factor. In the remainder of the
paper, we consider A and S to be finite. Our work will mostly be concerned with rewardless MDPs,
denoted by MDP\R = xS,A, τ, µ, γy, where the true reward R is unknown. A trajectory is a sequence
ξ “ ps0, a0, s1, a1, . . .q such that ai P A, si P S for all i. We denote the space of all trajectories by
Ξ. A policy is a function π : S Ñ ∆pAq. We say that the policy π is deterministic if for each state s
there is some a P A such that πpsq “ δa. We denote the space of all policies by Π and the set of all
deterministic policies by Π0. Each policy π on an MDP\R induces a probability distribution over
trajectories P pξ|πq; drawing a trajectory ps0, a0, s1, a1, . . .q from a policy π means that s0 is drawn
from µ, each ai is drawn from πpsiq, and si`1 is drawn from τpsi, aiq for each i.

For a given MDP, the return of a trajectory ξ is defined to be Gpξq :“
ř8

t“0 γ
tRpst, atq and the

expected return of a policy π to be J pπq “ Eξ„π rGpξqs. An optimal policy is one that maximizes
expected return; the set of optimal policies is denoted by π‹. There might be more than one optimal
policy, but the set π‹ always contains at least one deterministic policy (Sutton & Barto, 2018). We
define the value-function V π : S Ñ R such that V πrss “ Eξ„π rGpξq|s0 “ ss, and define the
Q-function Qπ : SˆA Ñ R to be Qπps, aq “ Eξ„π rGpξq|s0 “ s, a0 “ as. V ‹, Q‹ are the value
and Q functions under an optimal policy. Given an MDP\R , each reward R defines a separate V π

R ,
Qπ

R, and JRpπq. In the remainder of this section, we fix a particular MDP\R = xS,A, τ, µ, γy.

2.1 THE CONVEX PERSPECTIVE

In this section, we introduce some theoretical constructs that are needed to express many of our
results. We first need to familiarise ourselves with the occupancy measures of policies:

Definition 1 (State-action occupancy measure). We define a function η´ : Π Ñ R|SˆA|, assigning,
to each π P Π, a vector of occupancy measure describing the discounted frequency that a policy takes
each action in each state. Formally,

ηπps, aq “

8
ÿ

t“0

γtP pst “ s, at “ a | ξ „ πq

We can recover π from ηπ on all visited states by πps, aq “ p1 ´ γqηπps, aq{ p
ř

a1PA ηπps, a1qq. If
ř

a1PA ηπps, a1q “ 0, we can set πps, aq arbitrarily. This means that we often can decide to work
with the set of possible occupancy measures, rather than the set of all policies. Moreover:
Proposition 1. The set Ω “ tηπ : π P Πu is the convex hull of the finite set of points corresponding
to the deterministic policies tηπ : π P Π0u. It lies in an affine subspace of dimension |S|p|A| ´ 1q.

Note that JRpπq “ ηπ ¨ R, meaning that each reward R induces a linear function on the convex
polytope Ω, which reduces finding the optimal policy to solving a linear programming problem in Ω.
Many of our results crucially rely on this insight. We denote the orthogonal projection map from
R|SˆA| to spanpΩq by Mτ , which means JRpπq “ ηπ ¨ MτR, The proof of Proposition 1, and all
other proofs, are given in the appendix.

2.2 QUANTIFYING GOODHART’S LAW

Our work is concerned with quantifying the Goodhart effect. To do this, we need a way to quantify
the distance between rewards. We do this using the projected angle between reward vectors.
Definition 2 (Projected angle). Given two reward functions R0, R1, we define arg pR0, R1q to be
the angle between MτR0 and MτR1.

The projected angle distance is an instance of a STARC metric, introduced by Skalse et al. (2023a).1
Such metrics enjoy strong theoretical guarantees and satisfy many desirable desiderata for reward
function metrics. For details, see Skalse et al. (2023a). In particular:
Proposition 2. We have arg pR0, R1q “ 0 if and only if R0, R1 induce the same ordering of policies,
or, in other words, JR0

pπq ď JR0
pπ1q ðñ JR1

pπq ď JR1
pπ1q for all policies π, π1.

1In their terminology, the canonicalisation function is Mτ , and measuring the angle between the resulting
vectors is (bilipschitz) equivalent to normalising and measuring the distance with the ℓ2-norm.
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Figure 2: Depiction of Goodharting in RandomMDP. Compare to Figure 1 – here we only show the
true reward obtained by a policy trained on each proxy. Darker color means a more distant proxy.

We also need a way to quantify optimisation pressure. We do this using two different training
methods. Both are parametrised by regularisation strength α P p0,8q: Given a reward R, they output
a regularised policy πα. For ease of discussion and plotting, it is often more appropriate to refer to
the (bounded) inverse of the regularisation strength: the optimisation pressure λα “ e´α. As the
optimisation pressure increases, J pπαq also increases.

Definition 3 (Maximal Causal Entropy). We denote by πα the optimal policy according to the
regularised objective R̃ps, aq :“ Rps, aq ` αHpπpsqq where Hpπpsqq is the Shannon entropy.

Definition 4 (Boltzmann Rationality). The Boltzmann rational policy πα is defined as
P pπαpsq “ aq 9e

1
αQ‹

ps,aq, where Q‹ is the optimal Q-function.

We perform experiments to verify that our key results hold for either way of quantifying optimisation
pressure. In both cases, the optimisation algorithm is Value Iteration (see e.g. Sutton & Barto, 2018).

Finally, we need a way to quantify the magnitude of the Goodhart effect. Assume that we have a
true reward R0 and a proxy reward R1, that R1 is optimised according to one of the methods in
Definition 3-4, and that πλ is the policy that is obtained at optimisation pressure λ. Suppose also that
R0, R1 are normalised, so that minπ J pπq “ 0 and maxπ J pπq “ 1 for both R0 and R1.

Definition 5 (Normalised drop height). We define the normalised drop height (NDH) as
maxλPr0,1s JR0pπλq ´ JR0pπ1q, i.e. as the loss of true reward throughout the optimisation process.

For an illustration of the above definition, see the grey dashed line in Figure 1. We observe that
NDH is non-zero if and only if, over increasing optimisation pressure, the proxy and true rewards are
initially correlated, and then become anti-correlated (we will see later that as long as the angle distance
is less than π{2, their returns will almost always be initially correlated). In the Appendix C, we
introduce more complex measures which quantify Goodhart’s law differently. Since our experiments
indicate that they are all are strongly correlated, we decided to focus on NDH as the simplest one.

3 GOODHARTING IS PERVASIVE IN REINFORCEMENT LEARNING

In this section, we empirically demonstrate that Goodharting occurs pervasively across varied
environments by showing that, for a given true reward R0 and a proxy reward R1, beyond a certain
optimisation threshold, the performance on R0 decreases when the agent is trained towards R1. We
test this claim over different kinds of environments (varying number of states, actions, terminal states
and γ), reward functions (varying rewards’ types and sparsity) and optimisation pressure definitions.

3.1 ENVIRONMENT AND REWARD TYPES

Gridworld is a deterministic, grid-based environment, with the state space of size nˆn for parameter
n P N`, with a fixed set of five actions: Ò,Ñ, Ó,Ð, and WAIT. The upper-left and lower-right
corners are designated as terminal states. Attempting an illegal action a in state s does not change the
state. Cliff (Sutton & Barto, 2018, Example 6.6) is a Gridworld variant where an agent aims to reach
the lower right terminal state, avoiding the cliff formed by the bottom row’s cells. Any cliff-adjacent
move has a slipping probability p of falling into the cliff.
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RandomMDP is an environment in which, for a fixed number of states |S|, actions |A|, and terminal
states k, the transition matrix τ is sampled uniformly across all stochastic matrices of shape |SˆA| ˆ

|S|, satisfying the property of having exactly k terminal states.

TreeMDP is an environment corresponding to nodes of a rooted tree with branching factor b “ |A|

and depth d. The root is the initial state and each action from a non-leaf node results in states
corresponding to the node’s children. Half of the leaf nodes are terminal states and the other half
loop back to the root, which makes it isomorphic to an infinite self-similar tree.

In our experiments, we only use reward functions that depend on the next state Rps, aq “ Rpsq.
In Terminal, the rewards are sampled iid from Up0, 1q for terminal states and from Up´1, 0q for
non-terminal states. In Cliff, where the rewards are sampled iid from Up´5, 0q for cliff states, from
Up´1, 0q for non-terminal states, and from Up0, 1q for the goal state. In Path, where we first sample
a random walk P moving only Ñ and Ó between the upper-left and lower-right terminal state, and
then the rewards are constantly 0 on the path P , sampled from Up´1, 0q for the non-terminal states,
and from Up0, 1q for the terminal state.

3.2 ESTIMATING THE PREVALENCE OF GOODHARTING

To get an estimate of how prevalent Goodharting is, we run an experiment where we vary all
hyperparameters of MDPs in a grid search manner. Specifically, we sample: Gridworld for grid
lengths n P t2, 3, . . . , 14u and either Terminal or Path rewards; Cliff with tripping probability
p “ 0.5 and grid lengths n P t2, 3, . . . , 9u and Cliff rewards; RandomMDP with number of states
|S| P t2, 4, 8, 16, . . . , 512u, number of actions |A| P t2, 3, 4u, a fixed number of terminal states
“ 2, and Terminal rewards; TreeMDP with branching factor 2 and depth d P r2, 3, . . . , 9s, for two
different kinds of trees: (1) where the first half of the leaves are terminal states, and (2) where every
second leaf is a terminal state, both using Terminal rewards.

For each of those, we also vary temporal discount factor γ P t0.5, 0.7, 0.9, 0.99u, sparsity factor
σ P t0.1, 0.3, 0.5, 0.7, 0.9u, optimisation pressure λ “ ´ logpxq for 7 values of x evenly spaced on
r0.01, 0.75s and 20 values evenly spaced on r0.8, 0.99s.

After sampling an MDP\R, we randomly sample a pair of reward functions R0 and R1 from a
chosen distribution. These are then sparsified (random σ fraction of values are zeroed) and linearly
interpolated, creating a sequence of proxy reward functions Rt “ p1 ´ tqR0 ` tR1 for t P r0, 1s.
Note that for every environment, reward sampling scheme and fixed choice of parameters considered
in Section 3.1, the sample space of rewards is convex. In high dimensions, two random vectors are
approximately orthogonal with high probability, so the sequence Rt spans a range of distances.

Each run consists of 10 proxy rewards; we use threshold θ “ 0.001 for value iteration. We get a total
of 30400 data points. An initial increase, followed by a decline in value with increasing optimisation
pressure, indicates Goodharting behaviour. Overall, we find that a Goodhart drop occurs (meaning
that the NDH > 0) for 19.3% of all experiments sampled over the parameter ranges given above.
This suggests that Goodharting is a common (albeit not universal) phenomenon in RL and occurs
in various environments and for various reward functions. We present additional empirical insights,
such as that training myopic agents makes Goodharting less severe, in Appendix G.

For illustrative purposes, we present a single run of the above experiment in Figure 2. We can see
that, as the proxy R1 is maximised, the true reward R0 will typically either increase monotonically or
increase and then decrease. This is in accordance with the predictions of Goodhart’s law.

4 EXPLAINING GOODHART’S LAW IN REINFORCEMENT LEARNING

In this section, we provide an intuitive, mechanistic account of why Goodharting happens in MDPs,
that explains some of the results in Section 3. An extended discussion is also given in Appendix A.

First, recall that JRpπq “ ηπ ¨ R, where ηπ is the occupancy measure of π. Recall also that Ω is a
convex polytope. Therefore, the problem of finding an optimal policy can be viewed as maximising a
linear function R within a convex polytope Ω, which is a linear programming problem.

Steepest ascent is the process that changes η⃗ in the direction that most rapidly increases η⃗ ¨ R (for
a formal definition, see Chang & Murty (1989) or Denel et al. (1981)). The path of steepest ascent
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(a) Goodharting behavior in M2,2

over three reward functions. Our
method is able to predict the optimal
stopping time (in blue).

(b) Training runs for each of the reward functions embedded in the state-
action occupancy measure space. Even though the full frequency space
is |S||A| “ 4-dimensional, the image of the policy space occupies
only a |S|p|A| ´ 1q “ 2-dimensional linear subspace. Goodharting
occurs when the cosine distance between rewards passes the critical
threshold and the policy snaps to a different endpoint.

Figure 3: Visualisation of Goodhart’s law in case of M2,2.

forms a piecewise linear curve whose linear segments lie on the boundary of Ω (except the first
segment, which may lie in the interior). Due to its similarity to gradient-based optimisation methods,
we expect most policy optimisation algorithms to follow a path that roughly approximates steepest
ascent. Steepest ascent also has the following property:

Proposition 3 (Concavity of Steepest Ascent). If t⃗i :“
ηi`1´ηi

||ηi`1´ηi||
for ηi produced by steepest ascent

on reward vector R, then t⃗i ¨ R is decreasing.

We can now explain Goodhart’s law in MDPs. Assume we have a true reward R0 and a proxy reward
R1, that we optimise R1 through steepest ascent, and that this produces a sequence of occupancy
measures tηiu. Recall that this sequence forms a piecewise linear path along the boundary of a
convex polytope Ω, and that JR0

and JR1
correspond to linear functions on Ω (whose directions

of steepest ascent are given by MτR0 and MτR1). First, if the angle between MτR0 and MτR1 is
less than π{2, and the initial policy η0 lies in the interior of Ω, then it is guaranteed that η ¨ R0 will
increase along the first segment of tηiu. However, when tηiu reaches the boundary of Ω, steepest
ascent continues in the direction of the projection of MτR1 onto this boundary. If this projection
is far enough from R0, optimising in the direction of MτR1 would lead to a decrease in JR0

(c.f.
Figure 3b). This corresponds to Goodharting.

R0 may continue to increase, even after another boundary region has been hit. However, each time
tηiu hits a new boundary, it changes direction, and there is a risk that η ¨ R0 will decrease. In
general, this is more likely if the angle between that boundary and tηiu is close to π{2, and less
likely if the angle between MτR0 and MτR1 is small. This explains why Goodharting is less likely
when the angle between MτR0 and MτR1 is small. Next, note that Proposition 3 implies that the
angle between tηiu and the boundary of Ω will increase over time along tηiu. This explains why
Goodharting becomes more likely when more optimisation pressure is applied.

Let us consider an example to make our explanation of Goodhart’s law more intuitive. Let M2,2

be an MDP with 2 states and 2 actions, and let R0, R1, R2 be three reward functions in M2,2. The
full specifications for M2,2 and R0, R1, R2 are given in Appendix E. We will refer to R0 as the true
reward. The angle between R0 and R1 is larger than the angle between R0 and R2. Using Maximal
Causal Entropy, we can train a policy over each of the reward functions, using varying degrees of
optimisation pressure, and record the performance of the resulting policy with respect to the true
reward. Zero optimisation pressure results in the uniformly random policy, and maximal optimisation
pressure results in the optimal policy for the given proxy (see Figure 3a). As we can see, we get
Goodharting for R2 – increasing R2 initially increases R0, but there is a critical point after which
further optimisation leads to worse performance under R0.

To understand what is happening, we embed the policies produced during each training run in Ω,
together with the projections of R0, R1, R2 (see Figure 3b). We can now see that Goodharting must
occur precisely when the angle between the true reward and the proxy reward passes the critical
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(a) A η-embedded training run for steepest
ascent. The training curve is split into
two linear segments: the first is parallel
to the proxy reward, while the second is
parallel to the proxy reward projected onto
some boundary plane P . Goodharting
only occurs along P . (Compare to the
MCE approximation of Steepest Ascent
in Figure 3b)

procedure EARLYSTOPPING(S,A, τ, θ, R)
r⃗ Ð MτR
π Ð Unif rRSˆAs

η⃗0 Ð ηπ

t⃗0 Ð argmaxt⃗PT pη⃗0qt⃗ ¨ R

while p⃗ti ‰ 0⃗q and R ¨ t⃗i ď sinpθq||R|| do
λ Ð maxtλ : η⃗i ` λt⃗i P Ωu

η⃗i`1 Ð η⃗i ` λt⃗i
t⃗i`1 Ð argmaxt⃗PT pη⃗i`1qt⃗ ¨ R
i Ð i ` 1

end while
return pηη̃iq´1

end procedure

(b) Early stopping pseudocode for Steepest Ascent. Given
the correct θ, the algorithm would stop at the point where the
training run hits the boundary of the convex hull. The cone of
tangents, T pηq is defined in Denel et al. (1981).

Figure 4: Early stopping algorithm and its behaviour.

threshold, such that the training run deflects upon stumbling on the border of Ω, and the optimal
deterministic policy changes from the lower-left to the upper-left corner. This is the underlying
mechanism that produces Goodhart behaviour in reinforcement learning!

We thus have an explanation for why the Goodhart curves are so common. Moreover, this insight
also explains why Goodharting does not always happen and why a smaller distance between the true
reward and the proxy reward is associated with less Goodharting. We can also see that Goodharting
will be more likely when the angle between tηiu and the boundary of Ω is close to π{2 – this is why
Proposition 3 implies that Goodharting becomes more likely with more optimisation pressure.

5 PREVENTING GOODHARTING BEHAVIOUR

We have seen that when a proxy reward R1 is optimised, it is common for the true reward R0 to first
increase, and then decrease. If we can stop the optimisation process before R0 starts to decrease, then
we can avoid Goodharting. Our next result shows that we can provably prevent Goodharting, given
that we have a bound θ on the distance between R1 and R0:
Theorem 1. Let R1 be any reward function, let θ P r0, πs be any angle, and let πA, πB be any two
policies. Then there exists a reward function R0 with arg pR0, R1q ď θ and JR0pπAq ą JR0pπBq iff

JR1
pπBq ´ JR1

pπAq

||ηπB ´ ηπA ||
ă sinpθq||MτR1||

Corollary 1 (Optimal Stopping). Let R1 be a proxy reward, and let tπiu be a sequence of policies
produced by an optimisation algorithm. Suppose the optimisation algorithm is concave with respect
to the policy, in the sense that JR1

pπi`1q´JR1
pπiq

||ηπi`1´ηπi ||
is decreasing. Then, stopping at minimal i with

JR1
pπi`1q ´ JR1

pπiq

||ηπi`1 ´ ηπi ||
ă sinpθq||MτR1||

gives the policy πi P tπiu that maximizes minR0PFθ
R
JR0

pπiq, where Fθ
R is the set of rewards given

by tR0 : arg pR0, R1q ď θ, ||MτR0|| “ θu.

Let us unpack the statement of this result. If we have a proxy reward R1, and we believe that
the angle between R1 and the true reward R0 is at most θ, then Fθ

R is the set of all possible true
reward functions with a given magnitude m. Note that no generality is lost by assuming that R0 has
magnitude m, since we can rescale any reward function without affecting its policy order. Now, if we
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optimise R1, and want to provably avoid Goodharting, then we must stop the optimisation process at
a point where there is no Goodharting for any reward function in Fθ

R. Theorem 1 provides us with
such a stopping point. Moreover, if the policy optimisation process is concave, then Corollary 1 tells
us that this stopping point, in a certain sense, is worst-case optimal. By Proposition 3, we should
expect most optimisation algorithms to be approximately concave.

Theorem 1 derives an optimal stopping point among a single optimisation curve. Our next result finds
the optimum among all policies through maximising a regularised objective function.
Proposition 4. Given a proxy reward R1, let Fθ

R be the set of possible true rewards R such
that arg pR,R1q ď θ and R is normalized so that ||MτR|| “ ||MτR1||. Then, a policy π
maximises minRPFθ

R
JRpπq if and only if it maximises JR1

pπq ´ κ||ηπ|| sin parg pηπ, R1qq, where
κ “ tanpθq||MτR1||. Moreover, each local maximum of this objective is a global maximum when
restricted to Ω, giving that this function can be practically optimised for.

The above objective can be rewritten as ||η⃗∥|| ´ κ||η⃗K|| where η⃗∥, η⃗K are the components of ηπ
parallel and perpendicular to MτR1.

Stopping early clearly loses proxy reward, but it is important to note that it may also lose true reward.
Since the algorithm is pessimistic, the optimisation stops before any reward in Fθ

R decreases. If we
continued ascent past this stopping point, exactly one reward function in Fθ

R would decrease (almost
surely), but most other reward function would increase. If the true reward function is in this latter set,
then early stopping loses some true reward. Our next result gives an upper bound on this quantity:
Proposition 5. Let R0 be a true reward and R1 a proxy reward such that }R0} “ }R1} “ 1 and
arg pR0, R1q “ θ, and assume that the steepest ascent algorithm applied to R1 produces a sequence
of policies π0, π1, . . . πn. If π‹ is optimal for R0, we have that

JR0
pπ‹q ´ JR0

pπnq ď diameterpΩq ´ }ηπn ´ ηπ0} cospθq.

It would be interesting to develop policy optimisation algorithms that start with an initial estimate
R1 of the true reward R0 and then refine R1 over time as the ambiguity in R1 becomes relevant.
Theorems 1 and 4 could then be used to check when more information about the true reward is needed.
While we mostly leave this for future work, we carry out some initial exploration in Appendix F.

5.1 EXPERIMENTAL EVALUATION OF EARLY STOPPING

We evaluate the early stopping algorithm experimentally. One problem is that Algorithm 4b involves
the projection onto Ω, which is infeasible to compute exactly due to the number of deterministic
policies being exponential in |S|. Instead, we observe that using MCE and BR approximates the
steepest ascent trajectory.

Using the exact setup described in Section 3.2, we verify that the early stopping procedure prevents
Goodharting in all cases, that is, employing the criterion from Corollary 1 always results in NDH
= 0. Because early stopping is pessimistic, some reward will usually be lost. We are interested in
whether the choice of (1) operationalisation of optimisation pressure, (2) the type of environment or
(3) the angle distance θ impacts the performance of early stopping. A priori, we expected the answer
to the first question to be negative and the answer to the third to be positive. Figure 5a shows that, as
expected, the choice between MCE and Boltzmann Rationality has little effect on the performance.
Unfortunately, and somewhat surprisingly, the early stopping procedure can, in general, lose out on a
lot of reward; in our experiments, this is on average between 10% and 44%, depending on the size
and the type of environment. The relationship between the distance and the lost reward seems to
indicate that for small values of θ, the loss of reward is less significant (c.f. Figure 5b).

6 DISCUSSION

Computing η in high dimensions: Our early stopping method requires computing the occupancy
measure η. Occupancy measures can be approximated via rollouts, though this approximation may
be expensive and noisy. Another option is to solve for η “ ηπ via η⃗ “ pI ´ ΠT q´1Πµ⃗ where T is
the transition matrix, µ is the initial state distribution, and Πs,ps,aq “ Ppπpsq “ aq. This solution
could be approximated in large environments.
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(a) (b)

Figure 5: (a) Reward % lost due to the early stopping (˛ show groups’ medians). (b) The relationship
between θ and the lost reward (shaded area between 25th-75th quantiles), aggregated into 25 buckets.

Approximating θ: Our early stopping method requires an upper bound θ on the angle between the
true reward and the proxy reward. In practice, this should be seen as a measure of how accurate we
believe the proxy to be. If the proxy reward is obtained through reward learning, then we may be able
to estimate θ based on the learning algorithm, the amount of training data, and so on. Moreover, if
we have a (potentially expensive) method to evaluate the true reward, such as expert judgement, then
we can estimate θ directly (even in large environments). For details, see Skalse et al. (2023a).

Key assumptions: An important consideration when employing any optimisation algorithm is its
behaviour when its key assumptions are not met. For our early stopping method, if the provided θ
does not upper-bound the angle between the proxy and the true reward, then the learnt policy may, in
the worst case, result in as much Goodharting as a policy produced by naïve optimisation.2 On the
other hand, if the optimisation algorithm is not concave, then this can only cause the early-stopping
procedure to stop at a sub-optimal point; Goodharting is still guaranteed to be avoided. This is also
true if the upper bound θ is not tight.

Significance and Implications: Our work has several direct implications. In Section 3, we show
that Goodharting occurs for a wide range of environments and reward functions. This means that
we should expect to see Goodharting often when optimising for misspecified proxy rewards. In
Section 4, we provide a mechanistic explanation for why Goodharting occurs. We expect this to be
helpful for further progress in the study of reward misspecification. In Section 5, we provide early
stopping methods that provably avoid Goodharting, and show that these methods, in a certain sense,
are worst-case optimal. However, these methods can lead to less true reward than naïve optimisation,
This means that they are most applicable when it is essential to avoid Goodharting.

Limitations and Future Work: We do not have a comprehensive understanding of the dynamics
at play when a misspecified reward function is maximised, and our work does not exhaust this area
of study. An important question is what types of failure modes can occur in this setting, and how
they may be detected and mitigated. Our work studies one important failure mode (i.e. Goodharting),
but there may be other distinctive failure modes that could be described and studied as well. A
related important question is precisely how a proxy reward R1 may differ from the true reward R0,
before maximising R1 might be bad according to R0. There are several existing results pertaining
to this question (Ng et al., 1999; Gleave et al., 2020; Skalse et al., 2022; 2023b), but there is at the
moment no comprehensive answer. Another interesting direction is to use our results to develop
policy optimisation algorithms that collect more data about the reward function over time, as this
information is needed. We discuss this direction in Appendix F. Finally, it would be interesting to try
to find principled relaxations of the methods in Section 5, that attain better practical performance
while retaining desirable theoretical guarantees.

2However, it might still be possible to bound the worst-case performance further using the norm of the
transition matrix (defining the geometry of the polytope Ω). This will be an interesting topic for future work.
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A A MORE DETAILED EXPLANATION OF GOODHART’S LAW

In this section, we provide an intuitive explanation of why Goodharting occurs in MDPs, that will be
more detailed an clear than the explanation provided in Section 4.

First of all, as in Section 4, recall that JRpπq “ ηπ ¨ R, where ηπ is the occupancy measure of π.
This means that we can decompose JR into two steps, the first of which is independent of R, and
maps Π to Ω, and the second of which is a linear function. Recall also that Ω is a convex polytope.
Therefore, the problem of finding an optimal policy can be viewed as maximising a linear function
within a convex polytope Ω. If R1 is the reward function we are optimising, then we can visualise
this as follows:

Here the red arrow denotes the direction of R1 within Ω. Note that this direction corresponds to
MτR1, rather than R1, since Ω lies in a lower-dimensional affine subspace. Similarly, the red lines
correspond to the level sets of R1, i.e. the directions we can move in without changing R1.

Now, if R1 is a proxy reward, then we may assume that there is also some (unknown) true reward
function R0. This reward also induces a linear function on Ω:

Suppose we pick a random point ηπ in Ω, and then move in a direction that increases ηπ ¨ R1. This
corresponds to picking a random policy π, and then modifying it in a direction that increases JR1pπq.
In particular, let us consider what happens to the true reward function R0, as we move in the direction
that most rapidly increases the proxy reward R1.

To start with, if we are in the interior of Ω (i.e., not close to any constraints), then the direction that
most rapidly increases R1 is to move parallel to MτR1. Moreover, if the angle θ between MτR1

and MτR0 is no more than π{2, then this is guaranteed to also increase the value of R0. To see this,
simply consider the following diagram:
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However, as we move parallel to MτR1, we will eventually hit the boundary of Ω. When we do this,
the direction that most rapidly increases R1 will no longer be parallel to MτR1. Instead, it will be
parallel to the projection of R1 onto the boundary of Ω that we just hit. Moreover, if we keep moving
in this direction, then we might no longer be increasing the true reward R0. To see this, consider the
following diagram:

The dashed green line corresponds to the path that most rapidly increases R1. As we move along this
path, R0 initially increases. However, after the path hits the boundary of Ω and changes direction, R0

will instead start to decrease. Thus, if we were to plot JR1
pπq and JR0

pπq over time, we would get a
plot that looks roughly like this:

Steps

Re
w
ar
d

Next, it is important to note that R0 is not guaranteed to decrease after we hit the boundary of Ω. To
see this, consider the following diagram:
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The dashed green line again corresponds to the path that most rapidly increases R1. As we move
along this path, R0 will increase both before and after the path has hit the boundary of Ω. If we were
to plot JR1

pπq and JR0
pπq over time, we would get a plot that looks roughly like this:

Steps

Re
w
ar
d

The next thing to note is that we will not just hit the boundary of Ω once. If we pick a random point
ηπ in Ω, and keep moving in the direction that most rapidly increases ηπ ¨ R1 until we have found the
maximal value of R1 in Ω, then we will hit the boundary of Ω over and over again. Each time we hit
this boundary we will change the direction that we are moving in, and each time this happens, there
is a risk that we will start moving in a direction that decreases R0.

Note that Goodharting corresponds to the case where we follow a path through Ω along which R0

initially increases, but eventually starts to decrease. As we have seen, this must be caused by the
boundaries of Ω. We may now ask; under what conditions do these boundaries force the path of
steepest ascent (of R1) to move in a direction that decreases R0? By inspecting the above diagrams,
we can see that this depends on the angle between the normal vector of that boundary and MτR1,
and the angle between MτR1 and MτR0. In particular, in order for R0 to start decreasing, it has to
be the case that the angle between MτR1 and MτR0 is larger than the angle between MτR1 and the
normal vector of the boundary of Ω. This immediately tells us that if the angle between MτR1 and
MτR0 is small (i.e., if argpR0, R1q is small), then Goodharting will be less likely to occur.

Moreover, as the angle between MτR1 and the normal vector of the boundary of Ω becomes smaller,
Goodharting should be correspondingly more likely to occur. Next, recall that Proposition 3 tells
us that this angle will decrease monotonically along the path of steepest ascent (of R1). As such,
Goodharting will get more and more likely, the further we move along the path of steepest ascent.
This explains why Goodharting becomes more likely when more optimisation pressure is applied.
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B PROOFS

Proposition 1. The set Ω “ tηπ : π P Πu is the convex hull of the finite set of points corresponding to
the deterministic policies Ωd :“ tηπ : π P Π0u. It lies in a linear subspace of dimension |S|p|A| ´1q.

Proof. Proof of the second half of this proposition, which says that the dimension of the affine
space containing Ω has at most |S|p|A| ´ 1q dimensions, can be found in (Skalse & Abate, 2023,
Lemma A.2). Here, we will prove the first half (that Ω “ Ωd) using the linear program outlined in
Puterman (1994, Equation 6.9.2).

maximise: R ¨ η

subject to:
ÿ

aPA

ηps1, aq ´ γ
ÿ

sPS,aPA

τps, a, s1q ¨ ηps, aq “ µpsq @s1 P S

ηps, aq ě 0 @s, a P S ˆ A

Puterman (1994, Theorem 6.9.1) proves that (i) for any π P Π, ηπ satisfies this linear program and
(ii) for any feasible solution to this linear program η , there is a policy π such that η “ ηπ. In other
words, Ω “ tη | η P R|S||A|Aη “ µ, η ě 0, u where A is an |S| by |S||A| matrix.

Denote the convex hull of a finite set X as convpXq. We first show that Ω “ convpΩdq. The fact
that convpΩdq Ď Ω follows straight from the fact that Ωd Ď Ω, and from the fact that Ω must be
convex since it is the set of solutions a set of linear equations.

We show that Ω Ď convpΩdq by strong induction on

kpηq :“
ÿ

sPS

maxp0, |ta P A : ηps, aq ě 0u| ´ 1q

Intuitively, kpηq “ 0 if and only if there is a deterministic policy corresponding to η and kpηq

increases with the number of potential actions available in visited states. The base case of the
induction is simple, if kpηq “ 0, then there is a deterministic policy πd such that η “ ηπd and
therefore η P Ωd Ď convpΩdq.

For the inductive step, suppose η 1 P convpΩdq for all η 1 P Ω with kpηq1 ă K and consider any η
with kpηq “ K. We will use the following lemma, which is closely related to (Feinberg & Rothblum,
2012, Lemma 6.3).

Lemma 1. For any occupancy measure η with kpηq ą 0, let occupancy measure x be a deterministic
reduction of η if and only if kpxq “ 0 and, for all s, a, if xps, aq ą 0 then ηps, aq ą 0. If x is a
deterministic reduction of α, then there exists some α P p0, 1q and y P Ω such that η “ αx`p1´αqy
and kpyq ă kpηq.

Intuitively, since a deterministic reduction always exists, lemma 1 says that any occupancy measure
corresponding to a stochastic policy can be split into an occupancy measure corresponding to a
deterministic policy, and an occupancy measure with a smaller k number. Proof of lemma 1 is
easy, choose α to be the maximum value such that pη ´ αxqps, aq ě 0 for all s and a, then set
y “ 1

1´α pη´αxq. For at least one s, a, we will have pη´αxqps, aq “ 0 and therefore kpyq ă kpηq. It
remains to show that y P Ω, but this follows straightforwardly from (Puterman, 1994, Theorem 6.9.1)
and the fact that y ě 0, and Ay “ 1

1´αApη ´ αxq “ 1
1´α pb ´ αbq “ b.

If kpηq1 ă K, then by lemma 1, η “ αx ` p1 ´ αqy with kpxq “ 0 and kpyq ă K. By inductive
hypothesis, since kpyq ă K, y P convpΩdq and therefore y is a convex combination of vectors in Ωd.
Since kpxq “ 0, we know that x P Ωd and therefore αx ` p1 ´ αqy is also a convex combination of
vectors in Ωd. This suffices to show η P convpΩdq.

By induction η P convpΩdq, for all values of kpηq, and therefore Ω Ď convpΩdq.

Proposition 2. We have arg pR0, R1q “ 0 if and only if R0, R1 induce the same ordering of policies,
or, in other words, JR0pπq ď JR0pπ1q ðñ JR1pπq ď JR1pπ1q for all policies π, π1.
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Proof. We show that arg pR0, R1q satisfies the conditions of (Skalse & Abate, 2023, Theorem 2.6).
Recall that arg pR0, R1q is the angle between MτR0 and MτR1, where Mτ projects vectors onto
Ω. Now, note that two reward functions R0, R1 induce different policy orderings if and only if the
corresponding policy evaluation functions J0, J1 induce different policy orderings. Moreover, recall
that for each i Ji can be viewed as the linear function Ri ¨ ηπ for ηπ P Ω. Two linear functions ℓ0, ℓ1
defined over a domain D which contains an open set induce different orderings if and only if ℓ0 and
ℓ1 have a non-zero angle after being projected onto D. Finally, Ω does contain a set that is open in
the smallest affine space which contains Ω, as per Proposition 1. This means that R0 and R1 induce
the same ordering of policies if and only if the angle between MτR0 and MτR1 is 0 (meaning that
arg pR0, R1q “ 0). This completes the proof.

Proposition 3 (Concavity of Steepest Ascent). If t⃗i :“ ηπi`1´ηπi

||ηπi`1´ηπi ||
for ηπi produced by steepest

ascent on reward vector R, t⃗i ¨ R is nonincreasing.

Proof. By the definition of steepest ascent given in Denel et al. (1981), t⃗i will be the unit vector in
the “cone of tangents”

T pηπiq :“ tt⃗ : ||⃗t|| “ 1, Dλ ą 0, ηπi ` λt⃗ P Ωu

that maximizes t⃗i ¨ R. This is what it formally means to go in the direction that leads to the fastest
increase in reward.

For sake of contradiction, assume t⃗i`1 ¨ R ą t⃗i ¨ R, and let t⃗1
i “

ηπi`2´ηπi

||ηπi`2´ηπi ||
. Then

t⃗1
i ¨ R “

ˆ

t⃗i`1||ηπi`2 ´ ηπi`1 || ` t⃗i||η
πi`1 ´ ηπi ||

||ηπi`2 ´ ηπi ||

˙

¨ R

ě

ˆ

t⃗i`1||ηπi`2 ´ ηπi`1 || ` t⃗i||η
πi`1 ´ ηπi ||

||ηπi`2 ´ ηπi`1 || ` ||ηπi`1 ´ ηπi ||

˙

¨ R ą t⃗i ¨ R

where the former inequality follows from triangle inequality and the latter follows as the expression is
a weighted average of t⃗i`1 ¨R and t⃗i ¨R. We also have for λ “ ||ηπi`2 ´ηπi ||, ηπi `λt⃗1

i “ ηπi`2 P Ω.
But then t⃗1

i P T pηπiq, contradicting that t⃗i “ argmaxT pηπi qt⃗ ¨ R.

Theorem 1 (Optimal Stopping). Let R1 be any reward function, let θ P r0, πs be any angle, and
let πA, πB be any two policies. Then there exists a reward function R0 with arg pR0, R1q ď θ and
JR0

pπAq ą JR0
pπBq if and only if

JR1pπBq ´ JR1pπAq

||ηπB ´ ηπA ||
ă sinpθq||MτR1||

Proof. Let d⃗ :“ ηπB ´ ηπA denote the difference in occupancy measures. The inequality can be
rewritten as

DR such that arg pR,R1q ď θ and d⃗ ¨ R ă 0 ðñ cos
´

arg
´

R1, d⃗
¯¯

ă sinpθq

To show one direction, if d⃗ ¨ R ă 0 we have d⃗ ¨ MτR ă 0 as d⃗ is parallel to Ω. This gives
arg

´

R, d⃗
¯

ą π
2 and

arg
´

R, d⃗
¯

ď arg
´

R1, d⃗
¯

` arg pR0, R1q ď arg
´

R1, d⃗
¯

` θ.

It follows that arg
´

R1, d⃗
¯

ą π
2 ´ θ, and thus cos

´

arg
´

R1, d⃗
¯¯

ă sinpθq.

If instead cos
´

arg
´

R1, d⃗
¯¯

ă sinpθq, we have arg
´

R, d⃗
¯

ą π
2 ´ θ. To choose R, there will

be two vectors R P Fθ
R that lie at the intersection of the plane spanpηπ,MτR1q with the cone

arg pR,R1q “ θ. One will satisfy arg pR, ηπq “ arg pR,R1q ` arg pR1, η
πq (informally, when R1

lies between ηπ and R). Then this R gives

arg
´

R, d⃗
¯

“ arg pR,R1q ` arg
´

R, d⃗
¯

ą θ `
π

2
´ θ “

π

2

so R ¨ d⃗ ă 0.
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Proposition 4. Given a proxy reward R1, let Fθ
R be the set of possible true rewards R such that

arg pR,R1q ď θ and R is normalized so that ||MτR|| “ ||MτR1||.

Then we have that a policy π maximises minRPFθ
R
JRpπq if and only if it maximises JR1pπq ´

κ||ηπ|| sin parg pηπ, R1qq, where κ “ tanpθq||MτR1||.

Moreover, each local maximum of this objective is a global maximum when restricted to Ω, giving
that this function can be practically optimised for.

Proof. Note that

min
RPFθ

R

JRpπq “ ηπ ¨ MτR “ ||MτR1||||ηπ||

˜

min
RPFθ

R

cos parg pηπ, Rqq

¸

as ||MτR1|| “ ||MτR0|| for all R0. Now we claim

min
RPFθ

R

cos parg pR, ηπqq “ cos parg pR1, η
πq ` θq .

To show this, we can take R P Fθ
R with arg pR, ηπq “ arg pR1, η

πq ` θ (such an R is described in
appendix B). This then gives

min
RPFθ

R

cos parg pR, ηπqq ď cos parg pR, ηπq ` θq .

We also have

cos parg pR, ηπqq ě cos parg pR1, η
πq ` arg pR1, Rqq ě cos parg pR1, η

πq ` θq

for any R. Then
min
RPFθ

R

cos parg pR, ηπqq “ cos parg pR1, η
πq ` θq “

cospθq cos parg pR1, η
πqq ´ sinpθq sin parg pR1, η

πqq .

Rearranging gives

min
RPFθ

R

JRpπq 9 R1 ¨ ηπ ´ tan θ||ηπ||||MτR0|| sin parg pR1, η
πqq

which is equivalent to the given objective.

To show that all local maxima are global maxima, note that minRPFθ
R
JRpπq “ minRPFθ

R
ηπ ¨R in Ω

is a minimum over linear functions, and is therefore convex. This then gives that each local maximum
of minRPFθ

R
JRpπq is a global maximum, so the same holds for the given objective function.

Proposition 5. Let R0 be a true reward and R1 a proxy reward such that }R0} “ }R1} “ 1 and
arg pR0, R1q “ θ, and assume that the steepest ascent algorithm applied to R1 produces a sequence
of policies π0, π1, . . . πn. If π‹ is optimal for R0, we have that

|JR0
pπnq ´ JR0

pπ‹q| ď diameterpΩq ´ }ηπn ´ ηπ0} cospθq.

Proof. The bound is composed of two terms: (1) how much total reward R is there to gain, and (2)
how much did we gain already. Since the reward vector is normalised, the range of reward over the
Ω is its diameter. The gains that had already been made by the Steepest Ascent algorithm equal
}ηπn ´ ηπ0}, but this has to be scaled by the (pessimistic) factor of cospθq, since this is the alignment
of the true and proxy reward.

The bound can be difficult to compute exactly. A simple but crude approximation of the diameter is

max
η1,η1PΩ

}η1 ´ η2}2 ď 2max
ηPΩ

}η}2 ď
2

1 ´ γ
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C MEASURING GOODHARTING

While Goodhart’s law is qualitatively well-described, a quantitative measure is needed to
systematically analyse it. We propose a number of different metrics to do that. Below, implicitly
assuming that all rewards are normalised (as in the Section 2), we denote by f : r0, 1s Ñ r0, 1s

the true reward obtained by a policy trained on a proxy reward, as a function of optimisation
pressure λ, similarly by f0 the true reward obtained by a policy trained on the true reward, and
λ‹ “ argmaxλPr0,1s fpλq.

• Normalised drop height:
NDHpfq “ fp1q ´ fpλ‹q

• Simple integration:

SIpfq “

˜

ż λ‹

0

fpλqdλ

¸

ˆ
ż 1

λ‹

fpλqdλ

˙

• Weighted correlation-anticorrelation:

CACWpfq “ ´maxpρ0, 0qmaxpρ1, 0q
a

λ‹p1 ´ λ‹q

where ρi “ ρpfpIiq, Iiq are the Pearson correlation coefficients for I0 „ Unif r0, λ‹s,
I1 „ Unif rλ‹, 1s.

• Regression angle:
LRpfq “ ´β`

0 β`
1

where β0, β1 are the angles of the linear regression of f on r0, λ‹s and rλ‹, 1s respectively.
• Relative weighted integration:

RWIpfq “

˜

p1 ´ λ‹q

ż λ‹

0

|fpλq ´ f0pλq|dλ

¸

ˆ

1

1 ´ λ‹

ż 1

λ‹

|fpλq ´ f0pλq|dλ

˙

The metrics were independently designed to capture the intuition of a sudden drop in reward with an
increased optimisation pressure. We then generated a dataset of 40000 varied environments:

• Gridworld, Terminal reward, with |S| „ Poissp100q, N=1000
• Cliff, Cliff reward, with |S| „ Poissp100q, N=500
• RandomMDP, Terminal reward, |S| „ Poissp100q, |A| „ Poissp6q, N=500
• RandomMDP, Terminal reward, |S| „ Unifp16, 64q, |A| „ Unifp2, 16q, N=500
• RandomMDP, Uniform reward, |S| „ Unifp16, 64q, |A| „ Unifp2, 16q, N=500
• CyclicMDP, Terminal reward, depth „ Poissp3q, N=1000

We have manually verified that all metrics seem to activate strongly on graphs that we would intuitively
assign a high degree of Goodharting. In Figure 7, we show, for each metric, the top three training
curves from the dataset that each metric assigns the highest score.

We find that all of the metrics are highly correlated - see Figure 6. Because of this, we believe that it
is meaningful to talk about a quantitative Goodharting score. Since normalised drop height is the
simplest metric, we use it as the proxy for Goodharting in the rest of the paper.
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Figure 6: Correlations between different Goodharting metrics, computed over examples where the
drop occurs for λ ą 0.3, to avoid selecting adversarial examples.

(a) Top 3 curves according to NDH metric.

(b) Top 3 curves according to CACW metric.

(c) Top 3 curves according to SI metric.

(d) Top 3 curves according to LR metric.

(e) Top 3 curves according to RWI metric.

Figure 7: Examples of training curves that obtain high Goodharting scores according to each metric.
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D EXPERIMENTAL EVALUATION OF THE EARLY STOPPING ALGORITHM

To sanity-check the experiments, we present an additional graph of the relationship between NDH
and early stopping algorithm reward loss in Figure 8, and the full numerical data for Figure 5a. We
also show example runs of the experiment in all environments in Figure 9.

Figure 8: The relationship between the amount of Goodharting, measured by NDH, and the amount
of reward that is lost due to pessimistic stopping. As Goodharting increases (measured by an increase
in NDH), the potential for gaining reward by early stopping increases (fitted linear regression shown
as the red line. y “ ´1.863x ` 0.388, 95% CI for slope: r´1.951,´1.775s, 95% CI for intercept:
r0.380, 0.396s, R2 “ 0.23, p ă 1e ´ 10). Only the points with NDH > 0 are shown in the plot.

Environment count mean std min 25% 50% 75% max

Cliff BR 2600.0 43.82 32.89 -4.09 12.22 42.34 71.42 100.00
MCE 2600.0 44.49 32.88 -14.42 12.89 44.38 71.84 100.00

Gridworld BR 2600.0 30.95 30.25 -19.69 3.23 21.74 53.54 100.00
MCE 2600.0 28.83 28.23 -20.57 3.70 21.06 46.45 99.99

Path BR 2600.0 40.52 34.25 -60.02 7.12 37.17 67.93 100.00
MCE 2600.0 41.17 35.01 -62.37 7.64 36.09 70.00 100.00

RandomMDP BR 5320.0 10.09 19.47 -42.17 0.00 0.10 14.32 99.84
MCE 5320.0 10.36 19.67 -42.96 0.00 0.13 14.94 99.84

TreeMDP BR 1920.0 21.16 26.83 -44.59 0.11 9.14 38.92 100.00
MCE 1920.0 20.11 25.95 -48.52 0.08 9.56 35.61 100.00

Table 1: A full breakdown of the true reward lost due to early stopping, with respect to the type
of environment and training method used. See Section 3 for the descriptions of environments and
reward sampling methods. 320 missing datapoints are cases where numerical instability in our early
stopping algorithm implementation resulted in NaN values.
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(a) Gridworld of size 4x4.

(b) Path environment of size 4x4.

(c) Cliff environment of size 4x4, with a probability of slipping=0.5.

Figure 9: (Cont. below)
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(d) TreeMDP of depth=3 and width=2, where terminal states are the 1st and 2nd leaves.

(e) RandomMPD of size=16, with 2 terminal states, and 3 actions.

Figure 9: Example runs of the Early Stopping algorithm on different kinds of environments. The
left column shows the true reward obtained by training a policy on different proxy rewards, under
increasing optimisation pressures. The middle column depicts the same plot under a different spatial
projection, which makes it easier to see how much the optimal stopping point differs from the
pessimistic one recommended by the Early Stopping algorithm. The right column shows how the
optimisation angle (cosine similarity) changes over increasing optimisation pressure for each proxy
reward (for a detailed explanation of this type of plot, see Appendix I).
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E A SIMPLE EXAMPLE OF GOODHARTING

In Section 4, we motivated our explanation of Goodhart’s law using a simple MDP M2,2, with 2
states and 2 actions, which is depicted in Figure 10. We assumed γ “ 0.9, and uniform initial state
distribution µ.

S0 S1
9
10

1
10

1
10

9
10

5
10

5
10

8
10

2
10

Figure 10: MDP M2,2 with 2 states and 2 actions. Edges corresponding to the action a0 are orange
and solid, and edges corresponding to a1 are purple and dotted.

We have sampled three rewards R0, R1, R2 : SˆA Ñ R, implicitly assuming that Rps, a, s1q “

Rps, a, s2q for all s1, s2 P S.

R0 a0 a1
S0 0.170 0.228
S1 0.538 0.064

(a) Reward 0

R1 a0 a1
S0 0.248 0.196
S1 0.467 0.089

(b) Reward 1
R2 a0 a1
S0 0.325 0.165
S1 0.396 0.114

(c) Reward 2

Figure 11: Reward tables for R0, R1, R2

We used 30 equidistant optimisation pressures in r0.01, 0.99s for numerical stability. The
hyperparameter θ for the value iteration algorithm (used in the implementation of MCE) was set to
0.0001.
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F ITERATIVE IMPROVEMENT

One potential application of Theorem 1 is that when we have a computationally expensive method
of evaluating the true reward R0, we can design practical training regimes that provably avoid
Goodharting. Typically training regimes for such reward functions involve iteratively training on a
low-cost proxy reward function and fine-tuning on true reward using human feedback (Paulus et al.,
2018). We can use true reward function to approximate arg pR0, R1q, and then optimal stopping
gives the optimal amount of time before a “branching point” where possible reward training curves
diverge (thus, creating Goodharting).

Specifically, let us assume that we have access to an oracle ORACLER‹ pRi, θiq which produces
increasingly accurate approximations of some true reward R‹: when called with a proxy reward
Ri and a bound θi ą arg pR‹, Riq, it returns Ri`1 and θi`1 such that θi`1 ą arg pR‹, Ri`1q and
limiÑ8 θi “ 0. Then algorithm 1 is an iterative feedback algorithm that avoids Goodharting and
terminates at the optimal policy for R‹.

Algorithm 1 Iterative improvement algorithm

1: procedure ITERATIVEIMPROVEMENT(S,A, τ )
2: R „ Unif rRSˆAs

3: π Ð Unif rRSˆAs

4: η⃗´1 “ η⃗0 Ð ηπ

5: θ Ð π
2

6: t⃗0 Ð argmaxt⃗PT pη⃗0qt⃗ ¨ R

7: while t⃗i ‰ 0⃗ do
8: while η⃗i ¨ t⃗i ď θ do
9: R, θ Ð ORACLER‹ pR, θ)

10: R Ð R
11: end while
12: λ Ð maxtλ : η⃗i ` λt⃗i P Ωu

13: η⃗i`1 Ð η⃗i ` λt⃗i
14: t⃗i`1 Ð argmaxt⃗PT pη⃗i`1qt⃗ ¨ R
15: i Ð i ` 1
16: end while
17: return ηη̃i

´1

18: end procedure

Proposition 6. Algorithm 1 is a valid optimisation procedure, that is, it terminates at the policy π‹

which is optimal for the true reward R‹.

Proof. By Theorem 1, the inner loop of the algorithm maintains that JR0
pπi`1q ě JR0

pπiq. If the
algorithm terminates, then it must be that t⃗i “ 0, and the only point that this can happen is in a point
ηπ

‹

.

Since steepest ascent terminates, showing algorithm 1 terminates reduces to showing we only make
finitely many calls to ORACLER‹ . It can be shown that for any t⃗i produced by steepest ascent
on R, t⃗i “ projP pRq for some linear subspace P on the boundary of Ω formed by a subset of
boundary conditions. Since there are finitely many such P , there is some ϵ so that for all R,R‹ with
arg pR,R‹q ă ϵ, arg pprojP pRq, projP pR‹qq ă π

2 for all P .

Because we have assumed that limiÑ8 θi “ 0, limiÑ8 arg pRi, R
‹q “ 0 and ORACLER‹ will

only be called until arg pRi, R
‹q “ 0. Then the number of calls is finite and so the algorithm

terminates.

We expect this algorithm forms theoretical basis for a training regime that avoids Goodharting and
can be used in practice.
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G FURTHER EMPIRICAL INVESTIGATION OF GOODHARTING

G.1 ADDITIONAL PLOTS FOR THE GOODHARTING PREVALENCE EXPERIMENT

(a) The relationship between the type of
environment and the probability of Goodharting.

(b) Log-scale histogram of the distribution of NDH
metric in the dataset.

Figure 12: Summary of the experiment described in Section 3. (a) The choice of operationalisation of
optimisation pressure does not seem to change results in any significant way. (b) NDH metric follows
roughly exponential distribution when restricted to cases when NDH > 0.

G.2 EXAMINING THE IMPACT OF KEY ENVIRONMENT PARAMETERS ON GOODHARTING

To further understand the conditions that produce Goodharting, we investigate the correlations
between key parameters of the MDP, such as the number of states or temporal discount factor γ, and
NDH. Doing it directly over the dataset described in Section 3 does not yield good results, as there is
not enough data points for each dimension, and there are confounding cross-correlations between
different parameters changing at the same time.

To address those issues, we opted to replace the grid-search method that produced the datasets
for Section 3 and Section 5.1. We have first picked a base distribution over representative
environments, and then created a separate dataset for each of the key parameters, where only
that parameter is varied.3

Specifically, the base distributions is given over RandomMDP with |S| sampled uniformly between
8 and 64, |A| sampled uniformly between 2 and 16, and the number of terminal states sampled
uniformly between 1 and 4, where γ “ 0.9, σ “ 1, and where we use 25 λ’s spaced equally (on
a log scale) between 0.01 and 0.99. Then, in each of the runs we modify this base distribution of
environments along a single axis, such as sampling γ uniformly across p0, 1q shown in Figure 16c.

Key findings (positive): The number of actions |A| seems to have a suprisingly significant impact
on NDH (Figure 15). The further away is the proxy reward function from the true reward, the
more Goodharting is observed (Figure 16a), which corroborates the explanation given at the end
of Section 4. We note that in many examples (for example in Figure 2 or in any of graphs in Figure 9)
the closer the proxy reward is, the later the Goodhart "hump" appeared - this positive correlation
is presented in Figure 16b. We also find that Goodharting is less significant in the case of myopic
agents, that is, there is a positive correlation between γ and NDH (Figure 16c). Type of environment
seems to have impact on observed NDH, but note that this might be a spurious correlation.

Key findings (negative): The number of states |S| does not seem to significantly impact the amount
of Goodharting, as measured by NDH (Figures 13 and 14). This suggests that having proper methods
of addressing Goodhart’s law is important as we scale to more realistic scenarios, and also partially
explains the existence of the wide variety of literature on reward gaming (see Section 1.1). The
determinism of the environment (as measured by the Shannon entropy of the transition matrix τ )
does not seem to play any role.

3Since this is impossible when comparing between environment types, we use the original dataset
from Section 3 in Figure 16f.
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Figure 13: Small negative correlation (not statistically sifnificant) between |S| and NDH: y “ ´5e ´

05x`0.02852, 95% CI for slope: r´0.00018, 7.23e´05s, 95% CI for intercept: r0.01892, 0.03813s,
Pearson’s r “ ´0.0119, R2 “ 0.0, p “ 0.4058. On the left: scatter plot, with the least-squares
regression fitted line shown in red. On the right: mean NDH per |S|, smoothed with rolling average,
window size=10. Below, we have repeated the experiment for larger |S| to investigate asymptotic
behaviour. N=1000.

Figure 14: Small negative correlation (not statistically significant) between the number of states in the
environment and NDH: y “ ´0.0x ` 0.02047, 95% CI for slope: r´8.2529e ´ 06, 2.2416e ´ 06s,
95% CI for intercept: r0.017, 0.0239s, Pearson’s r “ ´0.0116, R2 “ 0.0, p “ 0.261. On the left:
scatter plot, with the least-squares regression fitted line shown in red. On the right: mean NDH per
|S|, smoothed with rolling average, window size=10. N=1000.

Figure 15: Correlation between |A| and NDH: y “ ´0.00011x ` 0.00871, 95% CI for slope:
r´0.00015,´7.28e ´ 05s, 95% CI for intercept: r0.00723, 0.01019s, Pearson’s r “ ´0.0604,
R2 “ 0.0, p ă 1e ´ 08. On the left: scatter plot, with the least-squares regression fitted line shown
in red. On the right: mean NDH per |A|. N=1000.
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(a) Correlation between the angle distance to the
proxy reward and NDH metric: y “ 0.02389x ´

0.00776, 95% CI for slope: r0.02232, 0.02546s,
95% CI for intercept: r´0.00883,´0.00670s,
Pearson’s r “ 0.2895, R2

“ 0.08, p ă

1.2853e ´ 187.

(b) Correlation between the distance to the proxy
reward, and the location of the Goodhart’s hump:
y “ ´0.10169x ` 0.99048, 95% CI for slope:
r´0.11005,´0.09334s, 95% CI for intercept:
r0.98360, 0.99736s, Pearson’s r “ ´0.3422,
R2

“ 0.12, p ă 2.7400e ´ 118.

(c) Correlation between γ and the NDH metric:
y “ 0.00696x ` 0.00326, 95% CI for
slope: r0.00504, 0.00888s, 95% CI for intercept:
r0.00217, 0.00436s, Pearson’s r “ 0.07137,
R2

“ 0.01, p ă 1.2581e ´ 12.

(d) Correlation between the sparsity of the reward,
and the NDH metric: y “ ´0.00701x`0.00937,
95% CI for slope: r´0.00852,´0.00550s, 95%
CI for intercept: r0.00850, 0.01024s, Pearson’s
r “ ´0.09090, R2

“ 0.01, p ă 9.5146e ´ 20.

(e) Correlation between the determinism
of the environment, and the NDH metric:
y “ 0.77221x ` 0.01727, 95% CI for slope:
r0.31058, 1.23384s, 95% CI for intercept:
r0.01570, 0.01884s, Pearson’s r “ 0.03278,
R2

“ 0.01, p “ 0.0010.

(f) Distribution of NDH metric for different kinds
of environments. Note that other parameters are
not kept constant across environments, which
might introduce cross-correlations.

Figure 16: Correlation plots for different parameters of MDPs. N=1000 for all graphs above except
for Figure 16f, which uses the dataset from Section 3 where N=30400.
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H IMPLEMENTING THE EXPERIMENTS

H.1 COMPUTING THE PROJECTION MATRIX

For reward R, we want to find its projection MτR onto the |S|p|A| ´ 1q-dimensional hyperplane
H “ spanpΩq containing all valid policies. H is defined by the linear equation Ax⃗ “ b corresponding
to the constraints defined in appendix B, giving Mτ “ I ´ AtpAAtq´1A by standard linear algebra
results. However, this is too computationally expensive to compute for environments with a high
number of states.

There is another potential method that we designed but did not implement. It can be shown that the
subspace of vectors orthogonal to H corresponds exactly to expected reward vectors generated by
potential functions - that is, the set of vectors orthogonal to H is exactly the vectors

Rps, aq “ Es1„τps,aqrγϕps1qs ´ ϕpsq

for potential function ϕ : S Ñ R. Note this also gives that all vectors of shaped rewards have the
same projection, so we aim to shape rewards to be orthogonal to all vectors described above.

To do this, we initialise two potential functions ϕ, ϕ̃ and consider the expected reward vectors of

R∥ps, aq :“ Rps, aq ` Es1„τps,aqrγϕps1qs ´ ϕpsq

and
RKps, aq “ Es1„τps,aqrγϕ̃ps1qs ´ ϕ̃psq.

We optimise ϕ to maximize the dot product between these vectors and ϕ̃ to minimize it. ϕ converges
so that R∥ is orthogonal to all reward vectors RK, and will thus be R’s projection onto H .

H.2 COMPUTE RESOURCES

We performed our large-scale experiments on AWS. Overall, the process took about 100 hours of
a c5a.16xlarge instance with 64 cores and 128 GB RAM, as well as about 100 hours of t2.2xlarge
instance with 8 cores and 32 GB RAM.
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I AN ADDITIONAL EXAMPLE OF THE PHASE SHIFT DYNAMICS

In the Figure 4, Figure 3 and Appendix E, we have explored an example of 2-state, 2-action MDP.
The image space being 2-dimensional makes the visualisation of the run easy, but the disadvantage is
that we do not get to see multiple state transitions. Here, we show an example of a 3-state, 2-action
MDP, which does exhibit multiple changes in the direction of the optimisation angle.

We use an an MDP M3,2 defined by the following transition matrix τ :

a0 a1
S0 0.9 0.1
S1 0.1 0.9
S2 0.0 0.0

(a) Starting from S0

a0 a1
S0 0.1 0.9
S1 0.9 0.1
S2 0.0 0.0

(b) Starting from S1

a0 a1
S0 0.0 0.0
S1 0.0 0.0
S2 1.0 1.0

(c) Starting from S2

with N “ 5 different proxy functions interpolated linearly between R0 and R1. We use 30
optimisation strengths spaced equally between 0.01 and 0.99.

a0 a1
S0 0.290 0.020
S1 0.191 0.202
S2 0.263 0.034

(a) Reward R0

a0 a1
S0 0.263 0.195
S1 0.110 0.090
S2 0.161 0.181

(b) Reward R1

Figure 18: Reward Tables

The rest of the hyperparameters are set as in the Appendix E, with the difference that we are now using
exactly steepest ascent with early stopping, as described in Figure 4b, instead of MCE approximation
to it.
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(a) Goodharting behavior for M3,2 over
five reward functions. Observe that the
training method is concave, in accordance
with Proposition 3. Compare to the theoretical
explanation in Appendix A, in particular to the
figures showing piece-wise linear plots of obtained
reward over increasing optimisation pressure.

(b) The same plot under a different spatial
projection, which makes it easier to see how
much the optimal stopping point differs from
the pessimistic one recommended by the Early
Stopping algorithm.

(c) A visualisation of how the optimisation angle (cosine similarity) changes over increasing optimisation
pressure for each proxy reward. This is the angle between the current direction of optimisation in Ω, i.e.
pη

παi`1 ´ ηπαi q, and the proxy reward function projection MτRi (defined as cos
´

arg
´

R1, d⃗
¯¯

in the proof
of Theorem 1). Once the angle crosses the critical threshold, the algorithm stops. The critical threshold depends
on the distance θ between the proxy and the true reward, and it is drawn in as a dotted line, with a color
corresponding to the color of the proxy reward. Compare this plot to Figure 20 - we can see exact places
where the phase transition happens, as the training run meets the boundary of the convex space. Also, compare
to Figure 19a, where it can be seen how the algorithm stops (in blue) immediately after the training run crosses
the corresponding critical angle value (in case fo the last two proxy rewards), or continues to the end (in case of
the first two).

Figure 19: Summary plots for the Steepest Ascent training algorithm over five proxy reward functions.
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Figure 20: Trajectories of optimisations for using different proxy rewards. Note that the occupancy
measure space is |S|p|A|´1q “ 3-dimensional in this example, and the convex hull is over |A||S| “ 8
deterministic policies. We hide the true/proxy reward vectors for presentation clarity.
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