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In addition to the four appendix sections mentioned in our main paper, we would like to draw atten-1

tion to two additional experiments: one evaluating the practical training and coding time, and the2

other investigating the impact of the number of training samples. These two experiments, especially3

the later one, offer crucial insights and are detailed in Appendix E1 and Appendix E2, respectively.4

A Relative Entropy Coding with A* Coding5

Algorithm 1 A* encoding

Require: Proposal distribution pw and target distribution qw.

Initialize : N,G0,w
˚, N˚, L Ð 2|C|,8,K,K,´8

for i “ 1, . . . , N do Ź N samples from proposal distribution
wi „ pw
Gi „ TruncGumbelpGi´1q

Li Ð Gi ` log pqwpwiq{pwpwiqq Ź Perturbed importance weight
if Li ď L then

L Ð Li

w˚, N˚ Ð wi, i
end if

end for
return w˚, N˚ Ź Transmit the index N˚

Recall that we would like to communicate a sample from the variational posterior distribution qw6

using the proposal distribution pw. In our experiments, we used global-bound depth-limited A*7

coding to achieve this [1]. We describe the encoding procedure in Algorithm 1 and the decoding8

procedure in Algorithm 2. For brevity, we refer to this particular variant of the algorithm as A*9

coding for the rest of the appendix.10

A* coding is an importance sampler that draws N samples w1, . . . ,wN „ pw from the pro-11

posal distribution pw, where N is a parameter we pick. Then, it computes the importance weights12

rpwnq “ qwpwnq{pwpwnq, and sequentially perturbs them with truncated Gumbel1 noise:13

r̃n “ rpwnq ` Gn, Gn „ TruncGumbelpGn´1q, G0 “ 8 (1)

Then, it can be shown that by setting14

N˚ “ argmax
nPr1:Ns

r̃n, (2)

1The PDF of a standard Gumbel random variable truncated to p´8, bq is given by
TruncGumbelpx | bq “ 1rx ď bs ¨ expp´x ´ expp´xq ` expp´bqq.
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Algorithm 2 A* decoding

Simulate twiu “ tw1, ¨ ¨ ¨ ,wNu Ź Simulate N samples from pw with the shared seed
Receive N˚

return w˚ Ð wN˚ Ź Receive the approximate posterior sample

we have that wN˚ „ q̃w is approximately distributed according to the target, i.e. q̃w « qw. More15

preciesly, we have the following result:16

Lemma A.1 (Bound on the total variation between q̃w and qw (Lemma D.1 in [2])). Let us set the17

number of proposal samples simulated by Algorithm 1 to N “ 2DKLrqw}pws`t for some parameter18

t ě 0. Let q̃w denote the approximate distribution of the algorithm’s output for this choice of N .19

Then,20

DTV pqw, q̃wq ď 4ϵ, (3)

where21

ϵ “

ˆ

2´t{4 ` 2
b

PZ„qw rlog2 rpZq ě DKLrQ}P s ` ts

˙1{2

. (4)

This result essentially tells us that we should draw at least around 2DKLrqw}pws samples to ensure22

low sample bias, and beyond this, the bias decreases exponentially quickly as t Ñ 8. However,23

note that the number of samples we need also increases exponentially quickly with t. In practice,24

we observed that when DKLrqw}pws is sufficiently large (around 16-20 bits), setting t “ 0 already25

gave good results. To encode N˚, we built an empirical distribution over indices using our training26

datasets and used it for entropy coding to find the optimal variable-length code for the index.27

In short, on the encoder side, N random samples are obtained from the proposal distribution pw,28

and we select the sample wi and transmit its index N˚ that has the greatest perturbed importance29

weight. On the decoder side, those N random samples can be simulated with the same seed held by30

the encoder. The decoder only needs to find the sample with the index N˚. Therefore, the decoding31

process of our method is very fast. We also provide the specific coding time in Appendix E1.32

B Closed-Form Solution for Updating Model Prior33

In this section, we derive the analytic expressions for the prior parameter updates in our iterative34

prior learning procedure when both the prior and the posterior are Gaussian distributions. Given a35

set of training data tDiu “ tD1,D2, ...,DMu, we fit a variational distribution q
piq
w to represent each36

of the Dis. To do this, we minimize the loss (abbreviated as L later)37

sLβpθp, tqpiq
w uq “

1

M

M
ÿ

i“1

LβpDi, q
piq
w , pw;θp

q (5)

“
1

M

M
ÿ

i“1

t
ÿ

px,yqPD

Ew„qw r∆py, fpx | wqs ` β ¨ DKLrqw}pw;θp
s u. (6)

Now calculate the derivative w.r.t. the prior distribution parameter pw;θp
,38

BL
Bθp

“
1

M

M
ÿ

i“1

BDKLrqw}pw,θp
s

Bθp
(7)

Considering we choose factorized Gaussian as variational distributions, the KL divergence is39

DKLrqpiq
w }pw,θp

s “ DKLrN pµi, diagpσiqq}N pµi, diagpσiqqs (8)

“
1

2
log

σp

σ
piq
q

`
σ

piq
q ` pµ

piq
q ´ µpq2

σp
´

1

2
(9)
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To compute the analytical solution, let40

BL
Bθp

“
1

M

M
ÿ

i“1

BDKLrqw}pw,θps

Bθp
“ 0. (10)

Note here σ refers to variance rather than standard deviation. The above equation is equivalent to41

BL
Bµp

“

M
ÿ

i“1

µp ´ µ
piq
q

σp
“ 0,

BL
Bσp

“

M
ÿ

i“1

r
1

σp
´

σ
piq
q ` pµ

piq
q ´ µpq2

σ2
p

s “ 0.

(11)

We finally can solve these equations and get42

µp “
1

M

M
ÿ

i“1

µpiq
q , σp “

1

M

M
ÿ

i“1

rσpiq
q ` pµpiq

q ´ µpq2s (12)

as the result of Equation (5) in our main text. In short, this closed-form solution provides an efficient43

way to update the model prior from a bunch of variational posteriors. It makes our method simple44

in practice, unlike some previous methods [3, 4] that require expensive meta-learning loops.45

C Dynamic Adjustment of β46

When learning the model prior, the value of β that controlling the rate-distortion trade-off is defined47

in advance to train the model prior at a specific bitrate point. After obtaining the model prior, we48

will first partition the network parameters into K groups w1:K “ tw1, . . . ,wKu according to the49

average approximate coding cost of training data, as described in Section 3.3 of the main text. Now50

for training the variational posterior for a given test datum, to ensure the coding cost of each group51

is close to κ “ 16 bits, we adjust the value of β dynamically when optimizing the posteriors. The52

detailed algorithm is illustrated here in Algorithm 3.53

Algorithm 3 Dynamic β adjustment for optimizing the posteriors

Require: β,w1:K “ tw1, . . . ,wKu

Initialize: λk “ β, k “ 1, ¨ ¨ ¨ ,K
Initialize: variational posterior qwk

, k “ 1, ¨ ¨ ¨ ,K

for i Ð NumberIter do

δk “ DKLrqwk
}pwk

s, k “ 1, ¨ ¨ ¨ ,K

qw1:K
Ð VariationalUpdate(Lλ1:K

) Ź Lλ1:K
is defined in Equation 8 in the main text

if pi mod 15q “ 0 then
if δk ą κ then λk “ λk ¨ 1.05
end if
if δk ă κ ´ 0.4 then λk “ λk / 1.05
end if

end if
end for
return qwk

, λk, k “ 1, ¨ ¨ ¨ ,K

The algorithm is improved from Havasi et al. [5] to stabilize training, in the way that we set an54

interval rκ ´ 0.4, κs as buffer area where we do not change the value of λk. Here we only adjust λk55

every 15 iterations to avoid frequent changes at the initial training stage.56

D Experiment Details57

We introduce the experimental settings here and summarize the settings in Table 1.58
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CIFAR-10 Kodak LibriSpeech
Smaller Model Larger Model

Network Structure

number of MLP layer 4 6 7 6
hidden unit 16 48 56 48

Fourier embedding 32 64 96 64
number of parameters 1123 12675 21563 12675

Learning Model Prior from Training Data

number of training data 2048 512 512 1024
epoch number 128 96 96 128
learning rate 0.0002 0.0001 0.0001 0.0002

iteration / epoch
(except the first epoch)

100 200 200 100

iteration number
in the first epoch

250 500 500 250

initialization of
posterior variance

9 ˆ 10´6 4 ˆ 10´6 4 ˆ 10´6, 4 ˆ 10´10 4 ˆ 10´9

β
2 ˆ 10´5, 5 ˆ 10´6, 2 ˆ 10´6

1 ˆ 10´6, 5 ˆ 10´7 10´7, 10´8, 4 ˆ 10´8 4 ˆ 10´6 10´7, 3 ˆ 10´8

10´8, 10´9

Optimize the Posterior of a Test Datum

iteration number 25000 25000 25000 25000
learning rate 0.0002 0.0001 0.0001 0.0002
training with

1/4 the points (pixels)
✗ ✓ ✓ ✗

number of group
(KL budget =

16 bits / group)

(58, 89, 146,
224, 285)

(1729, 2962, 3264) (5503, 7176)
(1005, 2924,
4575, 6289)

bitrate, (bpp for images,
Kbps for audios)

(0.91, 1.39, 2.28,
3.50, 4.45)

(0.070, 0.110, 0.132) (0.224, 0.293)
(5.36, 15.59,
24.40, 33.54)

PSNR, dB
(0.91, 1.39, 2.28,

3.50, 4.45)
(0.070, 0.110, 0.132) (0.224, 0.293)

(5.36, 15.59,
24.40, 33.54)

Table 1: Hyper parameters in our experiments.

D.1 CIFAR-1059

We use a 4-layer MLP with 16 hidden units and 32 Fourier embeddings for the CIFAR-10 dataset.60

The model prior is trained with 128 epochs to ensure convergence. Here, the term “epoch” is used61

to refer to optimizing the posteriors and updating the prior in the Algorithm 1 in the main text. For62

each epoch, the posteriors of all 2048 training data are optimized for 100 iterations using the local63

reparameterization trick [6], except the first epoch that contains 250 iterations. We use the Adam64

optimizer with learning rate 0.0002. The posterior variances are initialized as 9 ˆ 10´6.65

After obtaining the model prior, given a specific test CIFAR-10 image to be compressed, the pos-66

terior of this image is optimized for 25000 iterations, with the same optimizer. When we finally67

progressively compress and finetune the posterior, the posteriors of the uncompressed parameter68

groups are finetuned for 15 iterations with the same optimizer once a previous group is compressed.69

D.2 Kodak70

For Kodak dataset, since training on high-resolution image takes much longer time, the model prior71

is learned using fewer training data, i.e., only 512 cropped CLIC images [7]. We also reduce the72

learning rate of the Adam optimizer to 0.0001 to stabilize training. In each epoch, the posterior of73

each image is trained for 200 iterations, except the first epoch that contains 500 iterations. We also74

reduce the total epoch number to 96 which is empirically enough to learn the model prior.75

We use two models with different capacity for compressing high-resolution Kodak images. The76

smaller model is a 6-layer SIREN with 48 hidden units and 64 Fourier embeddings. This model is77
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used to get the three low-bitrate points in Figure 2b in our main text, where the corresponding beta78

is set as t10´7, 10´8, 4 ˆ 10´8u. Another larger model comprises a 7-layer MLP with 56 hidden79

units and 96 Fourier embeddings, which is used for evaluation at the two relatively higher bitrate80

points in Figure 2b in our main text. The betas of these two models have the same value 2 ˆ 10´9.81

We empirically adjust the variance initialization from the set t4 ˆ 10´6, 4 ˆ 10´10u and find they82

can affect the converged bitrate and achieve good performance. In particular, the posterior variance83

is initialized as 4ˆ10´10 to reach the highest bitrate point in the rate-distortion curve. The posterior84

variance of other bitrate-points on Kodak dataset are all initialized as 4 ˆ 10´6.85

Important note: It required significant empirical effort to find the optimal parameter settings we86

described above, hence our note in the Conclusion and Limitations section that Bayesian neural87

networks are inherently sensitive to initialization [8].88

D.3 LibriSpeech89

We randomly crop 1024 audio samples from LibriSpeech “train-clean-100” set [9] for learning the90

model prior and randomly crop 24 test samples from “test-clean” set for evaluation. The model91

structure is the same as the small model used for compressing Kodak images. We evaluate on four92

bitrate points by setting β “ t10´7, 3 ˆ 10´8, 10´8, 10´9u. There are 128 epochs, and each epoch93

has 100 iterations with learning rate as 0.0002. The first epoch has 250 iterations. In addition, the94

posterior variance is initialized as 4 ˆ 10´9. The settings for optimizing and finetuning posterior of95

a test datum are the same as the experiments on Kodak dataset.96

E Supplementary Experimental Results97

E.1 Evaluation of Training and Practical Coding Time98

Training Time. The most time-consuming part of setting up COMBINER for a data modality is99

running the iterative prior learning algorithm we propose in the main text. Furthermore, optimizing100

the variational posteriors takes up the bulk of the learning process since updating the prior parameters101

given the variational posteriors can be done efficiently using the formulae we derive in Appendix B.102

However, such posterior optimization can be done in parallel, especially given that our INRs have103

very few parameters. To train the model prior on the CIFAR-10 dataset, we can train the posteriors104

of 2048 images together in a single V100 GPU. It only takes around 20 minutes to train for 128105

epochs with almost 100 iterations per epoch. For training the model prior with 512 cropped CLIC106

images, due to the limit of GPU memory, we run multiple processes simultaneously on 4 GTX107

1080 GPUs, where each process runs for a single image. The entire training time on CLIC dataset108

consumes around 30 hours. We note that the training time on CLIC dataset could be significantly109

reduced with additional engineering effort, but we have not had the opportunity to do so due to time110

constraints.111

Coding Time. To compress a test datum, we first optimize its INR’s variational posterior for 25,000112

iterations. Such optimization process should also be included as a part of encoding time, similar113

to COIN [10]. In addition, the progressive posterior refinement process also takes a long time.114

Therefore, the encoding time of our method is very long. Note that the encoding time of relative115

entropy coding is negligible compared with the optimization process because our model is very116

small, and there are not so many parameter groups. As a result, we are able to evaluate all the117

10,000 images from the CIFAR-10 test set in parallel using a CPU cluster. To decode the network118

parameters, the decoder only needs to search for the sample according to the received index, which119

is very fast. The practical encoding and decoding time is shown in Table 2.120

CIFAR, bpp = 0.91 CIFAR, bpp = 4.45 Kodak, bpp = 0.070 Kodak, bpp = 0.293
encoding time „10 minutes „20 minutes „2 hours „4 hours
decoding time 0.051 second 0.075 second 0.410 second 0.542 second

Table 2: Practical encoding and decoding time of a specific image on 1080Ti GPU.

We show both the encoding and decoding time of our method on different datasets at different121

bitrates. In fact, the decoding time is mainly consumed for relative entropy decoding and inference122
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Figure 1: Impact of the number of training data.
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Figure 2: Compressing audios.

of the received MLP network. Usually, if there are more parameter groups, the coding time will be123

longer. Therefore, decoding a Kodak image at our highest bitrate (0.293 bpp) consumes the most124

decoding time (0.542 second), but is still very fast.125

E.2 Number of Training Samples126

Since the model prior is learned from a few training data, the number of training data may influence127

the quality of the learned model prior. We train the model prior with a different number of training128

images from the CIFAR-10 training set and evaluate the performance on 100 randomly selected test129

images from the CIFAR-10 test set. Surprisingly, as shown in Figure 1, we found that even merely130

16 training images can help to learn a good model prior. Considering the randomness of training131

and testing, the performance on this test subset is almost the same when the number of training data132

exceeds 16. This demonstrates that the model prior is quite robust and generalizes well to test data.133

In our final experiments, the number of training samples is set to 2048 (on CIFAR-10 dataset) to134

ensure the prior converges to a good optimum.135

E.3 Compressing Audios with Small Chunks136

The proposed approach does not need to compute the second-order gradient during training, which137

helps to learn the model prior of the entire datum. Hence, compression with a single Bayesian INR138

network helps to fully capture the global dependencies of a datum. That is the reason for our strong139

performance on Kodak and LibriSpeech datasets. Here, we also conduct a group of experiment to140

compare the influence of cropping audios into chunks. Unlike the experimental setting in our main141

text that compresses every 3-second audio (1 ˆ 48000) with a single MLP network, here we try to142

crop all the 24 audios into small chunks, each of the chunk has the shape of 1ˆ200. We use the same143

network used for compressing CIFAR-10 images for our experiments here. As shown in Figure 2,144

if we do not compress the audio as an entire entity, the performance will drops for around 5 dB.145

It demonstrates the importance of compressing with a single MLP network to capture the inherent146

redundancies within the entire data.147

E.4 Additional Figures148

We provide some examples of the decoded Kodak images in Figure 3.149
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Ground Truth 0.0703 bpp, 23.02 dB 0.2928 bpp, 25.43 dB

Ground Truth 0.0703 bpp, 29.73 dB 0.2928 bpp, 33.59 dB

Figure 3: Decoded Kodak images.
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