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Abstract

The ability to generalize under distributional shifts is essential to reliable machine
learning, while models optimized with empirical risk minimization usually fail on
non-i.i.d testing data. Recently, invariant learning methods for out-of-distribution
(OOD) generalization propose to find causally invariant relationships with multi-
environments. However, modern datasets are frequently multi-sourced without
explicit source labels, rendering many invariant learning methods inapplicable. In
this paper, we propose Kernelized Heterogeneous Risk Minimization (KerHRM)
algorithm, which achieves both the latent heterogeneity exploration and invariant
learning in kernel space, and then gives feedback to the original neural network by
appointing invariant gradient direction. We theoretically justify our algorithm and
empirically validate the effectiveness of our algorithm with extensive experiments.

1 Introduction

Traditional machine learning algorithms which optimize the empirical risk often suffer from poor
generalization performance under distributional shifts caused by latent heterogeneity or selection
biases that widely exist in real-world data[12, 25]. How to guarantee a machine learning algorithm
with good generalization ability on data drawn out-of-distribution is of paramount significance,
especially in high-stake applications such as financial analysis, criminal justice and medical diagnosis,
etc.[16, 21], which is known as the out-of-distribution(OOD) generalization problem[1].

To ensure the OOD generalization ability, invariant learning methods assume the existence of the
causally invariant correlations and exploit them through given environments, which makes their
performances heavily dependent on the quality of environments. Further, the requirements for the
environment labels are too strict to meet with, since real-world datasets are frequently assembled by
merging data from multiple sources without explicit source labels. Recently, several works[5, 18] to
relax such restrictions have been proposed. Creager et al.[5] directly infer the environments according
to a given biased model first and then performs invariant learning. But the two stages cannot be jointly
optimized and the quality of inferred environments depends heavily on the pre-provided biased model.
Further, for complicated data, using invariant representation for environment inference is harmful,
since the environment-specific features are gradually discarded, causing the extinction of latent
heterogeneity and rendering data from different latent environments undistinguishable. Liu et al.[18]
design a mechanism where two interactive modules for environment inference and invariant learning
respectively can promote each other. However, it can only deal with scenarios where invariant and
variant features are decomposed on raw feature level, and will break down when the decomposition
can only be performed in representation space(e.g., image data).
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This paper focuses on the integration of latent heterogeneity exploration and invariant learning on
representation level. In order to incorporate representation learning with theoretical guarantees,
we introduce Neural Tangent Kernel(NTK[13]) into our algorithm. According to NTK theory[13],
training the neural network is equivalent to linear regression using Neural Tangent Features(NTF),
which converts non-linear neural networks into linear regression in NTF space and makes the
integration possible. Based on this, our Kernelized Heterogeneous Risk Minimization (KerHRM)
algorithm is proposed, which synchronously optimizes the latent heterogeneity exploration module
Mc and invariance learning moduleMp in NTF space. Specifically, we propose our novel Invariant
Gradient Descent(IGD) forMp, which performs invariant learning in NTF space and then feeds back
to neural networks with appointed invariant gradient direction. ForMc, we construct an orthogonal
heterogeneity-aware kernel to capture the environment-specific features and to further accelerate the
heterogeneity exploration. Theoretically, we demonstrate our heterogeneity exploration algorithm for
Mc with rate-distortion theory and justify the orthogonality property of the built kernel, which jointly
can illustrate the mutual promotion between the two modules. Empirically, experiments on both
synthetic and real-world data validate the superiority of KerHRM in terms of good out-of-distribution
generalization performance.

2 Preliminaries

Following [1, 3], we consider dataD = {De}e∈supp(Etr) with different sources dataDe = {Xe, Y e}
collected from multiple training environments Etr. Here environment labels are unavailable as in
most of the real applications. Etr is a random variable on indices of training environments and P e
is the distribution of data and label in environment e. The goal of this work is to find a predictor
f(·) : X → Y with good out-of-distribution generalization performance, which is formalized as:

arg min
f

max
e∈supp(E)

L(f |e) (1)

where L(f |e) = Ee[`(Xe, Y e)] represents the risk of predictor f on environment e, and `(·, ·) :
Y × Y → R+ the loss function. Note that E is the random variable on indices of all possible
environments such that supp(Etr) ⊂ supp(E). Usually, for all e ∈ supp(E) \ supp(Etr), the
data and label distribution P e(X,Y ) can be quite different from that of training environments Etr.
Therefore, the problem in equation 1 is referred to as Out-of-Distribution (OOD) Generalization
problem [1]. Since it is impossible to characterize the latent environments E without any prior
knowledge or structural assumptions, the invariance assumption is proposed for invariant learning:
Assumption 2.1. There exists random variable Ψ∗S(X) such that the following properties hold:
a. Invariance property: for all e, e′ ∈ supp(E), we have P e(Y |Ψ∗S(X)) = P e

′
(Y |Ψ∗S(X)) holds.

b. Sufficiency property: Y = f(Ψ∗S) + ε, ε ⊥ X .

This assumption indicates invariance and sufficiency for predicting the target Y using Ψ∗S , which is
known as invariant representations with stable relationships with Y across E . To acquire such Ψ∗S , a
branch of works[4, 14, 18] proposes to find the maximal invariant predictor(MIP) of an invariance
set, which are defined as follows:
Definition 2.1. The invariance set I with respect to E is defined as:

IE = {ΨS(X) : Y ⊥ E|ΨS(X)} = {ΨS(X) : H[Y |ΨS(X)] = H[Y |ΨS(X), E ]} (2)

where H[·] is the Shannon entropy of a random variable. The corresponding maximal invariant
predictor (MIP) of IE is defined as S = arg maxΦ∈IE I(Y ; Φ), where I(·; ·) measures Shannon
mutual information between two random variables.

Firstly, we propose that using the maximal invariant predictor S of IE can guarantee OOD optimality
in Theorem 2.1. The formal statement is similar to [18] and can be found in Appendix A.3.
Theorem 2.1. (Optimality Guarantee, informal) For predictor Φ∗(X) satisfying Assumption 2.1,
Ψ∗S is the maximal invariant predictor with respect to E and the solution to OOD problem in equation
1 is EY [Y |Ψ∗S ] = arg minf supe∈supp(E) E[L(f)|e].

However, recent works[4, 14] on finding MIP solutions rely on the availability of data from multiple
training environments Etr, which is hard to meet with in practice. Further, their validity is highly
determined by the given Etr. Since IE ⊆ IEtr , the invariance regularized by Etr is often too large
and the learned MIP may contain variant components and fails to generalize well. Based on this,
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Figure 1: The framework for KerHRM. The middle block diagram shows the overall flow of the
algorithm, which consists of two modules named heterogeneity exploration moduleMc and invariant
prediction module Mp. The whole algorithm runs iteratively between Mc and Mp, where one
iteration consists of three steps, which we illustrate in section 3.1, 3.2 and 3.3 respectively.

Heterogeneous Risk Minimization(HRM[18]) proposes to generate environments Etr with minimal
|IEtr | and to conduct invariant prediction with learned Etr. However, the proposed HRM can only
deal with simple scenarios where X = [Ψ∗S ,Ψ

∗
V ]T on raw feature level (Ψ∗S are invariant features and

Ψ∗V variant ones), and will break down where X = h(Ψ∗S ,Ψ
∗
V ) (h(·, ·) is an unknown transformation

function), since the decomposition can only be performed in representation space. In this work, we
focus on the integration of latent heterogeneity exploration and invariant learning in general scenarios
where invariant features are latent in X , which can be easily fulfilled in real applications.

Problem 1. (Problem Setting) Assume thatX = h(Ψ∗S ,Ψ
∗
V ) ∈ Rd, where Ψ∗S satisfies Assumption

2.1, h(·) is an unknown transformation function and Ψ∗S ⊥ Ψ∗V (following functional representation
lemma[7]), given heterogeneous dataset D = {De}e∈supp(Elatent) without environment labels, the
task is to generate environments Elearn with minimal |IElearn

| and meanwhile learn invariant models.

3 Method

Remark. Following the analysis in section 2, to generate environments Elearn with minimal |IElearn
|

is equivalent to generate environments with as varying P (Y |Ψ∗V ) as possible, so as to exclude variant
parts Ψ∗V from the invariant set IElearn

.

In spite of such insight, the latent Ψ∗S ,Ψ
∗
V make it impossible to directly generate Elearn. In

this work, we propose our Kernelized Heterogeneous Risk Minimization (KerHRM) algorithm
with two interactive modules, the frontendMc for heterogeneity exploration and backendMp for
invariant prediction. Specifically, given pooled data, the algorithm starts with the heterogeneity
exploration moduleMc with a learned heterogeneity-aware kernel κc to generate Elearn. The learned
environments are used byMp to produce invariant direction θinv in Neural Tangent Feature(NTF)
space that captures the invariant components ΨS , and then θinv is used to guide the gradient descent
of neural networks. After that, we update the kernel κc to orthogonalize with the invariant direction
θinv so as to better capture the variant components ΨV and realize the mutual promotion between
Mc andMp iteratively. The whole framework is jointly optimized, so that the mutual promotion
between heterogeneity exploration and invariant learning can be fully leveraged. For smoothness we

Algorithm 1 Kernelized Heterogeneous Risk Minimization (KerHRM) Algorithm
Input: Heterogeneous dataset D = {De = (Xe, Y e)}e∈Etr
Initialization: MLP model fw(·) with initialized w0, Neural Tangent Feature Φ(X) = ∇wfw0(X)(fixed in
following), clustering kernel initialized as κ(0)

c (x1, x2) = xT1 x2

for t = 1 to T do
1. Generate E(t)

learn with clustering kernel κ(t−1)
c : E(t)

learn =Mc((Φ(X), Y ), κ
(t−1)
c )

2. Learn invariant model parameters θ(t)
inv with E(t)

learn in NTF space: θ(t)
inv =Mp(E(t)

learn)

3. Feedback to Neural Network fw(·) with θ(t)
inv: w(t)

inv = arg minw L(w;X,Y ) + Reg(w, θ
(t)
inv)

4. Update the clustering kernel κ(t)
c with θ(t)

inv: κ(t)
c ← Orthogonal Transform(κ

(t−1)
c , θ

(t)
inv)

end for

3



begin with the invariant prediction step to illustrate our algorithm, and the flow of whole algorithm is
shown in figure 1.

3.1 Mp: Invariant Gradient Descent with Elearn (Step 1)

For our invariant learning moduleMp, we propose Invariant Gradient Descent (IGD) algorithm.
Taking the learned environments Elearn as input, our IGD firstly performs invariant learning in Neural
Tangent Feature (NTF[13]) space to obtain the invariant direction θinv, and then guides the whole
neural network fw(·) with θinv to learn the invariant model(neural network)’s parameters winv .

Neural Tangent Feature Space The NTK theory[13] shows that training the neural network is
equivalent to linear regression using non-linear NTFs φ(x), as in equation 4. For each data point
x ∈ Rd, where d is the feature dimension, the corresponding feature is given by φ(x) = ∇wfw(x) ∈
Rp, where p is the number of neural network’s parameters. Firstly, we would like to dissect the
feature components within φ(x) by decomposing the invariant and variant components hidden in
φ(x). Therefore, we propose to perform Singular Value Decomposition (SVD) on the NTF matrix:

Φ(X)
T︸ ︷︷ ︸

Rn×p

≈ U︸︷︷︸
Rn×k

· S︸︷︷︸
Rk×k

· V T︸︷︷︸
Rk×p

where p� n ≥ k (3)

Intuitively, in equation 3, each row V Tj,: of V T represents the j-th feature component of Rp and we
take k such different feature components with the top k largest singular values to represent the data,
and the rationality of low rank decomposition is guaranteed theoretically[26, 19] and empirically[2].
Since SVD ensures every feature components orthogonal, the neural tangent feature of the i-th data
point can be decomposed into φ(xi)

T ≈
∑k
j=1 Ui,j ·Sj,j ·V Tj,:, where Ui,j ·Sj,j denotes the strength

of the j-th feature component in the i-th data. However, since neural networks have millions of
parameters, the high dimension prevents us from learning directly on high dimensional NTFs Φ(X).
Therefore, we rewrite the initial formulation of linear regression into:

fw(X) ≈ fw0(X) + Φ(X)T (w − w0) ≈ fw0(X) + USV T (w − w0) (4)

= fw0(X) + Ψ(X)
(
V T (w − w0)

)
= fw0(X) + Ψ(X)θ (5)

where we let θ = V T (w−w0) ∈ Rk which reflects how the model parameter w utilizes the k feature
components. Since V T is orthogonal, fitting w − w0 with features Φ(X) is equivalent to fitting θ
using reduced NTFs Ψ(X). In this way, we convert the original high-dimensional regression problem
into the low-dimensional one in equation 5, since in wide neural networks, we have p� n ≥ k.

Invariant Learning with Reduced NTFs Ψ(X) We could perform invariant learning on reduced
NTFs Ψ(X) in linear space. In this work, we adopt the invariant regularizer proposed in [14] to learn
θ = V T (w − w0) due to its optimality guarantees, and the objective function is:

θinv = arg min
θ

∑
e∈Elearn

Le(θ; Ψ, Y ) + α ·VarElearn (∇θLe) (6)

Guide Neural Network with invariant direction θinv With the learned θinv, it remains to feed
back to the neural network’s parameters w. Since for neural networks with millions of parameters
whose p ≈ 108, it is difficult to directly obtain w as w = w0 + V θinv. Therefore, we design a loss
function to approximate the projection (w−w0//V θinv). Note that fw(X) = fw0

(X)+USV T (w−
w0) = fw0(X) + USθinv , we have

S−1UT (fw(X)− fw0(X)) = θinv (7)

Therefore, we can ensure the updated parameters w satisfy that S−1UT (fw(X)− fw0(X)) ∈ Rk is
parallel to θinv , which leads to the following loss function:

winv = arg min
w
L(w;X,Y ) + λ

(
1−
|
〈
θinv, S

−1UT (fw(X)− fw0(X))
〉
|

‖θinv‖‖S−1UT (fw(X)− fw0(X))‖

)
(8)

where L(w;X,Y ) is the empirical prediction loss over training data and the second term is to force
the invariance property of the neural network.

3.2 Variant Component Decomposition with θinv (Step 2)

The core of our KerHRM is the mutual promotion of the heterogeneity exploration moduleMc and
the invariant learning moduleMp. From our insight, we should leverage the variant components ΨV
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to exploit the latent heterogeneity. Therefore, with the better invariant direction θinv learned byMp

that captures the invariant components in data, it remains to capture better variant components ΨV so
as to further accelerate the heterogeneity exploration procedure, for which we design a clustering
kernel κc on the reduce NTF space of Rk with the help of θinv learned in section 3.1. Recall the NTF
decomposition in equation 3, the initial similarity of two data points xi and xj can be decomposed as:

κ(0)
c (xi, xj) = φ(xi)

Tφ(xj) = 〈UiS,UjS〉 (9)

With the invariant direction θ(t)
inv learned byMp in iteration t, we can wipe out the invariant compo-

nents used by θ(t)
inv via

Ψ
(t+1)
V (xi)← UiS −

〈
UiS, θ

(t)
inv

〉
θ

(t)
inv/‖θ

(t)
inv‖

2 (10)

which gives a new heterogeneity-aware kernel that better captures the variant components Ψ∗V as
κ

(t+1)
c (xi, xj) = Ψ

(t+1)
V (xi)

TΨ
(t+1)
V (xj).

3.3 Mc: Heterogeneity exploration with κc (Step 3)

Mc takes one heterogeneous dataset as input, and outputs a learned multi-environment partition
Elearn for invariant prediction module Mp, and we implement it as a clustering algorithm with
kernel regression given the heterogeneity-aware κc(xi, xj) = ΨV (xi)

TΨV (xj) that captures the
variant components in data. Following the analysis above, only the variant components Ψ∗V should be
leveraged to identify the latent heterogeneity, and therefore we use the kernel κc as well as ΨV (X)
learned in section 3.2 to capture the different relationship between Ψ∗V and Y , for which we use
P (Y |ΨV ) as the clustering centre. Specifically, we assume the j-th cluster centre PΘj

(Y |ΨV (X))
to be a Gaussian around f(Θj ; ΨV (X)) as:

hj(ΨV (X), Y ) = PΘj (Y |ΨV (X)) = (
√

2πσ)−1 exp(−(Y − f(Θj ; ΨV (X)))2/2σ2) (11)

For the given N =
∑
e∈supp(Elatent)

|De| data points D = {ψV (xi), yi}Ni=1, the empirical distri-

bution can be modeled as P̂N = 1
N

∑N
i=1 δψV (xi),yi . Under this setting, we propose one convex

clustering algorithm, which aims at finding a mixture distribution in distribution set Q defined as:

Q = {Q =
∑
j∈[K]

qjhj(ΨV (X), Y ),q ∈ ∆K} (12)

to fit the empirical data best. Therefore, the original objective function and the simplified one are:

min
Q∈Q

DKL(P̂N‖Q)⇔ min
Θ,q

Lc = − 1

N

∑
i∈[N ]

log

∑
j∈[K]

qjhj(ψV (xi), yi)

 (13)

Note that our clustering algorithm differs from others since the cluster centres are learned models
parameterized with Θ. As for optimization, we use EM algorithm to optimize the centre parameters
Θ and the mixture weights q iteratively. Specifically, when optimizing the cluster centre model
f(Θj ; ·), we use kernel regression with κc(·, ·) to avoid computing ΨV (X) and allow large k. For
generating the learned environments Elearn, we assign i-th point to j-th cluster with probability
Pi,j = qjhj(ψV (xi), yi)/

∑
l∈[K] qlhl(ψV (xi), yi).

4 Theoretical Analysis

In this section, we provide theoretical justifications of the mutual promotion betweenMc andMp.
Since our algorithm does not violate the theoretical analysis in [14] and [13] which proves that better
Elearn fromMc benefits the MIP learned byMp, to finish the mutual promotion, we only need to
justify that better θinv fromMp benefits the learning of Elearn inMc.

1. Using ΨV ∗ benefits the clustering. Firstly, we introduce Lemma 4.1 from [18] to show that
using Ψ∗V benefits the clustering in terms of larger between-cluster distance.
Lemma 4.1. For ei, ej ∈ supp(Elatent), assume thatX satisfying Assumption 2.1, then under reason-
able assumption([18]), we have DKL(P ei(Y |X)‖P ej (Y |X)) ≤ DKL(P ei(Y |Ψ∗V )‖P ej (Y |Ψ∗V )).

Then similar to [17], we use the rate-distortion theory to demonstrate why larger DKL between
cluster centres benefits our convex clustering as well as the quality of Elearn.
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Theorem 4.1. (Rate-Distortion) For the proposed convex clustering algorithm, we have:

min
Q∈Q

DKL(P̂N ||Q) = min
Θ

I(I; J) + (1/2σ2)EI,J [d(ψV (xi), yi,Θj)] + Const (14)

where rij = P (j|ψV (xi), yi) is a discrete random variable over the space {1, 2, ..., N} ×
{1, 2, ...,K} which denotes the probability of i-th data point belonging to j-th cluster, I, J are the
marginal distribution of random variable rij respectively, d(ψV (xi), yi,Θj) = (fΘj

(ψV (xi))−yi)2

and I(·; ·) the Shannon mutual information. Note that the optimal r can be obtained by the optimal Θ
and therefore we only minimize the r.h.s with respect to Θ.

Actually d models the conditional distribution P (Y |ΨV ). If in the underlying distribution of the
empirical data P (Y |ΨV ) differs a lot between different clusters, the optimizer will put more efforts
in optimizing EI,J [d(ψV (xi), yi,Θj)] to avoid inducing larger error, resulting in smaller efforts put
on optimization of I(I; J) and a relatively larger I(I; J). This means data sample points I have a
larger mutual information with cluster index J , thus the clustering is prone to be more accurate.

2. Orthogonality Property: Better θinv for better ΨV . Firstly, we prove the orthogonality
property between θinv(equation 6) and parameters Θ of clustering centres fΘj

(·).

Theorem 4.2. (Orthogonality Property) Denote the data matrix of j-th environment Xj and Ψj
V =

ΨV (Xj), then for each Θj(j ∈ [K]) = ((Ψj
V )TΨj

V )−1(Ψj
V )TY j , we have Span(Θ) ⊆ Ker(θinv)

and Span(Ψj
V ) ⊆ Ker(θinv), where Span denotes the column space and Ker the null space.

Theorem 4.2 justifies that the parameter space for clustering model fΘ(·) as well as the space
of learned variant components ΨV is orthogonal to the invariant direction θinv, which indicates
that better invariant direction θinv regulates better variant components ΨV and therefore better
heterogeneity. Taking (1) and (2) together, we conclude that better results(θinv) ofMp promotes the
latent heterogeneity exploration inMc because of larger between-cluster distance. Finally, we use a
linear but general setting for further clarification.

Example. Assume that data points from environments e ∈ E are generated as follows:

X = Y (Ψ∗S + βeΨ
∗
V ) +N (0,Σ) ∈ Rd (15)

where Y = ±1 with equal probability, the coefficient βe varies across environment e, Ψ∗S ∈ Rd is
the invariant feature and following functional representation lemma [7] Ψ∗V is the variant feature
with Ψ∗V ⊥ Ψ∗S ∈ Rd and its relationship with the target Y relies on the environment-specific βe.

Remark. In example 4, whenMp achieves optimal, we have θinv = Ψ∗S , which is the mid vertical
hyperplane of the two Gaussian distribution. Then following equation 10, we have ΨV = X −
(XT θinv)θinv = Y βeΨ

∗
V , which directly shows that in the next iteration,Mc uses solely variant

components Ψ∗V in X to learn environments Elearn with diverse P (Y |X) = P (Y |Ψ∗V ), which by
lemma 4.1 and theorem 4.1 gives the best clustering results.

5 Experiments

In this section, we validate the effectiveness of our method on synthetic data and real-world data.

Baselines We compare our proposed KerHRM with the following methods:

• Empirical Risk Minimization(ERM): minθ EPtr [`(θ;X,Y )]

• Distributionally Robust Optimization(DRO [6]): minθ supQ∈Df (Q,Ptr)≤ρ EQ[`(θ;X,Y )]

• Environment Inference for Invariant Learning(EIIL [5]):

min
Φ

max
u

∑
e∈E

1

Ne

∑
i

ui(e)`(w�Φ(xi), yi)+λ‖∇w|w=1.0
1

Ne

∑
i

ui(e)`(w�Φ(xi), yi)‖2 (16)

• Heterogeneous Risk Minimization(HRM [18])

• Invariant Risk Minimization(IRM [1]) with environment Etr labels:

min
Φ

∑
e∈Etr

Le + λ‖∇w|w=1.0Le(w � Φ)‖2 (17)

6



We choose one typical method[6] of DRO as DRO is another main branch of methods for OOD
generalization problem of the same setting with us (no environment labels). And HRM and EIIL
are another methods for inferring environments for invariant learning without environment labels.
We choose IRM as another baseline for its fame in invariant learning, but note that IRM is based on
multiple training environments and we provide Etr labels for it, while the others do not need. Further,
for ablation study, we run KerHRM for only one iteration without the feedback loop and denote it as
Static KerHRM(KerHRMs). For all experiments, we use a two-layer MLP with 1024 hidden units.

Evaluation Metrics To evaluate the prediction performance, for task with only one testing environ-
ment, we simply use the prediction accuracy of the testing environment. While for tasks with multiple
environments, we introduce Mean_Error defined as Mean_Error = 1

|Etest|
∑
e∈Etest L

e, Std_Error

defined as Std_Error =
√

1
|Etest|−1

∑
e∈Etest(L

e −Mean_Error)2, which are mean and standard
deviation error across Etest. And we use the average mean square error for Le.

5.1 Synthetic Data

Classification with Spurious Correlation
Following [23], we induce the spurious correlation between the label Y ∈ {+1,−1} and a spurious
attribute A ∈ {+1,−1}. Specifically, each environment is characterized by its bias rate r ∈ (0, 1],
where the bias rate r represents that for 100 ∗ r% data, A = Y , and for the other 100 ∗ (1− r)% data,
A = −Y . Intuitively, r measures the strength and direction of the spurious correlation between the
label Y and spurious attribute A, where larger |r − 0.5| signifies higher spurious correlation between
Y and A, and sign(r − 0.5) represents the direction of such spurious correlation, since there is no
spurious correlation when r = 0.5. We assume X = H[S, V ]T ∈ R2d, where S ∈ Rd is the invariant
feature generated from label Y and V the variant feature generated from spurious attribute A:

S|Y ∼ N (Y 1, σ2
sId), V |A ∼ N (A1, σ2

vId) (18)

and H ∈ R2d×2d is an random orthogonal matrix to scramble the invariant and variant component,
which makes it more practical. Typically, we set σ2

v ≥ σ2
s to let the model more prone to use spurious

V since V is more informative.

In training, we set d = 5 and generate 2000 data points, where 50% points are from environment
e1 with r1 = 0.9 and the other from environment e2 with r2. For our method, we set the cluster
number K = 2. In testing, we generate 1000 data points from environment e3 with r3 = 0.1 to
induce distributional shifts from training. In this experiments, we vary the bias rate r2 of environment
e2 and the scrambled matrix H which can be an orthogonal or identity matrix (as done in [1]), and
results after 10 runs are reported in Table 1.

From the results, we have the following observations and analysis: ERM suffers from the distribu-
tional shifts between training and testing, which yields the worst performance in testing. DRO can
only provide slight resistance to distributional shifts, which we think is due to the over-pessimism
problem[9]. EIIL achieves the best training performance but also performs poorly in testing. HRM
outperforms the above three baselines, but its testing accuracy is just around the random guess(0.50),
which is due to the disturbance of the simple raw feature setting in [18]. IRM performs better when
the heterogeneity between training environments is large(r2 is small), which verifies our analysis in
section 2 that the performance of invariant learning methods highly depends on the quality of the
given Etr. Compared to all baselines, our KerHRM performs the best with respect to highest testing
accuracy and lowest (Train_Acc− Test_Acc), showing its superiority to IRM and original HRM.

Further, we also empirically analyze the sensitivity to the choice of cluster numberK of our KerHRM.
We set r2 = 0.80 and test the performance with K = {2, 3, 4, 5} respectively. Results compared
with IRM are shown in Table 2. From the results, we can see that the cluster number of our methods
does not need to be the ground truth number(ground truth is 2) and our KerHRM is not sensitive to
the choice of cluster number K. Intuitively, we only need the learned environments to reflect the
variance of relationships between P (Y |Ψ∗V ), but do not require the environments to be ground truth.
However, we notice that when K is far away from the proper one, the convergence of clustering
algorithm is much slower.

Regression with Selection Bias
In this setting, we induce the spurious correlation between the label Y and spurious attributes V
through selection bias mechanism, which is similar to that in [15]. We assume X = H[S, V ]T ∈
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Table 1: Results in classification simulation experiments of different methods with varying bias rate
r2, and scrambled matrix H , and each result is averaged over ten times runs.

r2 r2 = 0.70 r2 = 0.75 r2 = 0.80
Methods Train_Acc Test_Acc Train_Acc Test_Acc Train_Acc Test_Acc
ERM 0.850 0.400 0.862 0.325 0.875 0.254
DRO 0.857 0.473 0.870 0.432 0.883 0.395
EIIL 0.927 0.523 0.925 0.470 0.946 0.463
HRM 0.836 0.543 0.832 0.519 0.852 0.488
IRM(with Etr label) 0.836 0.606 0.853 0.544 0.877 0.401
KerHRMs 0.764 0.671 0.782 0.632 0.663 0.619
KerHRM 0.759 0.724 0.760 0.686 0.741 0.693

Table 2: Ablation study on the cluster number K. Each result is averaged over ten times runs.

IRM HRM KerHRM
(K = 2)

KerHRM
(K = 3)

KerHRM
(K = 4)

KerHRM
(K = 5)

Train_Acc 0.877 0.852 0.741 0.758 0.756 0.753
Test_Acc 0.401 0.488 0.693 0.687 0.698 0.668

Rd and Y = f(S) + ε, where f(·) is a non-linear function such that P (Y |S) remains invariant
across environments while P (Y |V ) changes arbitrarily. For simplicity, we select data (xi, yi) with
probability P (xi, yi) according to a certain variable Vb ∈ V :

P̂ (xi, yi) = |r|−5∗|yi−sign(r)∗Vb| (19)

where |r| > 1. Intuitively, r eventually controls the strengths and direction of the spurious correlation
between Vb and Y (i.e. if r > 0, a data point whose Vb is close to its y is more probably to be selected.).
The larger value of |r| means the stronger spurious correlation between Vb and Y , and r > 0 means
positive correlation and vice versa. Therefore, here we use r to define different environments.

In training, we generate 1000 points from environment e1 with a predefined r and 100 points from e2

with r = −1.1. In testing, to simulate distributional shifts, we generate data points for 6 environments
with r ∈ [−2.9,−2.7, . . . ,−1.9]. We compare our KerHRM with ERM, DRO, EIIL and IRM. We
conduct experiments with different settings on r and the scrambled matrix H .

From the results in Table 3, we have the following analysis: ERM, DRO and EIIL performs poor with
respect to high average and stability error, which is similar to that in classification experiments(Table
1). The results of HRM are quite different in two scenarios, where Scenario 1 corresponds to
the simple raw feature setting(H = I) in [18] but Scenario 2 violates such simple setting with
random orthogonal H and greatly harms HRM. Compared to all baselines, our KerHRM achieves
lowest average error in 5/6 settings, and its superiority is especially obvious in our more general
setting(Scenario 2).

Colored MNIST
To further validate our method’s capacity under general settings, we use the colored MNIST dataset,
where data X are high-dimensional non-linear transformation from invariant features(digits Y ) and
variant features(color C). Following [1], we build a synthetic binary classification task, where each
image is colored either red or green in a way that strongly and spuriously correlates with the class
label Y . Firstly, a binary label Y is assigned to each images according to its digits: Y = 0 for digits
0∼4 and Y = 1 for digits 5∼9. Secondly, we sample the color id C by flipping Y with probability
e and therefore forms environments, where e = 0.1 for the first training environment, e = 0.2 for
the second training environments and e = 0.9 for the testing environment. Thirdly, we induce noisy
labels by randomly flipping the label Y with probability 0.2.

We randomly sample 2500 images for each environments, and the two training environments are
mixed without environment label Etr for ERM, DRO, EIIL, HRMs and HRM, while for IRM,
the Etr labels are provided. For IRM, we sample 1000 data from the two training environments
respectively and select the hyper-parameters which maximize the minimum accuracy of two validation
environments. Note that we have no access to the testing environment while training, therefore we
cannot resort to testing data to select the best one, which is more reasonable and different from that
in [1]. For the others, since we have no access to E labels, we simply pool the 2000 data points
for validation. The results are shown in Table 4, where Perfect Inv. Model represents the oracle
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Table 3: Results in selection bias simulation experiments of different methods with varying selection
bias r, and scrambled matrix H , and each result is averaged over ten times runs.

Scenario 1: Non-Scrambled Setting (H = I , varying r)
r r = 1.5 r = 1.9 r = 2.3
Methods Mean_Error Std_Error Mean_Error Std_Error Mean_Error Std_Error
ERM 5.056 0.223 5.442 0.204 5.503 0.234
DRO 4.571 0.205 4.908 0.180 5.081 0.209
EIIL 5.006 0.211 5.252 0.172 5.428 0.205
HRM 3.625 0.057 3.901 0.050 4.017 0.082
IRM(with Etr label) 3.873 0.176 4.536 0.172 4.509 0.194
KerHRMs 4.384 0.191 3.989 0.195 3.527 0.178
KerHRM 4.112 0.182 3.659 0.186 3.409 0.174

Scenario 2: Scrambled Setting (random orthogonal H , varying r)
r r = 1.5 r = 1.9 r = 2.3
Methods Mean_Error Std_Error Mean_Error Std_Error Mean_Error Std_Error
ERM 5.059 0.229 5.285 0.207 5.478 0.211
DRO 4.494 0.212 4.717 0.175 4.978 0.207
EIIL 4.945 0.215 5.207 0.187 5.294 0.220
HRM 4.397 0.096 4.801 0.142 4.721 0.096
IRM(with Etr label) 4.269 0.218 4.477 0.174 4.392 0.178
KerHRMs 4.379 0.205 3.543 0.169 3.571 0.164
KerHRM 4.122 0.195 3.375 0.163 3.473 0.160

results that can be achieved under this setting. We run each method for 5 times and report the average
accuracy, and since the variance of all methods are relatively small, we omit it in the table.

Table 4: Colored MNIST results. The first row indicates whether each method needs the environment
label. The Perfect Inv. Model represents the oracle results that can be achieved. The Generalization
Gap is defined as (Test Accuracy − Train Accuracy).

Method ERM DRO EIIL HRM IRM KerHRMs KerHRM Perfect
Inv. Model

Need Etr Label? % % % % ! % % -
Train Accuracy 0.845 0.644 0.777 0.835 0.766 0.802 0.654 0.800
Test Accuracy 0.106 0.419 0.542 0.282 0.468 0.296 0.648 0.800
Generalization Gap -0.739 -0.223 -0.235 -0.553 -0.298 -0.506 -0.006 -

From the results, our KerHRM generalize the HRM to much more complicated data and consistently
achieves the best performances. KerHRM even outperforms IRM significantly in an unfair setting
where we provide perfect environment labels for IRM, which shows the limitation of manually
labeled environments. Further, to best show the mutual promotion betweenMc andMp, we plot
the training and testing accuracy as well as the KL-divergence DKL of P (Y |C) between the learned
Elearn over iterations in figure 2. From figure 2, we firstly validate the mutual promotion between
Mc andMp since DKL and testing accuracy escalate synchronously over iterations. Secondly, figure
2 corresponds to our analysis in section 2 that the performance of invariant learning method is highly
correlated to the heterogeneity of Etr, which sheds lights to the importance of how to leverage the
intrinsic heterogeneity in training data for invariant learning.

5.2 Real-world Data

In this experiment, we test our method on a real-world regression dataset (Kaggle) of house sales
prices from King County, USA3, where the target variable is the transaction price of the house and
each sample contains 17 predictive variables, such as the built year, number of bedrooms, and square
footage of home, etc. Since it is fairly reasonable to assume the relationships between predictive
variables and the target vary along the time (for example, the pricing mode may change along the
time), there exist distributional shifts in the price-prediction task with respect to the build year of
houses. Specifically, the houses in this dataset were built between 1900 ∼ 2015, and we divide
the whole dataset into 6 periods, where each contains a time span of two decades. Notice that
the later periods have larger distributional shifts. We train all methods on the first period where
built_year ∈ [1900, 1920) and test on the other 5 periods and report the average results over 10 runs
in figure 3. For IRM, we further divide the period 1 into two decades for the Etr provided.

3https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
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Figure 2: Results for the Colored MNIST task.
We plot the training and testing accuracy, as well
as the KL-divergence between learned Etr.

Figure 3: Results for the real-word regression task.
We train all methods on e1 and test on the others,
and report the average results over 10 runs.

Analysis The testing errors of ERM and DRO increase sharply across environments, indicating
the existence of the distributional shifts between environments. IRM performs better than ERM and
DRO, which shows the usefulness of environment labels for OOD generalization and the possibility of
learning invariant predictor from multiple environments. The proposed KerHRM outperforms EIIL
and HRM, which validates its superiority of heterogeneity exploration. KerHRM even outperforms
IRM, which indicates the limitation of manually labeled environments in invariant learning and the
necessity of latent heterogeneity exploration.

6 Limitations

Although the proposed KerHRM is a competitive method, it has several limitations. Firstly, since
inMc we take the model parameters as cluster centres, the strict convergence guarantee for our
clustering algorithmMc is quite hard to analyze. And empirically, we find when the pre-defined
cluster number K is far away from the ground-truth, the convergence ofMc will become quite slow.
Further, such restriction also affects the analysis of the mutual promotion betweenMc andMp,
which we can only empirically provide some verification. Besides, although we incorporate Neural
Tangent Kernel to deal with data beyond raw feature level, how to deal with more complicated data
still remains unsolved. Also, how to incorporate deep learning with the mutual promotion between
the two modules needs further investigation, and we left it for future work.

7 Conclusion

In this paper, we propose the KerHRM algorithm for the OOD generalization problem, which achieves
both the latent heterogeneity exploration and invariant prediction. From our theoretical and empirical
analysis, we find that the heterogeneity of environments plays a key role in invariant learning, which
is consistent with some recent analysis[20] and opens a new line of research for OOD generalization
problem. Our code is available at https://github.com/LJSthu/Kernelized-HRM.
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A Appendix

A.1 Experimental Details

In this section, we introduce the experimental details as well as additional results. In all experiments,
we take k = {10, 15, 20, 25} for our KerHIL and select the best one according to the validation
results.
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Classification with Spurious Correlation
For our synthetic data, we set σ2

s = 3.0 and σ2
v = 0.3 to let the model more prone to use spurious V

since V is more informative.

Regression with Selection Bias
In this setting, the correlations among covariates are perturbed through selection bias mechanism.
According to assumption 2.1, we assume X = H[S, V ]T ∈ Rd and S = [S1, S2, . . . , Sns ]T ∈ Rns

is independent from V = [V1, V2, . . . , Vnv ] ∈ Rnv while the covariates in S are dependent with each
other. We assume Y = f(S) + ε and P (Y |S) remains invariant across environments while P (Y |V )
can arbitrarily change.

Therefore, we generate training data points with the help of auxiliary variables Z ∈ Rns+1 as
following:

Z1, . . . , Zns+1
iid∼ N (0, 1.0) (20)

V1, . . . , Vnv

iid∼ N (0, 1.0) (21)
Si = 0.8 ∗ Zi + 0.2 ∗ Zi+1 for i = 1, . . . , ns (22)

To induce model misspecification, we generate Y as:

Y = f(S) + ε = θTs S + β ∗ S1S2S3 + ε (23)
where θs = [ 1

2 ,−1, 1,− 1
2 , 1,−1, . . . ] ∈ Rns , and ε ∼ N (0, 0.3). For our synthetic data, we set

β = 5.0, ns = 5 and d = 10. As we assume that P (Y |S) remains unchanged while P (Y |V ) can
vary across environments, we design a data selection mechanism to induce this kind of distribution
shifts. For simplicity, we select data points according to a certain variable set Vb ∈ V :

P̂ (x, y) = |r|−5∗|y−sign(r)∗Vb| (24)
µ ∼ Uni(0, 1) (25)

M(r; (x, y)) =

{
1, µ ≤ P̂
0, otherwise

(26)

where |r| > 1. Given a certain r, a data point (x, y) is selected if and only if M(r; (x, y)) = 1 (i.e.
if r > 0, a data point whose Vb is close to its Y is more probably to be selected.) Intuitively, r
eventually controls the strengths and direction of the spurious correlation between Vb and Y (i.e. if
r > 0, a data point whose Vb is close to its Y is more probably to be selected.). The larger value of
|r| means the stronger spurious correlation between Vb and Y , and r ≥ 0 means positive correlation
and vice versa. Therefore, here we use r to define different environments.

A.2 Proof of Theorems

A.2.1 Proof of Theorem 2.1

First, we would like to prove that a random variable satisfying assumption 2.1 is MIP.
Theorem A.1. A representation Ψ∗S ∈ I satisfying assumption 2.1 is the maximal invariant predictor.

Proof. →: To prove Ψ∗S = arg minZ∈I I(Y ;Z). If Ψ∗S is not the maximal invariant predictor,
assume Φ′ = arg maxZ∈I I(Y ;Z). Using functional representation lemma, consider (Ψ∗S ,Φ

′), there
exists random variable Φextra such that Φ

′
= σ(Ψ∗S ,Φextra) and Φ∗ ⊥ Φextra. Then I(Y ; Φ

′
) =

I(Y ; Φ∗,Φextra) = I(f(Ψ∗S); Ψ∗S ,Φextra) = I(f(Ψ∗S); Ψ∗S).

←: To prove the maximal invariant predictor Ψ∗S satisfies the sufficiency property in assumption 2.1.

The converse-negative proposition is :
Y 6= f(Ψ∗S) + ε→ Ψ∗S 6= arg max

Z∈I
I(Y ;Z) (27)

Suppose Y 6= f(Ψ∗S) + ε and Ψ∗S = arg maxZ∈I I(Y ;Z), and suppose Y = f(Φ
′
) + ε where

Φ
′ 6= Ψ∗S . Then we have:

I(f(Φ
′
); Ψ∗S) ≤ I(f(Φ

′
); Φ

′
) (28)

Therefore, Φ
′

= arg maxZ∈I I(Y ;Z)
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Then we provide the proof of Theorem 2.1 with Assumption A.1.

Assumption A.1. Heterogeneity Assumption.
For random variable pair (X,Φ∗) and Φ∗ satisfying Assumption 2.1, using functional representation
lemma [7], there exists random variable Ψ∗ such that X = X(Φ∗,Ψ∗), then we assume P e(Y |Ψ∗)
can arbitrary change across environments e ∈ supp(E).

Theorem A.2. Let g be a strictly convex, differentiable function and let D be the corresponding
Bregman Loss function. Let Ψ∗S is the maximal invariant predictor with respect to IE , and put
h∗(X) = EY [Y |Ψ∗S ]. Under Assumption A.1, we have:

h∗ = arg min
h

sup
e∈supp(E)

E[D(h(X), Y )|e] (29)

Proof. Firstly, according to theorem A.1, Ψ∗S satisfies Assumption 2.1. Consider any function h, we
would like to prove that for each distribution P e(e ∈ E), there exists an environment e′ such that:

E[D(h(X), Y )|e′] ≥ E[D(h∗(X), Y )|e] (30)

For each e ∈ E with density ([ΨS ,ΨV ], Y ) 7→ P (ΨS ,ΨV , Y ), we construct environment e′ with
density Q(ΨS ,ΨV , Y ) that satisfies: (omit the superscript ∗ of ΨS and ΨV for simplicity)

Q(ΨS ,ΨV , Y ) = P (ΨS , Y )Q(ΨV ) (31)

Note that such environment e′ exists because of the heterogeneity property assumed in Assumption
A.1. Then we have: ∫

D(h(ψs, ψv), y)q(ψs, ψv, y)dψsdψvdy (32)

=

∫
ψv

∫
ψs,y

D(h(ψs, ψv), y)p(ψs, y)q(ψv)dψsdydψv (33)

=

∫
ψv

∫
ψs,y

D(h(ψs, ψv), y)p(ψs, y)dψsdyq(ψv)dψv (34)

≥
∫
ψv

∫
ψs,y

D(h∗(ψs, ψv), y)p(ψs, y)dψsdyq(ψv)dψv (35)

=

∫
ψv

∫
ψs,y

D(h∗(ψs), y)p(ψs, y)dψsdyq(ψv)dψv (36)

=

∫
ψs,y

D(h∗(ψs), yp(ψs, y)dψsdy (37)

=

∫
ψs,ψv,y

D(h∗(ψs), y)p(ψs, ψv, y)dψsdψvdy (38)

(39)

A.2.2 Proof of Lemma 4.1

Firstly, we add the assumption in [18].
Assumption A.2. Assume the pooled training data is made up of heterogeneous data sources:
Ptr =

∑
e∈supp(Etr) weP

e. For any ei, ej ∈ Etr, ei 6= ej , we assume

Ici,j(Y ; Φ∗|Ψ∗) ≥ max(Ii(Y ; Φ∗|Ψ∗), Ij(Y ; Φ∗|Ψ∗)) (40)

where Φ∗ is invariant feature and Ψ∗ the variant. Ii represents mutual information in P ei and
Ici,j represents the cross mutual information between P ei and P ej takes the form of Ici,j(Y ; Φ|Ψ) =

Hc
i,j [Y |Ψ]−Hc

i,j [Y |Φ,Ψ] and Hc
i,j [Y ] = −

∫
pei(y) log pej (y)dy.

Then the proof for Lemma 4.1 can be found in [18].
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A.2.3 Proof of Theorem 4.1

Firstly, we transform the clustering objective in Equation 12, making it more suitable for further
analysis. Proof can be found in [17].
Theorem A.3. Let Q′ be the set of distributions of the complete data random variable (J,Ψ, Y ) ∈
{1, 2, ...,K} × Rd × R with elements:

Q′(J = j,Ψ = ψ, Y = y) = qjhj(ψ, y), (41)

i.e. Q′(j, ψ, y) is the probability of data point (ψ, y) belonging to the j-th cluster. Let P ′ be the set
of distributions on the same random variable (J,Ψ, Y ) which have P̂N as their marginal on (Ψ, Y ).
Specifically for any P ′ ∈ P ′ we have:

P ′(j, ψ, y) = P̂N (ψ, y)P ′(j|ψ, y)

=


1

N
rij , if (φ, y) = (φi, yi)

0, otherwise

(42)

where rij = P ′(j|ψi, yi). Then:

min
Q∈Q

DKL(P̂N ||Q) = min
P ′∈P′,Q′∈Q′

DKL(P ′||Q′). (43)

In the new optimization problem in Equation 43, we optimize P ′ ∈ P ′ and Q′ ∈ Q′. Specifically, in
the former we can optimize rij , which is a discrete random variable over the space {1, 2, ..., N} ×
{1, 2, ...,K}. Meanwhile, in the latter we can optimize {Θj}Kj=1 and {qj}Kj=1, which are the cluster
centers and cluster weights, respectively.

Substituting the definitions of P ′ and Q′ respective in Equation 42 and Equation 41 to Equation 43,
we come the following equation:

DKL(P ′||Q′) =
1

N

N∑
i=1

K∑
j=1

rij [log
rij
qj

+ βd(ψi, yi,mj)] + Const, (44)

where β = 1
2σ2 is to better illustrate the Rate-Distortion theorem and d(ψi, yi,Θj) = (fΘj (ψi)−yi)2.

It is straightforward to show that for any set of values rij , setting qj = 1
N

∑N
i=1 rij minimize the

objective, therefore:

DKL(P ′||Q′∗(P ′)) =
1

N

N∑
i=1

K∑
j=1

rij [log
rij

1
N

∑N
i′=1 ri′j

+ βd(ψi, yi,mj)] + Const
=I(I; J) + βEI,Jd(ψi, yi,Θj) + Const,

(45)

where I, J are the marginal distribution of random variable rij respectively.

The first term is the mutual information between the random variables I (data points) and J (ex-
emplars) under the empirical distribution and the second term is the expected value of the pairwise
distances with the same distribution on indices.

Actually d(ψi, yi,Θj) models the conditional distribution P (Y |Ψ). If in the underlying distribution
of the empirical data P (Y |Ψ) differs a lot between different clusters, then d(ψi, yi,Θj) will be
focused more to be optimized because different clusters are more diverse so the optimizer will
put more efforts in optimizing d(ψi, yi,Θj). Resulting in smaller efforts put on optimization of
I(I; J), resulting in a relatively larger I(I; J). This means data sample points I has a larger mutual
information with exemplars J , thus the clustering is more accurate.

We can provide another intuition of why larger I(I; J) means more accurate clustering. For a static
dataset to be clustered, setting larger β causes distance between points larger, resulting in more
clusters which is more accurate. On the other hand, larger β signifies the model puts more efforts to
optimize d(ψi, yi,Θj) and puts less efforts on the optimization of I(I; J), resulting in larger I(I; J).
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A.2.4 Proof of Theorem 4.2

Firstly, since Ψ
(t+1)
V (xi)← UiS −

〈
UiS, θ

(t)
inv

〉
θ

(t)
inv/‖θ

(t)
inv‖2, we have〈

Ψ
(t+1)
V , θ

(t)
inv

〉
= 0 (46)

Therefore, we have
Span(Ψ

(t+1)
V ) ⊥ θ(t)

inv (47)
and

Span(Ψ
(t+1)
V ) ⊆ Ker(θ

(t)
inv) (48)

As for the clustering parameters Θ, since the kernel regression is equivalent to linear regression using
mapping function ΨV , we can directly derive the analytical solution of Θj as:

Θj(j ∈ [K]) = ((Ψj
V )TΨj

V )−1(Ψj
V )TY j (49)

where Ψj
V denotes the data matrix of environment j and Y j the corresponding label matrix. Then

since
((Ψj

V )TΨj
V )−1(Ψj

V )TY j = (Ψj
V )T ((Ψj

V )(Ψj
V )T )−1Y j (50)

we have

ΘT
j θinv =

[
(Ψj

V )T ((Ψj
V )(Ψj

V )T )−1Y j
]T
θinv (51)

= 0 (52)

which gives the conclusion.

A.3 Limitations and Future Work

This work focus on the integration of latent heterogeneity exploitation and invariant learning on
representation level. To fulfill the mutual promotion between environment inference and invariant
learning, we give up deep learning for representation learning, since the representation space in deep
learning is hard to theoretically analyzed, which makes it quite hard to maintain the property we need.
As an alternative, we leverage Neural Tangent Kernel(NTK) and convert data into Neural Tangent
Feature(NTF) space, for NTK theory[13] builds the equivalency between MLP and kernel regression.

However, we have to admit that using NTF space for representation space is not as powerful as the
representation space produced by recent deep learning methods. But we would like to emphasize
the difficulty in incorporating deep learning, since we cannot directly use the learned representation
for heterogeneity exploitation, because during the invariant representation learning process, deep
models will gradually extract the latent invariant components Ψ∗S in data and discard those variant
components Ψ∗V . We have to resort to variant components Ψ∗V rather than invariant ones Ψ∗S to
explore the heterogeneity, but variant components are discarded during the training of deep models.
Therefore, incorporating deep learning while maintaining mutual promotion is quite hard and we
leave it for future work.

A.4 Related Work

There are mainly two branches of methods for OOD generalization problem, namely Distributionally
Robust Optimization(DRO) methods[6, 8, 22, 24] and Invariant Learning methods[1, 3, 5, 14, 18].

To ensure the OOD generalization performances, DRO methods[6, 8, 22, 24] aim to optimize
the worst-performance over a distribution set, which is usually characterized by f -divergence or
Wasserstein distance. However, in real scenarios, it is often necessary for the distributional set to
be large to contain the potential testing distributions, which results in the over-pessimism problem
because of the large distribution set[10, 11].

Realizing the difficulty of solving OOD generalization problem without prior knowledge or structural
assumptions, invariant learning methods assume the existence of causally invariant relationships and
propose to explore them through multiple environments. However, the effectiveness of such methods
relies heavily on the quality of training environments. Further, modern big data are frequently
assembled by merging data from multiple sources without explicit source labels, which results in
latent heterogeneity in pooled data and renders these invariant learning methods inapplicable.
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Recently, there are methods[5, 18] aiming at relaxing the need for multiple environments for invariant
learning. [5] directly infers the environments according to a given biased model first and then
performs invariant learning. But the two stages cannot be jointly optimized and the quality of inferred
environments depends heavily on the pre-provided biased model. Further, for complicated data, using
invariant representation for environment inference is harmful, since the environment-specific features
are gradually discarded, causing the extinction of latent heterogeneity and rendering data from
different latent environments undistinguishable. [18] designs a mechanism where two interactive
modules for environment inference and invariant learning respectively can promote each other.
However, it can only deal with scenarios where invariant and variant features are decomposed on raw
feature level, and will break down when the decomposition can only be performed in representation
space(e.g., image data).
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