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APPENDIX
Our appendix includes the following:

• Proofs of the theoretical claims presented in the main paper.
• Details of our experimental settings.
• Detailed numerical results from the ablation study investigating the impact of α on Co-

maDICE’s performance.
• An ablation study assessing ComaDICE’s performance with different forms of f-divergence

functions.
• An ablation study comparing ComaDICE’s performance using 1-layer versus 2-layer mixing

networks.
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A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition. The minimax problem in 6 is equivalent to minνtot

{
L̃(νtot)

}
, where

L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

where f∗ is convex conjugate of f , i.e., f∗(y) = supt≥0{ty − f(t)}. Moreover, if νtot is parameter-
ized by θ, the first order derivative of L̃(νtot) w.r.t. θ is given as

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
.

where wtot∗ν (s, a) = max{0, f ′−1
(Atotν (s, a)/α)}, where f ′−1(·) is the inverse function of the first-

order derivative of f .

Proof. The first part of the proof, concerning the closed-form formulation for L̃(νtot), follows
directly from the single-agent OptDICE paper (Lee et al., 2021). While straightforward, we include it
here for the sake of completeness. Our novelty begins with the derivation of the formulation for the
first-order derivative of the loss function, ∇θL̃(νtot).
We write the Lagrange dual function as:

L(νtot,ρπππtot) = E(s,a)∼ρπππtot [r(s, a)]− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]

−
∑

s

νtot(s)

∑
a′
ρπππtot(s, a′)− (1− γ)p0(s)− γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′)


=
∑

s

νtot(s)(1− γ)p0(s)− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]
+
∑
s,a

ρµµµtot(s, a)
(
r(s, a) + γEs′∼P (·|s,a)ν

tot(s′)− νtot(s)
)

= (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a)

]
, (13)

where wtotν (s, a) = ρπππtot (s,a)
ρµµµtot (s,a) . We now see that, for each (s, a), each component −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a) is maximized at:

max
wtot≥0

−αf
(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a) = f∗

(
Atotν (s, a)

α

)
,

where f∗ is the (variant) convex conjugate of the convex function f . We then obtain:

max
wtot≥0

L(νtot, wtot) = L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

Moreover, consider the maximization problem maxwtot≥0 T (w
tot(s, a)) = −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a). Taking its first-order derivative w.r.t wtot(s, a) yields:

−αf ′(wtot(s, a)) +Atotν (s, a).

So, if f ′−1
(
Atot

ν (s,a)
α

)
≥ 0, then wtot∗(s, a) = f ′−1

(
Atot

ν (s,a)
α

)
≥ 0 is optimal for the maxi-

mization problem. Otherwise, if f ′−1
(
Atot

ν (s,a)
α

)
< 0, we see that T (wtot(s, a)) is increasing

when wtot(s, a) ≤ f ′−1
(
Atot

ν (s,a)
α

)
and decreasing when wtot(s, a) ≥ f ′−1

(
Atot

ν (s,a)
α

)
, imply-

ing that the maximization problem has an optimal solution at wtot∗(s, a) = 0. So, putting all
together, wtot∗ν (s, a) = max{0, f ′−1

(Atotν (s, a)/α)} is optimal for the maximization problem
maxwtot≥0 T (w

tot(s, a)).
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To get derivatives of L̃(νtot), we note that, for any y ∈ R, ∇f∗(y) = t∗, where y∗ = argmaxt≥0(ty−
f(t)). Thus, the first-order derivative of f∗

(
Atot

ν (s,a)
α

)
can be computed as:

∇θf
∗
(
Atotν (s, a)

α

)
=

∇θA
tot
ν (s, a)
α

wtot
∗
(s, a),

which implies:

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
,

we complete the proof.

A.2 PROOF OF THEOREM 4.2

Theorem. Assume the mixing network Mθ[·] is constructed with non-negative weights and convex
activations, then L̃(ννν, θ) is convex in ννν.

Proof. We first introduce the following lemma, which is essential to validate the convexity of L̃(ννν, θ).
Lemma A.1. If the mixing network are multi-level feed-forward, constructed with non-negative
weights and convex activations, then Mθ[ννν(s)] and Mθ[q(s, a)− ννν(s)] are convex in ννν

Proof. To simplify the proof, we first prove a general result stating that if Mθ[X] is a multi-level
feed-forward network with non-negative weights and convex activations, then Mθ[X] is convex in X.
To start, we note that any N -layer feed-forward network with input X can be defined recursively as

F 0(X) = X (14)

Fn(X) = σn
(
Fn−1(X)

)
×Wn + bn, n = 1, . . . , N, (15)

where σn is a set of activation functions applied to each element of vector Fn−1(X), and Wn and bn
are the weights and biases, respectively, at layer n. Therefore, we will prove the result by induction,
i.e., Fn(X) is convex and non-decreasing in X for n = 0, . . .. Here we note that Fn(X) is a vector,
so when we say “Fn(X) is convex and non-decreasing in X,” it means each element of Fn(X) is
convex and non-decreasing in X.

We first see that the claim indeed holds for n = 0. Now let us assume that Fn−1(X) is convex
and non-decreasing in X; we will prove that Fn(X) is also convex and non-decreasing in X. The
non-decreasing property can be easily verified as we can see, given two vectors X and X′ such that
X ≥ X′ (element-wise comparison), we have the following chain of inequalities:

Fn−1(X)
(a)

≥ Fn−1(X′)

σn(Fn−1(X))
(b)

≥ σn(Fn−1(X′))

σn(Fn−1(X))×Wn + bn
(c)

≥ σn(Fn−1(X′))×Wn + bn,

where (a) is due to the induction assumption that Fn−1(X) is non-decreasing in X, (b) is because σn
is also non-decreasing, and (c) is because the weights Wn are non-negative.

To verify the convexity of Fn(X), we will show that for any X,X′, and any scalar α ∈ (0, 1), the
following holds:

αFn(X) + (1− α)Fn(X) ≥ Fn(αX + (1− α)X′) (16)
To this end, we write:

αFn(X) + (1− α)Fn(X′) =
(
ασn(Fn−1(X)) + (1− α)σn(Fn−1(X′))

)
×Wn + bn

(d)

≥
(
σn
(
αFn−1(X) + (1− α)Fn−1(X′)

))
×Wn + bn

(e)

≥
(
σn
(
Fn−1(αX + (1− α)X′)

))
×Wn + bn

= Fn(αX + (1− α)X′).
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where (d) is due to the assumption that activation functions σn are convex and Wn ≥ 0, and (e) is
because αFn−1(X) + (1− α)Fn−1(X′) ≥ Fn−1(αX + (1− α)X′) (because Fn−1(X) is convex
in X, by the induction assumption), and the activation functions σn are non-decreasing and Wn ≥ 0.
So, we have:

αFn(X) + (1− α)Fn(X′) ≥ Fn(αX + (1− α)X′).

implying that Fn(X) is convex in X. We then complete the induction proof and conclude that Fn(X)
is convex and non-decreasing in X for any n = 0, . . . , N .

From the result above, since both ννν(s) and q(s, a) − ννν(s) are linear in ννν, it follows that Mθ[ννν(s)]
and Mθ[q(s, a)− ννν(s)] are convex with respect to ννν.

We are now ready to prove the convexity of L̃(ννν, θ) with respect to ννν. Directly verifying the
convexity of this function is challenging, as it involves some complicated components such as
f∗
(

Mθ[q(s,a)−ννν(s)]
α

)
, which is difficult to analyze. However, we recall that:

L̃(ννν, θ) = max
wtot≥0

L(ννν, θ, wtot),

where

L(ννν, θ, wtot) = (1− γ)Es∼p0 [Mθ[ννν(s)]]
+ E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Mθ[q(s, a)− ννν(s)]

]
.

From Lemma A.1, we know that Mθ[ννν(s)] and Mθ[q(s, a)−ννν(s)] are convex in ννν, thus L(ννν, θ, wtot)
is also convex in ννν. We now follow the standard approach to verify the convexity of L̃(ννν, θ) as
follows. Let ννν1 and ννν2 be two feasible value functions. Given any β ∈ (0, 1), we will prove that:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) ≥ L̃(βννν1 + (1− β)ννν2, θ). (17)

To see why this should hold, we recall that L(ννν, θ, wtot) is convex in ννν and L̃(ννν, θ) =
maxwtot≥0 L(ννν, θ, wtot), leading to the following chain of inequalities:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) = βmax
wtot

L(ννν1, θ, wtot) + (1− β)max
wtot

L(ννν2, θ, wtot)

≥ max
wtot

{
βL(ννν1, θ, wtot) + (1− β)L(ννν2, θ, wtot)

}
≥ max

wtot

{
L(βννν1 + (1− β)ννν2, θ, wtot)

}
= L̃(βννν1 + (1− β)ννν2, θ).

The last inequality directly confirms Eq. 17, implying the convexity of L̃(ννν, θ) in ννν, as desired.

A.3 PROOF OF PROPOSITION 4.3

Proposition. Let π∗
i be the optimal solution to the local weighted BC 9. Then π∗

tot(a|s) =∏
i∈N π∗

i (ai|si) is also optimal for the global weighted BC problem 8.

Proof. To prove that π∗
tot(a|s) =

∏
i∈N π∗

i (ai|si) is optimal for the global WBC problem 8, we
need to verify that

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
≤ E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]

for any global policy πππtot ∈ Πtot.

Since πππtot is decomposable, there exist local policies πi such that

πππtot(a|s) =
∏
i∈N

πi(ai|si).
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As a result, we have the following inequalities:

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
= E(s,a)∼ρµµµtot

[
wtot∗(s, a)

∑
i∈N

log πi(ai|si)

]
=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log πi(ai|si)

]
≤
∑
i∈N

max
π′
i

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π′

i(ai|si)
]

=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π∗

i (ai|si)
]

= E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]
,

which directly implies that πππ∗
tot is optimal for the global WBC problem 8.
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B ADDITIONAL DETAILS

B.1 FACTORIZATION ASPECT OF THE LEARNING OBJECTIVE IN COMADICE

In this section, we delve into the main learning objective function of ComaDICE to explore its
factorization aspect. Specifically, we show that, under certain conditions on the mixing network
and the f-divergence function, optimizing the objective function L̃ is approximately equivalent to
optimizing factorized occupancy ratios.

To see this, let us consider the main learning objective with mixing networks:

L̃(ννν, θ) = (1− γ)Es∼p0 [Mθ[ννν(s)]] + E(s,a)∼ρµµµtot

[
αf∗

(
Mθ[q(s, a)− ννν(s)]

α

)]
,

where Mθ is the mixing network.

Assume that the mixing structure is linear in its inputs, i.e.,

Mθ(ννν(s)) =
∑
i

βiνi(si), Mθ[q(s, a)− ννν(s)] =
∑
i

βi(qi(si, ai)− νi(si)),

where βi are non-negative weights of the mixing network. Moreover, assume that the f-divergence
function is chi-square. Under these assumptions, the learning objective can be written as:

L̃(ννν, θ) =
∑
i

βi(1− γ)Esi∼pi0 [νi(si)] +
∑
i

E(si,ai)∼ρµµµtot

[
αf∗

(∑
i

βi
qi(si, ai)− νi(si)

α

)]
,

(a)
≈
∑
i

βiLi(νi),

where

Li(νi) = βi(1− γ)Esi∼pi0 [νi(si)] + E(si,ai)∼ρµµµtot

[
αf∗

(
qi(si, ai)− νi(si)

α

)]
.

Here, the approximation holds because the mixing network is linear in νi, and the f-divergence is
chi-square, where (f ′χ2)−1(x) = x+ 1.

We now see that minimizing the local function Li(νi) is equivalent to:

maxπi E(si,ai)∼ρπi [ri(si, ai)]− αDf (ρπi ∥ ρµi) ,

which is essentially solving the OptDICE learning problem for each individual agent.

Thus, the above discussion implies that optimizing the main objective function L̃ of ComaDICE,
under the setting of a linear mixing network and chi-square divergence, is approximately equivalent to
optimizing factorized policies. This further implies the global-local consistency property mentioned
in the main paper. It is also worth noting that the setting of a linear mixing network and chi-square
divergence is exactly what we employ in our experiments, yielding the best performance compared to
the variants.

When using a two-layer mixing network, the equivalence becomes harder to achieve. However, since
the mixing network in our setting consists of non-negative weights, minimizing the global training
objective L̃ is expected to behave similarly to minimizing each local function L̃i, partially indicating
the global-local consistency and the factorization aspect of ComaDICE.

In comparison with other DICE-based approaches such as AlberDICE and OptDICE, ComaDICE
takes a distinctive approach by learning a global occupancy ratio and employing a factorization
method to decompose the global learning variables into local ones, leveraging local information. This
design captures the contribution of each local agent to the global objective, enabling ComaDICE to
effectively model the interconnections between agents. Furthermore, during the policy extraction
phase, local policies are optimized using a shared global occupancy ratio, which incorporates aspects
of credit assignment across agents—an important feature not present in AlberDICE.
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B.2 OFFLINE MULTI-AGENT DATASETS

Instances Trajectories Samples Agents State Obs Action Average
dim dim dim returns

2c vs 64zg
poor 0.3K 21.7K 2 675 478 70 8.9±1.0

medium 1.0K 75.9K 2 675 478 70 13.0±1.4
good 1.0K 118.4K 2 675 478 70 19.9±1.3

5m vs 6m
poor 1.0K 113.7K 5 156 124 12 8.5±1.2

medium 1.0K 138.6K 5 156 124 12 11.0±0.6
good 1.0K 138.7K 5 156 124 12 20.0±0.0

6h vs 8z
poor 1.0K 145.5K 6 213 172 14 9.1±0.8

medium 1.0K 177.1K 6 213 172 14 12.0±1.3
good 1.0K 228.2K 6 213 172 14 17.8±2.1

corridor
poor 1.0K 307.6K 6 435 346 30 4.9±1.7

medium 1.0K 756.1K 6 435 346 30 13.1±1.3
good 1.0K 601.0K 6 435 346 30 19.9±1.0

Protoss

5 vs 5 1.0K 60.8K 5 130 92 11 16.8±6.3
10 vs 10 1.0K 68.3K 10 310 182 16 15.7±5.2
10 vs 11 1.0K 62.9K 10 327 191 17 15.3±5.7
20 vs 20 1.0K 76.7K 20 820 362 26 16.2±4.7
20 vs 23 1.0K 65.0K 20 901 389 29 14.0±4.5

Terran

5 vs 5 1.0K 47.6K 5 120 82 11 15.2±7.2
10 vs 10 1.0K 56.4K 10 290 162 16 14.7±6.2
10 vs 11 1.0K 52.5K 10 306 170 17 12.1±5.7
20 vs 20 1.0K 63.0K 20 780 322 26 14.0±6.0
20 vs 23 1.0K 51.3K 20 858 346 29 11.7±5.7

Zerg

5 vs 5 1.0K 27.5K 5 120 82 11 10.4±5.0
10 vs 10 1.0K 31.9K 10 290 162 16 14.7±6.0
10 vs 11 1.0K 30.9K 10 306 170 17 12.0±5.1
20 vs 20 1.0K 35.4K 20 780 322 26 12.3±4.2
20 vs 23 1.0K 32.8K 20 858 346 29 10.8±4.0

Hopper

expert 1.5K 999K 3 42 14 1 2452.0±1097.9
medium 4.0K 915K 3 42 14 1 723.6±211.7
m-replay 4.2K 1311K 3 42 14 1 746.4±671.9
m-expert 5.5K 1914K 3 42 14 1 1190.6±973.4

Ant

expert 1.0K 1000K 2 226 113 4 2055.1±22.1
medium 1.0K 1000K 2 226 113 4 1418.7±37.0
m-replay 1.8K 1750K 2 226 113 4 1029.5±141.3
m-expert 2.0K 2000K 2 226 113 4 1736.9±319.6

Half
Cheetah

expert 1.0K 1000K 6 138 23 1 2785.1±1053.1
medium 1.0K 1000K 6 138 23 1 1425.7±520.1
m-replay 1.0K 1000K 6 138 23 1 655.8±590.4
m-expert 2.0K 2000K 6 138 23 1 2105.4±1073.2

Table 4: Overview of datasets used in experiments, including details of trajectories, samples, agent
counts, and state, observation, and action space dimensions across SMACv1, SMACv2, and MaMu-
joco environments, with average returns indicating performance levels.

B.3 IMPLEMENTATION DETAILS

Our experiments were implemented using PyTorch and executed in parallel on a single NVIDIA®
H100 NVL Tensor Core GPU. Our study required running a large number of sub-tasks, specifically
1,365 in total (i.e., 39 instances across 7 algorithms with 5 different random seeds each).
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Algorithm 1 ComaDICE: Offline Cooperative MARL with Stationary DIstribution Correction
Estimation

1: Input: Parameters θ, ψq, ψν , ηi and the corresponding learning rates λθ, λψq
, λψν

, λη, respec-
tively. Offline data D.

2: Output: Local optimized polices πi.
3: # Training the occupancy ratio wtot∗
4: for a certain number of training steps do
5: ψq = ψq − λψq

∇ψq
L(ψq) # Update Q-function towards the MSE in 10

6: θ = θ − λθ∇θL̃(ψν , θ) # Update θ to minimize the loss in 11
7: ψν = ψν − λψν∇ψν L̃(ψν , θ) # Update ψν to minimize the loss in 11
8: end for
9: # Training local policy

10: for a certain number of training steps do
11: ηi = ηi + λη∇ηiLπ(ηi) # Update the local policy by optimizing 12
12: end for
13: Return πi(ai|oi; ηi), i = 1, ..., n

Agent
Network

Agent
Network

Mixing Network

...

Linear

Linear

...

...

+

Hyper Network

Update Update 

Mixing Network

Update 

Figure 2: Our ComaDICE model architecture.

The offline datasets for each instance are substantial, reaching sizes of up to 7.4 GB. To manage this,
we developed a preprocessing step designed to optimize data handling and improve computational
efficiency. This process involves reading all transitions from each dataset and combining individual
trajectory files into a single large NumPy object that contains batches of trajectories. In this step,
we define the data type for each element, such as states (float32), actions (int64), and dones (bool),
ensuring consistent and efficient data storage. The processed data is then saved into a compressed
NumPy file, which significantly boosts computing performance.

Despite these optimizations, loading the entire dataset still requires a large amount of RAM. By
leveraging parallel processing and efficient data management strategies, we effectively managed the
extensive computational and memory demands of our experiments. This approach allowed us to
handle the large-scale data and complex computations necessary for our study.
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B.3.1 HYPER-PARAMETERS

Hyperparameter Value
Optimizer Adam
Learning rate (Q-value and policy networks) 1× 10−4

Tau (τ ) 0.005
Gamma (γ) 0.99
Batch size 128
Agent hidden dimension 256
Mixer hidden dimension 64
Number of seeds 5
Number of episodes per evaluation step 32
Number of evaluation steps 100
Lambda scale (λ) 1.0
Alpha (α) 10
f-divergence soft-χ2

Table 5: Hyperparameters for our algorithm

In our study, we developed two versions of our algorithm: a continuous version for MaMujoco
using Gaussian distributions (torch.distributions.Normal), and a discrete version for SMACv1 and
SMACv2 using Categorical distributions (torch.distributions.Categorical). In the discrete setting,
action probabilities are computed using softmax over available actions only, ensuring zero probability
for unavailable actions, which enhances the accuracy of log likelihood calculations. Key hyperparam-
eters are listed on the Table 5. Experiments were conducted with 5 seeds, 32 episodes per evaluation
step, and 100 evaluation steps.

B.4 ADDITIONAL EXPERIMENTAL DETAILS

We evaluate the performance of our ComaDICE algorithm using two key metrics: mean and standard
deviation (std) of returns and winrates. Returns measure the average rewards accumulated by
agents, calculated across five random seeds to ensure robustness, while winrates, applicable only to
competitive environments like SMACv1 and SMACv2, indicate the success rate against other agents.
For cooperative settings such as MaMujoco, winrates are not applicable. We also include figures
showing evaluation curves, highlighting how each method’s performance evolves during training
with offline datasets. These metrics and visualizations provide a comprehensive overview of our
algorithm’s effectiveness and consistency in various MARL tasks.

B.4.1 RETURNS

Tables 6, 7, 8, 9, and 10 present the returns from our experimental results across the SMACv1,
SMACv2, and Multi-Agent MuJoCo environments, highlighting the performance of our proposed
algorithm, ComaDICE, alongside baseline methods such as BC, BCQ, CQL, ICQ, OMAR, OMIGA,
OptDICE and AlberDICE. Our results demonstrate that ComaDICE consistently achieves superior
returns, particularly excelling in more complex difficulty tasks. Figures 3, 4, and 5 illustrate the
learning curves for these algorithms, showing that ComaDICE not only outperforms other algorithms
in terms of mean returns but also exhibits lower standard deviation, indicating robust and stable
performance. This suggests that ComaDICE effectively handles distributional shifts in offline settings.
These findings underscore our algorithm’s adaptability and effectiveness in diverse multi-agent
coordination scenarios, setting a new benchmark in offline MARL.
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Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE

2c vs 64zg
poor 11.6 ± 0.4 12.5 ± 0.2 10.8 ± 0.5 12.6 ± 0.2 11.3 ± 0.5 13.0 ± 0.7 10.8 ± 0.4 11.0 ± 0.2 12.1 ± 0.5

medium 13.4 ± 1.9 15.6 ± 0.4 12.8 ± 1.6 15.6 ± 0.6 10.2 ± 0.2 16.0 ± 0.2 11.2 ± 0.8 15.2 ± 0.5 16.3 ± 0.7
good 17.9 ± 1.3 19.1 ± 0.3 18.5 ± 1.0 18.8 ± 0.2 17.3 ± 0.8 19.1 ± 0.3 14.9 ± 1.2 17.9 ± 0.6 20.3 ± 0.1

5m vs 6m
poor 7.0 ± 0.5 7.6 ± 0.4 7.4 ± 0.1 7.3 ± 0.2 7.3 ± 0.4 7.5 ± 0.2 7.1 ± 0.2 5.7 ± 1.2 8.1 ± 0.5

medium 7.0 ± 0.8 7.6 ± 0.1 7.8 ± 0.1 7.8 ± 0.3 7.1 ± 0.5 7.9 ± 0.6 5.9 ± 1.3 7.7 ± 0.4 8.7 ± 0.4
good 7.0 ± 0.5 7.8 ± 0.1 8.1 ± 0.2 7.9 ± 0.3 7.4 ± 0.6 8.3 ± 0.4 5.8 ± 1.5 6.5 ± 0.6 8.7 ± 0.5

6h vs 8z
poor 8.6 ± 0.8 10.8 ± 0.2 10.8 ± 0.5 10.6 ± 0.1 10.6 ± 0.2 11.3 ± 0.2 9.8 ± 0.3 10.6 ± 0.3 11.4 ± 0.6

medium 9.5 ± 0.3 11.8 ± 0.2 11.3 ± 0.3 11.1 ± 0.3 10.4 ± 0.2 12.2 ± 0.2 10.8 ± 0.6 12.3 ± 0.4 12.8 ± 0.2
good 10.0 ± 1.7 12.2 ± 0.2 10.4 ± 0.2 11.8 ± 0.1 9.9 ± 0.3 12.5 ± 0.2 9.1 ± 0.7 10.0 ± 0.3 13.1 ± 0.5

corridor
poor 2.9 ± 0.6 4.5 ± 0.9 4.1 ± 0.6 4.5 ± 0.3 4.3 ± 0.5 5.6 ± 0.3 6.3 ± 0.5 5.0 ± 0.5 6.4 ± 0.5

medium 7.4 ± 0.8 10.8 ± 0.9 7.0 ± 0.7 11.3 ± 1.6 7.3 ± 0.7 11.7 ± 1.3 11.2 ± 0.7 9.3 ± 0.3 12.9 ± 0.6
good 10.8 ± 2.6 15.2 ± 1.2 5.2 ± 0.8 15.5 ± 1.1 6.7 ± 0.7 15.9 ± 0.9 13.4 ± 2.1 14.4 ± 1.2 18.0 ± 0.1

Table 6: Comparison of average returns for ComaDICE and baselines on SMACv1 benchmarks.

Figure 3: Evaluation of SMACv1 tasks comparing the returns achieved by ComaDICE and baselines.

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE (ours)

Protoss

5 vs 5 13.2 ± 0.7 6.8 ± 1.6 9.3 ± 1.6 10.7 ± 1.2 8.9 ± 0.8 14.3 ± 1.4 10.8 ± 1.2 12.6 ± 0.9 14.4 ± 1.1
10 vs 10 12.0 ± 1.9 7.7 ± 1.3 11.3 ± 0.9 10.4 ± 1.6 8.8 ± 0.6 14.2 ± 1.5 9.5 ± 0.8 11.8 ± 0.9 14.6 ± 1.8
10 vs 11 11.2 ± 0.5 5.2 ± 1.4 7.9 ± 0.8 10.3 ± 0.7 8.0 ± 0.3 12.1 ± 0.5 10.0 ± 0.5 9.8 ± 0.3 13.2 ± 0.9
20 vs 20 13.1 ± 0.5 4.8 ± 0.6 10.5 ± 0.9 11.8 ± 0.5 9.1 ± 0.5 14.0 ± 0.9 10.0 ± 2.0 10.1 ± 0.6 14.8 ± 1.0
20 vs 23 11.2 ± 0.5 3.5 ± 0.6 5.6 ± 0.7 10.2 ± 0.7 7.4 ± 0.7 13.0 ± 1.1 8.1 ± 1.4 8.8 ± 0.8 13.3 ± 0.9

Terran

5 vs 5 10.8 ± 1.4 6.4 ± 1.1 6.5 ± 0.9 6.8 ± 0.6 6.9 ± 0.6 10.5 ± 1.2 6.4 ± 1.1 8.1 ± 1.4 10.7 ± 1.5
10 vs 10 10.3 ± 0.3 4.6 ± 0.4 6.8 ± 0.6 8.7 ± 1.4 7.6 ± 1.0 10.1 ± 0.6 6.0 ± 1.6 8.2 ± 1.0 11.8 ± 0.9
10 vs 11 9.0 ± 0.7 3.6 ± 1.1 5.5 ± 0.2 5.5 ± 0.9 5.9 ± 0.7 8.8 ± 1.4 4.8 ± 1.2 6.2 ± 0.9 9.4 ± 0.9
20 vs 20 10.8 ± 0.8 3.9 ± 0.6 4.3 ± 0.6 8.3 ± 0.3 7.3 ± 0.4 10.5 ± 0.7 6.3 ± 1.8 5.9 ± 1.2 11.8 ± 0.5
20 vs 23 7.2 ± 1.0 1.2 ± 1.0 1.6 ± 0.2 5.3 ± 0.5 5.1 ± 0.3 7.9 ± 0.6 4.4 ± 0.7 3.9 ± 0.8 8.2 ± 0.7

Zerg

5 vs 5 10.5 ± 2.2 6.6 ± 0.2 6.7 ± 0.5 6.5 ± 0.9 7.7 ± 0.9 8.9 ± 1.1 8.2 ± 1.8 9.5 ± 0.8 10.7 ± 2.0
10 vs 10 11.0 ± 0.8 7.3 ± 1.0 7.2 ± 0.3 7.7 ± 1.1 7.5 ± 0.8 11.8 ± 1.6 7.8 ± 1.0 8.5 ± 0.3 11.5 ± 1.0
10 vs 11 9.2 ± 1.1 7.6 ± 0.9 6.7 ± 0.4 6.8 ± 1.0 6.5 ± 1.0 9.5 ± 1.2 7.2 ± 0.7 9.1 ± 0.5 11.0 ± 0.9
20 vs 20 9.3 ± 0.5 3.7 ± 0.4 4.7 ± 0.3 6.9 ± 0.5 6.9 ± 0.8 9.2 ± 0.5 7.3 ± 0.7 8.3 ± 0.5 9.4 ± 1.2
20 vs 23 8.5 ± 0.7 3.3 ± 0.3 4.1 ± 0.6 6.9 ± 0.5 5.7 ± 0.4 9.8 ± 0.6 7.1 ± 1.2 8.8 ± 0.5 10.5 ± 0.8

Table 7: Comparison of average returns for ComaDICE and baselines on SMACv2 tasks.
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Figure 4: Evaluation of SMACv2 tasks comparing the returns achieved by ComaDICE and baselines.

Method Hopper-v2
expert medium medium-replay medium-expert

BC 209.8±191.1 511.9±7.4 133.3±53.5 155.3±111.5
BCQ 77.9±58.0 44.6±20.6 26.5±24.0 54.3±23.7
CQL 159.1±313.8 401.3±199.9 31.4±15.2 64.8±123.3
ICQ 754.7±806.3 501.8±14.0 195.4±103.6 355.4±373.9

OMAR 2.4±1.5 21.3±24.9 3.3±3.2 1.4±0.9
OMIGA 859.6±709.5 1189.3±544.3 774.2±494.3 709.0±595.7
OptDICE 655.9±120.1 204.1±41.9 257.8±55.3 400.9±132.5

AlberDICE 844.6±556.5 216.9±35.3 419.2±243.5 515.1±303.4
ComaDICE (ours) 2827.7±62.9 822.6±66.2 906.3±242.1 1362.4±522.9

Table 8: Comparison of average returns on Hopper-v2 of MaMujoco benchmarks.

B.4.2 WINRATES

In this section, we analyze the winrates of our ComaDICE algorithm across various multi-agent
reinforcement learning scenarios. Winrates are crucial in competitive environments like SMACv1
and SMACv2, as they measure the algorithm’s success against other agents. Our results demonstrate
that ComaDICE consistently achieves higher winrates compared to baseline methods. Notably,
ComaDICE performs well across both simple and complex tasks, reflecting its robustness and
adaptability. As shown in Tables 1 and 2, as well as Figures 6 and 7, ComaDICE not only excels
in average winrates but also exhibits lower variance, indicating stable performance across different
trials. These findings highlight ComaDICE’s ability to effectively manage distributional shifts and
the OOD issue.

B.5 ABLATION STUDY: DIFFERENT VALUES OF ALPHA

We provide more experimental details for ablation study assessing the impact of varying the regular-
ization parameter alpha (α) on the performance of our ComaDICE.

B.5.1 RETURNS

Our results, in Tables 11, 12, and 13, show that the performance of ComaDICE is sensitive to
the choice of α. Lower values of α tend to prioritize imitation learning, leading to suboptimal
performance in terms of returns, whereas higher values facilitate better adaptation to the offline data,
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Method Ant-v2
expert medium medium-replay medium-expert

BC 2046.3±6.2 1421.1±7.9 994.0±20.3 1561.7±64.8
BCQ 1317.7±286.3 1059.6±91.2 950.8±48.8 1020.9±242.7
CQL 1042.4±2021.6 533.9±1766.4 234.6±1618.3 800.2±1621.5
ICQ 2050.0±11.9 1412.4±10.9 1016.7±53.5 1590.2±85.6

OMAR 312.5±297.5 -1710.0±1589.0 -2014.2±844.7 -2992.8±7.0
OMIGA 2055.5±1.6 1418.4±5.4 1105.1±88.9 1720.3±110.6
OptDICE 1717.2±27.0 1199.0±26.8 869.4±62.6 1293.2±183.1

AlberDICE 1896.8±33.7 1304.3±2.6 1042.8±80.8 1780.0±23.6
ComaDICE (ours) 2056.9±5.9 1425.0±2.9 1122.9±61.0 1813.9±68.4

Table 9: Comparison of average returns on Ant-v2 of MaMujoco benchmarks.

Method HalfCheetah-v2
expert medium medium-replay medium-expert

BC 3251.2±386.8 2280.3±178.2 1886.2±390.8 2451.9±783.0
BCQ 2992.7±629.7 2590.5±1110.4 -333.6±152.1 3543.7±780.9
CQL 1189.5±1034.5 1011.3±1016.9 1998.7±693.9 1194.2±1081.0
ICQ 2955.9±459.2 2549.3±96.3 1922.4±612.9 2834.0±420.3

OMAR -206.7±161.1 -265.7±147.0 -235.4±154.9 -253.8±63.9
OMIGA 3383.6±552.7 3608.1±237.4 2504.7±83.5 2948.5±518.9
OptDICE 2601.6±461.9 305.3±946.8 -912.9±1363.9 -2485.8±2338.4

AlberDICE 3356.4±546.9 522.4±315.5 440.0±528.0 2288.2±759.5
ComaDICE (ours) 4082.9±45.7 2664.7±54.2 2855.0±242.2 3889.7±81.6

Table 10: Comparison of average returns on HalfCheetah-v2 of MaMujoco benchmarks.

achieving superior returns. Notably, an α value of 10 consistently yielded the best results across most
tasks, indicating an optimal balance between exploration and exploitation in offline settings. This
ablation study underscores the importance of selecting an appropriate α to enhance the algorithm’s
robustness and effectiveness in handling distributional shifts in offline multi-agent reinforcement
learning scenarios.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 10.6±0.5 11.1±0.4 11.1±0.1 12.1±0.5 11.8±0.2

medium 9.6±0.5 13.1±0.8 12.5±2.4 16.3±0.7 16.0±0.3
good 11.1±1.4 9.6±2.7 17.4±0.5 20.3±0.1 19.9±0.1

5m vs 6m
poor 5.7±0.1 5.1±0.3 7.1±0.7 8.1±0.5 7.7±0.3

medium 5.6±0.1 5.3±0.2 7.8±0.8 8.7±0.4 8.5±0.7
good 5.7±0.1 5.7±0.2 7.8±0.5 8.7±0.5 8.8±0.8

6h vs 8z
poor 8.5±0.2 9.6±0.3 10.0±0.3 11.4±0.6 10.7±0.4

medium 8.5±0.6 10.5±0.8 10.7±0.5 12.8±0.2 12.3±0.3
good 7.9±0.1 9.5±0.6 11.3±0.6 13.1±0.5 12.8±0.4

corridor
poor 2.1±0.4 3.7±1.0 6.1±0.8 6.4±0.5 5.0±1.1

medium 1.7±1.0 2.2±1.7 11.3±0.3 12.9±0.6 13.3±0.1
good 4.7±2.4 3.8±5.0 15.7±0.3 18.0±0.1 17.4±0.1

Table 11: Impact of alpha on returns for ComaDICE and baselines in SMACv1.

B.5.2 WINRATES

In the A.4.2 section of the appendix, we investigate the impact of varying α on winrates across
different multi-agent reinforcement learning environments. We observe that an intermediate α
value of 10 consistently yields optimal results, suggesting it strikes an effective balance between
conservative policy adherence and exploration of the offline dataset. This section underscores the
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Figure 5: Evaluation of MaMujoco tasks comparing the returns achieved by ComaDICE and baselines.

Figure 6: Evaluation of SMACv1 tasks comparing the winrates achieved by ComaDICE and baselines.

importance of fine-tuning α to enhance the robustness and efficacy of the ComaDICE algorithm in
managing distributional shifts within competitive multi-agent settings.

B.6 ABLATION STUDY: DIFFERENT FORMS OF F-DIVERGENCE

We conduct an ablation study to examine the effects of different functions of f -divergence on
the performance of our ComaDICE algorithm across various multi-agent reinforcement learning
environments. The study specifically evaluates three types of f -divergence: Kullback-Leibler (KL),
χ2, and Soft-χ2 .
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Figure 7: Evaluation of SMACv2 tasks comparing the winrates achieved by ComaDICE and baselines.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 12.2±1.0 13.1±1.3 13.2±1.1 14.4±1.1 14.0±2.0
10 vs 10 12.8±0.9 14.0±0.8 13.4±1.2 14.6±1.8 14.1±1.3
10 vs 11 9.9±1.1 11.1±0.8 11.3±1.2 13.2±0.9 12.2±1.1
20 vs 20 10.3±0.5 11.1±1.0 12.2±0.9 14.8±1.0 13.2±0.4
20 vs 23 8.0±2.3 11.2±1.2 11.7±0.6 13.3±0.9 13.2±0.5

Terran

5 vs 5 11.1±1.8 10.1±1.2 9.0±1.0 10.7±1.5 12.6±1.9
10 vs 10 8.5±0.8 10.3±0.7 10.4±1.1 11.8±0.9 11.8±1.7
10 vs 11 7.5±0.7 8.6±2.1 8.5±1.6 9.4±0.9 9.6±0.9
20 vs 20 6.2±1.1 6.4±1.7 9.1±0.7 11.8±0.5 9.3±0.6
20 vs 23 5.5±1.1 6.5±1.6 6.5±0.8 8.2±0.7 8.2±0.4

Zerg

5 vs 5 7.9±0.6 9.3±0.9 10.5±1.4 10.7±2.0 10.4±1.2
10 vs 10 10.9±1.5 11.4±1.5 11.8±0.7 11.5±1.0 10.9±2.2
10 vs 11 10.1±2.5 9.1±1.2 10.0±1.2 11.0±0.9 9.8±0.8
20 vs 20 8.0±0.5 9.2±1.3 9.2±1.0 9.4±1.2 10.5±0.9
20 vs 23 9.1±1.1 10.0±0.7 10.4±0.6 10.5±0.8 10.1±0.7

Table 12: Impact of alpha on returns for ComaDICE and baselines in SMACv2.

KL-Divergence: This is a well-known measure of how one probability distribution diverges from a
second, expected probability distribution. It is defined as:

fKL(x) = x log x− x+ 1

The corresponding inverse derivative, which is used in optimization, is:
(f ′KL)

−1(x) = exp(x− 1)

KL-divergence can lead to numerical instability due to the exponential function, especially when the
values become large.

χ2-Divergence: This divergence measures the difference between two probability distributions by
considering the square of the differences. It is expressed as:

fχ2(x) =
1

2
(x− 1)2

The inverse derivative is:
(f ′χ2)−1(x) = x+ 1

While this function avoids the exponential instability seen in KL-divergence, it may suffer from zero
gradients for negative values, which can slow down or halt training.
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Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Hopper

expert 147.3±67.9 107.9±65.5 545.7±820.6 2827.7±62.9 2690.7±58.6
medium 149.6±96.8 107.5±66.9 244.7±267.5 822.6±66.2 807.5±122.2
m-replay 165.6±104.1 109.6±38.7 155.6±61.6 906.3±242.1 186.5±16.8
m-expert 119.1±77.1 95.6±69.5 58.8±26.1 1362.4±522.9 1358.4±595.1

Ant

expert 1016.4±196.5 1179.0±273.7 1927.7±174.1 2056.9±5.9 1950.0±3.3
medium 907.3±32.2 1000.0±90.4 1424.3±3.1 1425.0±2.9 1354.6±2.5
m-replay 969.1±21.9 978.4±39.6 944.6±28.9 1122.9±61.0 1072.1±41.4
m-expert 915.8±364.1 1132.9±282.2 738.5±250.2 1813.9±68.4 1559.6±86.8

Half
Cheetah

expert 1068.9±635.2 935.2±905.9 3637.0±80.9 4082.9±45.7 3843.7±149.4
medium 575.9±724.8 445.2±403.9 2690.0±92.4 2664.7±54.2 2523.4±59.0
m-replay 412.3±310.5 233.5±270.1 861.6±173.5 2855.0±242.2 2557.4±241.5
m-expert -107.5±298.1 -275.9±544.5 1136.9±1608.3 3889.7±81.6 3605.6±70.4

Table 13: Impact of alpha on returns for ComaDICE and baselines in MaMujoco.
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Figure 8: Impact of alpha on returns for ComaDICE and baselines.

Soft-χ2 Divergence: This function combines the forms of KL and χ2 divergences to mitigate both
numerical instability and the dying gradient problem. It is defined piecewise as:

fSoft-χ2(x) =

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1

The inverse derivative is:

(f ′Soft-χ2)−1(x) =

{
exp(x) if x < 0

x+ 1 if x ≥ 0

This choice provides a stable optimization process by maintaining non-zero gradients and avoiding
large exponential values, making it suitable for reinforcement learning tasks.

We assess their impact on both returns and winrates in environments such as SMACv1, SMACv2, and
MaMujoco. Our results, detailed in Tables 16-20, reveal that the choice of f -divergence function sig-
nificantly influences the algorithm’s effectiveness. For instance, the Soft-χ2 divergence consistently
yields superior returns and competitive winrates across most scenarios, suggesting its robustness in
managing distributional shifts in offline settings. Conversely, while Soft-χ2 divergence also performs
well, particularly in environments with higher complexity, KL divergence shows varying results,
indicating its sensitivity to specific task dynamics. This comprehensive analysis underscores the
importance of selecting an appropriate f -divergence function to optimize ComaDICE’s performance
in diverse multi-agent reinforcement learning contexts.
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Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.0±0.0 0.6±1.3 0.6±1.3

medium 0.0±0.0 1.9±3.8 5.0±5.1 8.8±7.0 8.8±4.6
good 0.6±1.2 0.0±0.0 40.6±4.0 55.0±1.5 51.9±1.5

5m vs 6m
poor 0.0±0.0 0.0±0.0 4.4±4.7 4.4±4.2 1.9±1.5

medium 0.0±0.0 0.0±0.0 8.1±6.4 7.5±2.5 7.5±3.8
good 0.0±0.0 0.0±0.0 6.2±4.4 8.1±3.2 10.0±6.1

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8 1.9±3.8 0.6±1.3

medium 0.0±0.0 0.6±1.3 1.9±1.5 3.1±2.0 3.1±2.0
good 0.0±0.0 0.0±0.0 7.5±5.8 11.2±5.4 7.5±7.3

corridor
poor 0.0±0.0 0.6±1.2 0.0±0.0 0.6±1.3 1.2±1.5

medium 0.0±0.0 0.0±0.0 30.0±5.1 27.3±3.4 34.4±2.8
good 0.0±0.0 4.4±8.8 48.8±4.7 48.8±2.5 49.4±3.6

Table 14: Impact of alpha on winrates for ComaDICE and baselines in SMACv1.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 20.6±10.0 31.9±6.1 50.0±2.8 46.2±6.1 46.2±8.5
10 vs 10 19.4±6.1 25.0±3.4 45.0±11.1 50.6±8.7 51.2±7.6
10 vs 11 0.0±0.0 6.2±9.7 18.8±8.1 20.0±4.2 29.4±8.3
20 vs 20 1.2±1.5 8.8±7.8 28.1±8.6 47.5±7.8 40.6±6.2
20 vs 23 0.0±0.0 1.9±2.5 9.4±6.6 13.8±5.8 17.5±5.1

Terran

5 vs 5 25.6±4.6 22.5±7.2 30.6±4.1 30.6±8.2 41.2±4.6
10 vs 10 15.0±8.7 28.7±7.2 33.8±9.4 32.5±5.8 43.8±7.1
10 vs 11 3.8±2.3 13.8±9.2 14.4±9.2 19.4±5.4 16.2±10.3
20 vs 20 0.6±1.2 2.5±3.6 18.8±2.0 29.4±3.8 21.9±3.4
20 vs 23 0.6±1.3 2.5±3.6 2.5±3.6 9.4±5.2 6.2±2.0

Zerg

5 vs 5 10.0±4.6 20.0±5.8 28.7±4.6 31.2±7.7 25.0±8.6
10 vs 10 13.8±9.0 20.6±8.3 29.4±9.0 33.8±11.8 31.9±6.7
10 vs 11 9.4±9.5 12.5±6.8 16.9±3.2 19.4±3.6 17.5±9.2
20 vs 20 0.0±0.0 1.9±1.5 6.9±6.1 9.4±6.2 12.5±4.0
20 vs 23 1.2±1.5 3.8±2.3 12.5±4.0 11.2±4.2 11.9±6.1

Table 15: Impact of alpha on winrates for ComaDICE and baselines in SMACv2.
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Figure 9: Impact of alpha on winrates for ComaDICE and baselines.
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B.6.1 RETURNS

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 11.6±0.2 11.1±0.3 12.1±0.5

medium 16.1±0.6 15.7±0.3 16.3±0.7
good 19.7±0.1 19.3±0.1 20.3±0.1

5m vs 6m
poor 7.8±0.4 7.5±0.5 8.1±0.5

medium 8.1±0.5 7.7±0.4 8.7±0.4
good 8.7±0.6 8.1±0.4 8.7±0.5

6h vs 8z
poor 10.5±0.3 10.0±0.2 11.4±0.6

medium 12.9±0.4 12.4±0.5 12.8±0.2
good 12.7±0.4 12.4±0.5 13.1±0.5

corridor
poor 6.5±0.5 6.1±0.4 6.4±0.5

medium 12.7±0.7 12.0±0.7 12.9±0.6
good 17.3±0.1 16.9±0.1 18.0±0.1

Table 16: Impact of f -divergence on returns for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 14.6±0.5 13.6±0.9 14.4±1.1
10 vs 10 14.7±1.3 13.7±1.6 14.6±1.8
10 vs 11 12.8±1.0 11.4±1.7 13.2±0.9
20 vs 20 12.7±0.3 13.1±0.7 14.8±1.0
20 vs 23 12.4±0.9 12.5±0.7 13.3±0.9

Terran

5 vs 5 11.1±1.2 12.7±2.0 10.7±1.5
10 vs 10 9.8±0.9 10.7±1.3 11.8±0.9
10 vs 11 8.9±0.8 8.9±1.0 9.4±0.9
20 vs 20 10.5±0.5 10.2±0.7 11.8±0.5
20 vs 23 8.2±0.4 7.4±0.7 8.2±0.7

Zerg

5 vs 5 10.0±0.8 9.6±1.5 10.7±2.0
10 vs 10 12.4±1.2 10.3±1.1 11.5±1.0
10 vs 11 8.9±0.4 9.1±1.1 11.0±0.9
20 vs 20 9.0±0.8 9.0±0.6 9.4±1.2
20 vs 23 10.2±1.0 9.3±0.8 10.5±0.8

Table 17: Impact of f -divergence on returns for ComaDICE and baselines in SMACv2.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Hopper

expert 2625.0±191.3 2018.7±972.0 2827.7±62.9
medium 794.4±69.2 295.5±227.1 822.6±66.2
m-replay 221.3±58.0 129.9±55.0 906.3±242.1
m-expert 1294.1±520.4 105.5±103.9 1362.4±522.9

Ant

expert 1945.2±2.8 1884.1±27.8 2056.9±5.9
medium 1359.2±3.2 1346.2±49.8 1425.0±2.9
m-replay 1111.1±57.8 987.5±33.9 1122.9±61.0
m-expert 1655.9±42.8 1182.5±405.1 1813.9±68.4

Half
Cheetah

expert 3860.6±91.5 3830.0±88.8 4082.9±45.7
medium 2532.3±81.9 2347.8±171.8 2664.7±54.2
m-replay 2729.9±241.5 1258.5±1015.4 2855.0±242.2
m-expert 3665.2±74.0 3601.0±155.6 3889.7±81.6

Table 18: Impact of f -divergence on returns for ComaDICE and baselines in MaMujoco.
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B.6.2 WINRATES

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.6±1.3

medium 13.1±4.6 10.6±3.8 8.8±7.0
good 55.6±3.1 54.4±1.5 55.0±1.5

5m vs 6m
poor 3.8±3.1 3.8±3.6 4.4±4.2

medium 6.2±2.8 5.0±3.8 7.5±2.5
good 8.8±3.6 6.9±3.1 8.1±3.2

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8

medium 5.0±2.5 5.0±3.8 3.1±2.0
good 9.4±4.4 9.4±2.0 11.2±5.4

corridor
poor 1.2±1.5 1.2±1.5 0.6±1.3

medium 31.2±6.2 28.1±5.9 27.3±3.4
good 49.4±5.4 48.1±1.5 48.8±2.5

Table 19: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 52.5±4.1 46.2±7.2 46.2±6.1
10 vs 10 48.1±7.6 55.0±9.8 50.6±8.7
10 vs 11 22.5±8.7 20.6±6.1 20.0±4.2
20 vs 20 38.1±2.3 41.2±7.8 47.5±7.8
20 vs 23 16.9±4.2 15.0±3.6 13.8±5.8

Terran

5 vs 5 41.2±7.2 38.8±10.6 30.6±8.2
10 vs 10 30.6±4.1 36.2±10.8 32.5±5.8
10 vs 11 15.6±11.5 15.0±7.5 19.4±5.4
20 vs 20 33.8±6.4 28.7±11.8 29.4±3.8
20 vs 23 5.6±4.1 8.1±4.2 9.4±5.2

Zerg

5 vs 5 29.4±9.0 33.1±13.3 31.2±7.7
10 vs 10 31.2±7.7 26.2±5.1 33.8±11.8
10 vs 11 11.2±1.5 16.2±7.2 19.4±3.6
20 vs 20 7.5±3.2 11.2±7.0 9.4±6.2
20 vs 23 10.6±3.2 10.0±2.3 11.2±4.2

Table 20: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv2.

B.7 ABLATION STUDY: DIFFERENT TYPES OF MIXER NETWORK

In this section, we explore the impact of using different types of mixer networks within the ComaDICE
algorithm. We introduce two settings for the mixer network within the ComaDICE algorithm: 1-layer
and 2-layer settings. The mixer network plays a crucial role in aggregating local value functions into a
global value function, which is essential for effective policy optimization in multi-agent reinforcement
learning (MARL) settings. By examining various mixer network architectures, we aim to understand
how these configurations affect the performance and stability of the ComaDICE algorithm. The
comparisons are presented in Tables 21-25, reporting both average returns and win rates. The results
clearly show that the 1-layer configuration outperforms the 2-layer configuration, delivering more
stable training outcomes across nearly all tasks. This finding contrasts with many prior online MARL
studies (Rashid et al., 2020; Son et al., 2019; Wang et al., 2020), which could be attributed to
overfitting issues in the offline learning setting.

Since mixing networks are effective in capturing the interdependencies between local values and
policies—reflecting credit assignment across local agents—the observed instability with the 2-
layer mixing network suggests that this configuration may be too complex to effectively model
the relationships between local agent policies in offline settings, leading to overfitting. While the
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performance of the 2-layer mixing network might improve with more offline data, increasing the
dataset size could overload storage capacity, making training computationally infeasible.

B.7.1 RETURNS

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 12.1±0.5 11.5±0.9

medium 16.3±0.7 11.2±0.8
good 20.3±0.1 9.0±2.2

5m vs 6m
poor 8.1±0.5 3.8±1.1

medium 8.7±0.4 0.8±0.3
good 8.7±0.5 7.7±0.1

6h vs 8z
poor 11.4±0.6 10.3±0.3

medium 12.8±0.2 9.1±0.6
good 13.1±0.5 8.3±0.5

corridor
poor 6.4±0.5 1.5±0.7

medium 12.9±0.6 3.9±1.7
good 18.0±0.1 2.6±2.3

Table 21: Average returns for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 14.4±1.1 10.5±1.4
10 vs 10 14.6±1.8 11.2±1.6
10 vs 11 13.2±0.9 9.5±0.4
20 vs 20 14.8±1.0 9.5±0.9
20 vs 23 13.3±0.9 7.1±2.2

Terran

5 vs 5 10.7±1.5 8.3±0.8
10 vs 10 11.8±0.9 8.8±1.1
10 vs 11 9.4±0.9 6.4±1.2
20 vs 20 11.8±0.5 7.8±0.9
20 vs 23 8.2±0.7 6.6±0.9

Zerg

5 vs 5 10.7±2.0 7.8±1.1
10 vs 10 11.5±1.0 9.7±0.6
10 vs 11 11.0±0.9 7.9±0.7
20 vs 20 9.4±1.2 7.8±0.6
20 vs 23 10.5±0.8 8.0±0.5

Table 22: Average returns for ComaDICE and baselines on SMACv2 with different mixer settings.
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Instances ComaDICE (ours)
1-layer 2-layer

Hopper

expert 2827.7±62.9 483.7±349.7
medium 822.6±66.2 648.4±245.9
m-replay 906.3±242.1 441.9±260.8
m-expert 1362.4±522.9 402.3±288.2

Ant

expert 2056.9±5.9 1583.0±160.4
medium 1425.0±2.9 1198.9±53.9
m-replay 1122.9±61.0 1041.8±38.4
m-expert 1813.9±68.4 1426.6±171.4

Half
Cheetah

expert 4082.9±45.7 2159.4±658.0
medium 2664.7±54.2 2026.7±244.3
m-replay 2855.0±242.2 1299.2±196.1
m-expert 3889.7±81.6 1336.3±381.9

Table 23: Average returns for ComaDICE and baselines on MaMujoco with different mixer settings.

B.7.2 WINRATES

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 0.6±1.3 0.0±0.0

medium 8.8±7.0 3.8±3.6
good 55.0±1.5 19.4±5.0

5m vs 6m
poor 4.4±4.2 3.1±0.0

medium 7.5±2.5 1.2±1.5
good 8.1±3.2 3.1±0.0

6h vs 8z
poor 1.9±3.8 0.0±0.0

medium 3.1±2.0 0.0±0.0
good 11.2±5.4 1.9±2.5

corridor
poor 0.6±1.3 0.0±0.0

medium 27.3±3.4 11.2±2.5
good 48.8±2.5 23.1±8.1

Table 24: Average winrates for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 46.2±6.1 31.9±3.6
10 vs 10 50.6±8.7 32.5±5.8
10 vs 11 20.0±4.2 10.6±7.3
20 vs 20 47.5±7.8 21.9±4.0
20 vs 23 13.8±5.8 6.9±5.4

Terran

5 vs 5 30.6±8.2 25.6±4.6
10 vs 10 32.5±5.8 28.1±3.4
10 vs 11 19.4±5.4 12.5±4.0
20 vs 20 29.4±3.8 11.2±3.2
20 vs 23 9.4±5.2 3.1±2.0

Zerg

5 vs 5 31.2±7.7 20.6±4.7
10 vs 10 33.8±11.8 21.2±7.2
10 vs 11 19.4±3.6 13.1±4.1
20 vs 20 9.4±6.2 5.6±1.3
20 vs 23 11.2±4.2 3.1±3.4

Table 25: Average winrates for ComaDICE and baselines on SMACv2 with different mixer settings.
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B.8 COMADICE ON THE PENALTY XOR GAME

We discuss how ComaDICE addresses the Penalty XOR Game, a benchmark task previously consid-
ered in the AlberDICE paper (Matsunaga et al., 2023; Fu et al., 2022).

Overview of the Penalty XOR Game. The Penalty XOR Game is a commonly used benchmark
in multi-agent cooperative reinforcement learning, designed to evaluate the agents’ ability to learn
coordinated policies. In this game, two agents interact with a shared environment defined by a
global state consisting of two binary features. Each agent selects a binary action, and the reward
is determined by the relationship between their actions and the global state (as illustrated in Figure
10). This game highlights key challenges in multi-agent learning, such as credit assignment and
coordination, as agents must infer the XOR-like reward logic from their experiences while aligning
their actions to optimize joint behavior. This benchmark is particularly valuable for testing algorithms’
capabilities in capturing inter-agent dependencies and handling sparse, state-dependent rewards.

Figure 10: The Penalty XOR Game environment.

Experimental Setup. Following the setup in AlberDICE, we construct four datasets with increasing
complexity: 1. (a) {AB} 2. (b) {AB, BA} 3. (c) {AA, AB, BA} 4. (d) {AA, AB, BA, BB}

Results. The optimal policy values returned by ComaDICE after a few epochs of training are
presented in Table 26. Our results show that ComaDICE successfully learns the optimal policy across
all four datasets. Compared to the results reported in the AlberDICE paper (Matsunaga et al., 2023),
ComaDICE achieves similar policy values while outperforming other baselines considered in that
study.

(a) A B

A 0.00 1.00

B 0.00 0.00

(b) A B

A 0.00 1.00

B 0.00 0.00

(c) A B

A 0.00 1.00

B 0.00 0.00

(d) A B

A 0.00 1.00

B 0.00 0.00

Table 26: Policy values after convergence returned by ComaDICE.

We now delve into the toy example to explain how ComaDICE achieves optimal policy values
by balancing the maximization of global reward and the minimization of divergence between the
occupancy of the learning policy and the behavior policy.

Consider the dataset {AB}, where the observation yields a high reward (i.e., 1). When optimizing
the global policy with this dataset, ComaDICE seeks a policy that maximizes the reward across the
dataset while aligning with the behavioral policy represented by {AB}. Consequently, it returns a
global optimal policy (in the form of an occupancy ratio) that assigns the highest possible probabilities
to the joint action {AB}. Subsequently, the weighted behavior cloning (BC) step learns decentralized
policies that also assign the highest possible probabilities to the joint action {AB}, producing the
desired optimal policy observed in our experiments.

For the dataset {AB,BA}, ComaDICE returns a global policy ensuring that the first player always
chooses A and the second always chooses B. To understand why this occurs, note that ComaDICE’s
learning objective consists of two terms: one aims to maximize the global reward, and the other
minimizes the divergence between the learned policy and the dataset. When the dataset includes
{AB,BA}, the occupancy-matching term favors a policy that assigns (uniformly) positive prob-
abilities to both joint actions {AB} and {BA}. However, since ComaDICE learns decentralized
policies, assigning significantly positive probabilities to both joint actions {AB} and {BA} implies
that both players would take both actions A and B with significant probabilities, leading to a lower
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expected global reward. In other words, exactly matching the dataset distribution would result in
suboptimal reward. To optimize the overall objective, ComaDICE assigns the highest probability to
one of the joint actions, {AB} or {BA}. In our experiments, it assigned the highest probability to
{AB}, achieving a better balance between reward maximization and divergence minimization. This
explains why ComaDICE converges to this optimal policy.

The other datasets can be explained similarly. For example, with the dataset {AA,AB,BA}, the
second term of the objective favors a policy that assigns equal probabilities (1/3) to these three joint
actions. However, this would imply that both players take both actions A and B with non-zero and
significant probabilities, resulting in lower accumulated rewards. To balance reward maximization
and dataset alignment, ComaDICE returns an optimal policy ensuring that the first player always
chooses A and the second always chooses B.

In comparison with OptDICE, both our experiments and those reported in the AlberDICE paper
demonstrate that OptDICE fails to return optimal policy values even when provided with an optimal
dataset, e.g., when the dataset is {AB,BA}. This is despite the fact that both OptDICE and
ComaDICE aim to balance maximizing the joint reward and matching the data distribution. Here, we
provide an intuitive explanation for why this occurs.

First, we note that while ComaDICE learns the global objective function over decentralized and
factorized policies, OptDICE learns only the global policy by directly solving the original objective
function. In this context, when the dataset is {AB,BA}, OptDICE learns a global policy that assigns
uniform probabilities to both joint actions {AB} and {BA}. However, when extracting local policies,
OptDICE will return local policies that make both the first and second players choose actions A and
B with probabilities of 0.25, as shown in Table 27, which is indeed suboptimal.

(b) A B

A 0.25 0.25

B 0.25 0.25

Table 27: Policy values returned by OptDICE with dataset (b).
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