
Appendix

A More Related Work

Transfer learning Transfer learning holds the promise of improving the sample efficiency of
reinforcement learning [65], which learns knowledge from source tasks to accelerate the learning
efficiency in the unseen task. Previous work uses successor features, decouples the transition dynamics
and reward function, and learns faster in simulated navigation and robotic arm settings [3]. DSE [31]
models the transfer process as variational inference and further learns a latent space to transfer skills
across different dynamics. [37] apply a model-based regularizer to learn task-level transfer across
various observation spaces. Related to our work, REPAINT [39] combines task representations with
on-policy learning and uses an advantage-based experience selection approach to transfer useful
samples. Our method differs from these works by (1) its mechanism for alternately updating the
task representation and the representation explainer and (2) its mechanism for handling different
input/output sizes.

The basic idea behind multi-agent transfer learning [35] is to reuse knowledge from other tasks or
other learning agents, corresponding to intra-agent transfer and inter-agent transfer, respectively. It is
expected that the knowledge reuse can accelerate coordination compared to learning from scratch.
The inter-agent transfer paradigm aims at reusing knowledge from other agents with different sensors
or (possibly) internal representations via communication. DVM [41] treats the multi-agent problem
as a multi-task problem to combine knowledge from multiple tasks and then distills the knowledge by
a value matching mechanism. LeCTR [29] learns to teach in a multi-agent environment and learns to
advise others in a peer-to-peer manner. MAPTF [55] takes a further step by proposing an option-based
policy transfer for multi-agent cooperation, and it significantly boosts the performance of existing
methods in both discrete and continuous state spaces. On the other hand, intra-agent transfer refers to
reusing knowledge from previous tasks, focusing on transferring knowledge across multi-agent tasks.
The varying populations and input lengths impede the transfer among agents, with which the graph
neural networks and the transformer play promising roles. DyMA-CL [49] designs various transfer
mechanisms across curricula to accelerate the learning process based on a dynamic agent-number
network. EPC [26] proposes a curriculum learning paradigm via an evolutionary approach to scale
up the population number of agents. UPDeT [17] and PIT [64] make use of the generalization ability
of the transformer to accomplish the multi-agent cooperation and transfer between tasks. Although
these methods can accelerate the learning efficiency of MARL algorithms, they do not exploit task
similarity for better transfer performance. By contrast, our method explicitly models task relationship
by learning a hidden space in which tasks with similar dynamics have similar representations.

Multi-task reinforcement learning is another relevant research topic that enables an RL agent to
leverage experience from multiple tasks to improve sample efficiency and avoid learning from scratch
on every single task. Various approaches have been proposed to achieve multi-task learning, such
as distilling separate tasks’ knowledge into a shared policy [25, 12, 52], conditioning policies on
tasks [8], mapping tasks to parameters of a policy [7, 22, 54], and solving the problem of negative
interference [9, 38, 57] meaning that gradients of different tasks may conflict.

Multi-agent representation learning Learning effective representation in MARL is receiving
significant attention for its effectiveness in solving many important problems. CQ-Learning [16]
learns to adapt the state representation for multi-agent systems to coordinate with other agents. [13]
learn useful policy representations to model agent’s behavior in a multi-agent system. LILI [51]
learns latent representations to capture the relationship between ego-agent’s behavior and the other
agent’s future strategy. RODE [46] uses an action encoder to learn action representations and applies
clustering methods to decompose the joint action space into restricted role action spaces to reduce the
policy search space of multi-agent cooperation. MAR [62] learns meta representation for multi-agent
generalization. MACC [58] uses local information to anticipate the task embedding for decentralized
decision-making. NDQ [47] and MAIC [59] capture the relationships between agents by maximizing
the mutual information, then achieve efficient multi-agent communication. and Our approach differs
from these works by learning representations for tasks and using a representation explainer for
efficient policy transfer.

Another line of research on single-agent multi-task learning that has the potential to be effective in
multi-agent settings is modular RL. Modular RL decentralizes the control of multi-joint robots by
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learning policies for each actuator and thus holds the promise to deal with input and output with
varying lengths. Each joint has its controlling policy, and they coordinate with each other via various
message passing schemes. To do so, [44] and [30] represent the robot’s morphology as a graph
and use GNNs as policy and message passing networks. [18] use both bottom-up and top-down
message passing schemes through the links between joints for coordinating. All of these GNN-like
works show the benefits of modular policies over a monolithic policy in tasks tackling different
morphologies. However, recently, [23] validated a hypothesis that any benefit GNNs can extract
from morphological structures is outweighed by the difficulty of message passing across multiple
hops. They further propose a transformer-based method, AMORPHEUS, that utilizes self-attention
mechanisms as a message passing approach. Although modular RL can deal with varying action
numbers of different tasks and can implicitly model the interaction between agents through GNN,
Transformer, or message passing, it still cannot cope with varying observation lengths and does
not incorporate task-level context information compared to our method. In summary, our work
distinguishes itself from previous multi-task work by (1) its flexibility of handling varying lengths
of observation and varying numbers of actions; (2) its utilization of agent-interaction modeling in
capturing task relation; and (3) its alternatively fixed task representation learning scheme.

B Details about the Benchmarks

(a) SMAC: 2s3z (b) SMAC: MMM2 (c) MPE: Spread (d) MPE: Gather

Figure 5: Snapshots of the experimental environments used in this paper.

SMAC (Fig. 5(a)∼(b)) StarCraft II Micromanagement Benchmark [34] contains combat scenarios
of StarCraft II unit micromanagement tasks and is a popular benchmark for multi-agent reinforcement
learning. We consider a partially observable setting, where an agent can only see a circular area
around it with a radius equal to its sight range, which is default to 9. We train ally units with
MATTAR to fight against enemy units controlled by the built-in AI. At the beginning of each episode,
allies and enemies spawn in pre-defined regions on the map. Every agent takes actions from a discrete
action space including no-op, move[direction], attack[enemyid], and stop. Under the control
of these actions, agents can move and attack on a continuous map. Agents will get a shared reward
equal to the total damage dealt to enemy units at each timestep. Killing each enemy unit and winning
the combat (killing all the enemies) will bring additional bonuses of 10 and 200, respectively. We
consider three series of SMAC tasks, each including various maps. The detailed descriptions are
shown in Tab. 7∼9.

MPE (Fig. 5(c)∼(d)) Multi-Agent Particle Environment [27] is a multi-agent particle world
containing several navigation and communication tasks. In our experiments, we consider a discrete
version of MPE and use two tasks, Spread and Gather, to evaluate our method. In both tasks, there
are n_agent agents on a field with size [field_size, field_size] tasked to reach landmarks.
The agents can observe objects around it within a distance of sight_range. When a landmark is
within a reach_range× reach_range sub-field around an agent, we say the agent has reached the
landmark. In Spread, we require each agent to reach a landmark that is not occupied by any other
agents, while in Gather, the agents share a common landmark. In both of these tasks, only when
all agents reach the landmark, a collective reward of 1 is given. For both Spread and Gather, we
test several tasks with different numbers of agents. The detailed settings of these tasks are listed in
Tab. 10 and 11.
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Table 7: Settings of tasks in the MMM series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty

MMM0
1 Medivac,
2 Marauders,
5 Marines

1 Medivac,
2 Marauders,
5 Marines

Asymmetric & Heterogeneous Easy

MMM
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
2 Marauders,
7 Marines

Asymmetric & Heterogeneous Easy

MMM1
1 Medivac,
1 Marauders,
7 Marines

1 Medivac,
2 Marauders,
7 Marines

Asymmetric & Heterogeneous Hard

MMM2
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
3 Marauders,
8 Marines

Asymmetric & Heterogeneous Super Hard

MMM3
1 Medivac,
2 Marauders,
8 Marines

1 Medivac,
3 Marauders,
9 Marines

Asymmetric & Heterogeneous Super Hard

MMM4
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
9 Marines

Asymmetric & Heterogeneous Super Hard

MMM5
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
10 Marines

Asymmetric & Heterogeneous Super Hard

MMM6
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
11 Marines

Asymmetric & Heterogeneous Super Hard

Table 8: Settings of tasks in the SZ series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty

1s8z 1 Stalkers,
8 Zealots

1 Stalkers,
8 Zealots Symmetric & Heterogeneous Easy

1s9z 1 Stalkers,
9 Zealots

1 Stalkers,
9 Zealots Symmetric & Heterogeneous Easy

2s3z 2 Stalkers,
3 Zealots

2 Stalkers,
3 Zealots Symmetric & Heterogeneous Easy

2s8z 2 Stalkers,
8 Zealots

2 Stalkers,
8 Zealots Symmetric & Heterogeneous Easy

2s9z 2 Stalkers,
9 Zealots

2 Stalkers,
9 Zealots Symmetric & Heterogeneous Easy

3s5z 3 Stalkers,
5 Zealots

3 Stalkers,
5 Zealots Symmetric & Heterogeneous Easy

3s5z_vs_3s6z 3 Stalkers,
5 Zealots

3 Stalkers,
6 Zealots Symmetric & Heterogeneous Super Hard

7s3z 7 Stalkers,
3 Zealots

7 Stalkers,
3 Zealots Symmetric & Heterogeneous Easy

C Network Architecture and Hyperparameters

Our implementation of MATTAR is based on PyMARL 3 with StarCraft 2.4.6.2.69232 and uses its
default hyperparameter settings. We apply the default ϵ-greedy action selection algorithm to every
algorithm, as ϵ decays from 1 to 0.05 in 50K timesteps. We also adopt typical Q-learning training
tricks like the target network and double Q-learning. MATTAR has hyperparameters λ1, λ2, and λ
as the scaling factors of the observation prediction loss, the reward prediction loss, and the entropy
regularization term, respectively. We set them to 1, 10, and 0.1 across all experiments. For other
hyper-parameters, we use the default settings of QMIX presented in the PyMARL framework. For

3We use PyMARL with SC2.4.6.2.6923. Performance is not always comparable among versions.
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Table 9: Settings of tasks in the M series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty
3m 3 Marines 5 Marines Symmetric & Homogeneous Easy
4m 4 Marines 5 Marines Symmetric & Homogeneous Easy

4m_vs_5m 4 Marines 5 Marines Asymmetric & Homogeneous Hard
5m 5 Marines 5 Marines Symmetric & Homogeneous Easy

5m_vs_6m 5 Marines 6 Marines Asymmetric & Homogeneous Hard
6m 6 Marines 6 Marines Symmetric & Homogeneous Easy

6m_vs_7m 6 Marines 7 Marines Asymmetric & Homogeneous Hard
7m 7 Marines 7 Marines Symmetric & Homogeneous Easy

7m_vs_8m 7 Marines 8 Marines Asymmetric & Homogeneous Hard
8m 8 Marines 8 Marines Symmetric & Homogeneous Easy

8m_vs_9m 8 Marines 9 Marines Asymmetric & Homogeneous Easy
9m 9 Marines 9 Marines Symmetric & Homogeneous Easy

9m_vs_10m 9 Marines 10 Marines Asymmetric & Homogeneous Easy
10m 10 Marines 10 Marines Symmetric & Homogeneous Easy

10m_vs_11m 10 Marines 11 Marines Asymmetric & Homogeneous Easy
10m_vs_12m 10 Marines 12 Marines Asymmetric & Homogeneous Super Hard

Table 10: Settings of the Spread tasks. The bolded identities indicate the source tasks.

Task Identity # of Agents # of Landmarks Field Size Sight Range Reach Range

2 2 2 6 5 2
3 3 3 8 7 2
4 4 4 10 9 2
5 5 5 10 9 2
6 6 6 15 14 2
7 7 7 15 14 2
8 8 8 15 14 2
9 9 9 15 15 2

RODE [46], ASN [48], QPLEX [43], QMIX [33], and UPDeT [17], we use the codes provided by
the authors with the default hyperparameters settings. We describe our network structure in Tab. 12.
This network architecture is used for all experiments in the paper.

D Experimental Details

Our experiments were performed on 2 NVIDIA GTX 2080 Ti GPUs. For all the performance curves
in our paper, we pause training every 10K timesteps and evaluate for 32 episodes with decentralized
greedy action selection. We present the percentage of episodes in which the agents defeat all enemies
within the time limit. We now provide details about each part of our experiments.

Generalization to unseen tasks For baselines and ablations, we carried out experiments with 5
different random seeds. In each experiment, we evaluate the trained model for 32 episodes on each
unseen task. The results recorded in Tab. 1∼3 are the mean and variance of these 5 random seeds.

Fine-tuning For the performance of fine-tuning MATTAR, we trained 2 source models with different
random seeds for each unseen map and used 2 random seeds for each source model for fine-tuning.
For learning from scratch, we carried out experiments with 4 different random seeds for each map.

Multi-task learning We carried out experiments with 5 different random seeds for both multi-task
learning and learning on a single task. For the experiments of multi-task learning on three tasks
shown in the paper, the training sets are {5m, 5m_vs_6m, 8m_vs_9m, 10m_vs_11m}, {2s3z, 3s5z,
3s5z_vs_3s6z}, and {MMM, MMM2, MMM4}, respectively.

Single-task learning For this experiment, we tested each baseline and ablation algorithm with 5
random seeds.
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Table 11: Settings of the Gather tasks. The bolded identities indicate the source tasks.

Task Identity # of Agents # of Landmarks Field Size Sight Range Reach Range

2 2 1 6 5 2
3 3 1 8 7 2
4 4 1 10 9 2
5 5 1 10 9 2
7 7 1 15 14 2
9 9 1 15 15 2

10 10 1 20 19 2
15 15 1 20 19 2

Table 12: Hyperparameters about the network structure in our experiments.

name value

The hidden dimension for mixing network 32
The number of layers for the hypernet in mixing network 2

The hidden dimension for the hypernet 64
The length of the encoding vector of agent ID 4

The dimension of task representations 32
The output dimension of the encoder in the forward model 32

The output dimension of the attention module 64
The hidden dimension for the query and key in attention module 8
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Module
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(a) Network architecture for the forward model
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⋯

Task Rep.

(b) Q-network for interaction actions

Figure 6: The architecture of our forward model and the Q-network for interaction actions. In (b),
oentityi denotes the observation component corresponding to the influence of the i-th interactive
action, Q⃗non−interaction denotes the Q-values of non-interactive actions, and Q⃗interaction denotes the
Q-values of interactive actions.

E Forward Model for Task Representation Learning

In our method, we utilize dynamics modelling to learn task representations which can capture the
similarity between different tasks. We use a hypernetwork as the representation explainer to generate
the parameters of the forward model. In practical implementation, the forward model consists two
components, an encoder and a decoder (Fig. 6(a)).

For the encoder network, we first use the population-invariant embedding layer to get a fixed-
dimensional embedding vector and feed it into a fully-connected layer whose parameters are generated
by the representation explainer. The output hidden variables are fed into the decoder to predict the
next state, the next observation, and the global reward. The encoder module and the representation
explainer are shared among tasks and are fixed when learning representations for unseen tasks.
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(b) 5m_vs_6m
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(c) 3s5z

Figure 7: A bonus: when learning from scratch on single tasks, MATTAR architecture exhibits good
performance. For performance on more SMAC benchmark, please refer to Fig. 8.
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(a) 2s3z
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(b) 3s_vs_5z
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(c) 3s5z_vs_3s6z
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(d) corridor
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(e) 10m_vs_11m
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(f) 6h_vs_8z
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(g) 2c_vs_64zg
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Figure 8: More results for the performance of MATTAR on the SMAC benchmark when learning
from scratch on single tasks.

The decoder module is task-specific, and we allow the decoder to be optimized together with task
representations when adapting to unseen tasks.

For the population-invariant embedding layer in the encoder module, like in the policy, we decom-
pose the input state and observation into several entity-specific components, pass them through an
embedding layer, and do a pooling operation for output vectors. We also deal with the case of the
varying number of actions in the input by incorporating actions into to observation oi. We concatenate
non-interaction actions with agent i’s own observation component oown

i and interaction actions with
the observation components corresponding to each entity. We also note that other population-invariant
structures can also be applied to our approach.
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F Varying Numbers of Actions

In some multi-agent environments, there are interaction actions that have semantics relating to other
opponents in the environment. In this case, the action dimension is related to the number of opponents,
preventing flexible transfer to unseen tasks. To deal with this problem, we adopt the structure shown
in Fig. 6(b) for the estimation of Q-values for these interaction actions. In this structure, Q-values
for interaction and non-interaction actions are estimated separately. For non-interaction actions, we
use a fully-connected network whose input is the concatenation of observation encoding h and task
representation z. For an interaction action, we use a network that takes as input the concatenation of
h, task representation z, and the observation component relating to the corresponding opponent.

G Bonus: performance on single-task training

Although not designed for this goal, we find that MATTAR can outperform state-of-the-art MARL
algorithms when trained on some single tasks. Specifically, we remove the task representation module
and train MATTAR from scratch. We compare our method with two state-of-the-art value-based
MARL baselines (QMIX [33] and QPLEX [43]), a role-based learning algorithm (RODE) [46], and
one underlying algorithm of MATTAR which considers the Q-values of interaction actions separately
(ASN) [48]. For the representative tasks of the three series in the main text (MMM2, 5m_vs_6m and
3s5z), we additionally compare with two methods with similar attentional mechanisms (UPDeT [17]
and REFIL [19]).

Fig. 7 shows the learning curves of different methods. We find that our population-invariant network
structure achieves comparable performance in all tasks. It is worth noting that this structure even
significantly outperforms all other algorithms on the super hard map MMM2. In Fig. 8, we show the
comparison on more SMAC maps, on which MATTAR also has comparable performance. Given that
our underlying algorithm is QMIX, this is an inspiring result. We hypothesize that our self-attention
scheme increases the representational capacity by learning to attend to appropriate entities in the
environment.

H Testing of one alternative for source task definition

(a) 2s3z (b) 3s5z (c) 3s5z_vs_3s6z

Apply a normalization layer on top of joint learned vectors with the representation explainer

Figure 9: Testing of one alternative for source task definition. In this experiment, we apply a
normalization layer on top of the joint learned vectors with the representation explainer, and use it as
the task representations for source tasks.

One possible method for determining the source task representations is to joint learn representation
explainer and task representations together. However, this practice often brings representations with
very small norms. A remedy for this problem is to additionally apply a normalization layer on top
of the jointly learned vectors. We conduct experiments to validate this approach, and the results of
learning performance on source tasks for the SZ series are shown in Fig. 9. It is interesting that the
learning curves on source tasks begin to drop after about 1M samples for all these three tasks. These
results show that it is hard to get a meaningful representation space when learning together with the
representation explainer. We hypothesize the reason behind the phenomenon is that there are limited
signals that can guarantee information about task relationship is encoded in the representation space.
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I Discussions when tasks under great differences

Our approach shows great advantages over ablations and baselines in the experimental results
reported in the main text. To further explore the ability of our approach, we additionally conduct two
experiments, and the results are reported in Tab. 13.

Table 13: Two additional experiments where the unseen tasks are quite different.
Source Tasks Unseen Tasks

1s2z 1s3z 2s3z 3s5z 3s5z_3s6z 4s7z 4s7z_4s8z

MATTAR 0.94±0.04 0.97±0.03 0.91±0.07 0.68±0.12 0.01±0.01 0.39±0.19 0.00±0.00

MMM MMM2 MMM4 1s8z 2s3z 3s5z 7s3z

MATTAR 0.99±0.01 0.85±0.01 0.89±0.03 0.00±0.00 0.00±0.00 0.00±0.00 0.05±0.07

In the first experiment, we design source tasks and target tasks with a huge gap in terms of the number
of agents. Specifically, We train MATTAR on three source tasks: 1s2z, 1s3z, and 2s3z, each of
which contains a small number of agents and has a difficulty level of “easy”, and we test it on tasks
with more agents and higher difficulty level. As we can see, the transfer performance drops when the
number of agents has a huge increase, and the win rate is 0 on 4s7z_4s8z.

In the second experiment, we train MATTAR on three tasks from the MMM series and test it on some
tasks of the SZ series. We can see that when the source tasks are not diverse enough to cover unseen
tasks, the transfer performance is close to 0.

From the results, we can see that the transfer performance faces a relatively large drop when our
approach transfers from tasks with few agents to those with more agents, and a failure will appear
when testing on those hard tasks as the decision skills required in these tasks cannot be acquired by
training on those easy tasks. Besides, when we try to transfer across different series of tasks, our
approach struggles even when testing on the 2s3z task, which is a quite easy task. This phenomenon
indicates that policy transfer across quite different tasks is still a quite hard problem that is worth
exploring, and our approach may struggle when the target task can not be well covered by the source
tasks. How to overcome this challenge and achieve more general policy transfer in multi-agent
reinforcement learning remains an open problem.
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