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ABSTRACT

Subgraph matching is vital in knowledge graph (KG) question answering, molecule
design, scene graph, code and circuit search, etc. Neural methods have shown
promising results for subgraph matching. Our study of recent systems suggests
refactoring them into a unified design space for graph matching networks. Existing
methods occupy only a few isolated patches in this space, which remains largely un-
charted. We undertake the first comprehensive exploration of this space, featuring
such axes as attention-based vs. soft permutation-based interaction between query
and corpus graphs, aligning nodes vs. edges, and the form of the final scoring net-
work that integrates neural representations of the graphs. Our extensive experiments
reveal that judicious and hitherto-unexplored combinations of choices in this space
lead to large performance benefits. Beyond better performance, our study uncovers
valuable insights and establishes general design principles for neural graph repre-
sentation and interaction, which may be of wider interest. Our code and datasets are
publicly available at https://github.com/structlearning/neural-subm-design-space.

1 INTRODUCTION

Subgraph matching-based retrieval is essential in tasks like querying knowledge graphs (Liang et al.,
2024), biological graphs (Tian et al., 2007), chemical substructure search (Willett et al., 1998), etc. In
all these applications, given a query graph, the goal is to score—and thereby rank—corpus graphs by
how close they come to containing the query graph as a subgraph. Since exact subgraph matching is
NP-Complete (Conte et al., 2004), there has been a growing focus on tractable neural methods, with
the added benefit of learning the relevance scoring function in a differentiable framework.

Prior work and complexity of their design choices Neural architectures for estimating distance
between graphs have been extensively studied in recent years (Bai et al., 2019; 2020; Doan et al.,
2021; Li et al., 2019; Lou et al., 2020; Roy et al., 2022; Qin et al., 2021; Zhuo and Tan, 2022;
Ranjan et al., 2022). These methods use graph neural networks (GNNs) to embed each graph,
and then compute a distance between query and corpus graphs’ representations. Among them,
IsoNet (Roy et al., 2022), IsoNet++ (Ramachandran et al., 2025) and NeuroMatch (Lou et al., 2020)
focus specifically on subgraph matching based graph retrieval, by introducing an asymmetric order
embeddings (Vendrov et al., 2015) to characterize subgraph containment. In addition, IsoNet has two
key design features: it trains an injective alignment map between query and corpus graphs; and uses
this map to compute a relevance distance based on set alignment, in contrast to a distance between
whole graph representations. The design space of such retrieval models is cluttered with various
choices whose subtle interactions with each other are scarcely studied in prior work. We present two
examples.

(1) GMN (Li et al., 2019) uses an early interaction GNN, integrating cross-graph signals during
message passing. In contrast, IsoNet and NeuroMatch are late interaction models, which do not per-
form any cross-graph interaction while computing their representations. Challenging the widely held
expectation that early interaction is more powerful, IsoNet’s late interaction approach outperforms
GMN. This raises important questions: Is IsoNet’s advantage attributable to its use of set align-
ment vs. GMN’s whole-graph representations, or its injective alignment over GMN’s non-injective
cross-attention? Can GMN improve with similar set alignment or injective mapping?
(2) Although IsoNet and NeuroMatch both use asymmetric hinge distances, NeuroMatch relies
on whole-graph representations, while IsoNet uses set alignment at the node or edge level. Other
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works (Bai et al., 2019; Zhuo and Tan, 2022; Qin et al., 2021) use neural distance layers that do not
enforce either symmetry or asymmetry. This distinction raises an important question: Is IsoNet’s set
alignment-based distance more effective than other neural or non-neural methods in capturing the
nuances of subgraph matching?

1.1 OUR CONTRIBUTIONS

Recent system presents aggregate performance comparisons against prior systems. However, such
aggregate views miss the opportunity to factor out key design choices involving the representation
of and interaction between graph representations, and then systematically explore subtle interplay
between these design choices.

Relevance distance: Set alignment vs. aggregated embedding In knowledge graph (KG) align-
ment, Euclidean distance or cosine similarity between single-vector graph representations (often
via aggregating node embeddings) is often less effective than earth mover distance (EMD) between
sets of neighbor embeddings (Tang et al., 2020). IsoNet adopts a similar set alignment approach
to compare node or edge embeddings across query and corpus graphs. In contrast, GMN collapses
node embeddings into a single graph-level representation and uses Euclidean distance between these
aggregates. Neural scoring layers (MLP or neural tensor network), where aggregated embeddings are
fed into a trainable layer, also remain popular (Qin et al., 2021; Bai et al., 2019).

Interaction stage: Early vs. late Interaction across graphs may be arranged early or late in the
comparison network. Early interaction models like GMN (Li et al., 2019) and ERIC (Zhuo and Tan,
2022) use information from the query graph to compute the representation of the corpus graph, and
vice-versa, which renders their embeddings strongly dependent on each other. In contrast, a late
interaction model like IsoNet (Roy et al., 2022) computes the representation of one graph independent
of any other graph, and combine these embeddings at the very last stage during score computation.
Early interaction models are expected to be able to compare query and corpus graph neighborhoods
directly, while late interaction models have the potential for fast approximate nearest neighbor (ANN)
retrieval (Simhadri et al., 2023).

Interaction structure: Non-injective vs. injective GMN models cross-graph interactions using
attention which induces a non-injective mapping—multiple nodes in the corpus graph may map to
one node in the query graph (or vice versa). In contrast, IsoNet uses a soft permutation (doubly
stochastic) matrix to approximate injective alignments. We investigate whether replacing attention-
based interaction with a doubly stochastic alignment (even in systems other than IsoNet) leads to
improved performance.

Interaction non-linearity: Trainable vs. fixed GMN and IsoNet take divergent approaches to
modeling graph-pair interactions. GMN relies on dot-product similarity, while IsoNet applies
feedforward layers to both query and corpus embeddings and feed them into an interaction module.
The relative merits of these approaches are not fully understood. Additionally, we introduce a natural
alternative: incorporating an asymmetric ordering between graph components into the cost matrix.

Interaction granularity: Nodes vs. edges IsoNet introduces the idea of aligning edges instead
of nodes, based on the intuition that larger units might provide a more reliable signal for detecting
isomorphism. This idea parallels the principle that joint distributions are better approximated when
accounting for larger cliques (Koller and Friedman, 2009). It remains unclear how well edge-based
alignment can integrate with different cross-graph interaction methods and scoring layers, warranting
further investigation.

� Key takeaways and design tips Our systematic navigation of the design space resolves hitherto-
unexplained observations and provides reliable guidelines for future methods. (1) We conclusively ex-
plain (late-interaction) IsoNet’s earlier-observed superiority over (early-interaction) GMN. If GMN’s
early interaction is supplemented with any of set alignment, injective structure, hinge nonlinearity,
or edge-based interaction, it can readily outperform IsoNet. (2) These five design principles are
vital, and their combination unveils a novel graph retrieval model that surpasses all existing methods.
(3) Shifting from late to early interaction may increase computational cost, but compensates for the
limitations of relevance distance defined using aggregated single-vector embeddings.

2 PRELIMINARIES

Notation We denote the set of query graphs Q = {Gq} and the set of corpus graphs C = {Gc},
where Gq = (Vq, Eq) and Gc = (Vc, Ec) denote a query and corpus graph. Having padded with
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Figure 1: Early interaction: Cross graph interactions occur during embedding computation layers,
with both Green signals from Gc and blue signals from Gq feeding into both graphs. Late interaction:
No cross-graph signal transfer occurs. Green signals from Gc and blue signals from Gq are restricted
to their respective graphs. Final layer embeddings, H(q)

K , H(c)
K (node) or M (q)

K , M (c)
K (edge), are

used to compute relevance distance. Axes of the design space: Subgraph matching models work
in two stages: message passing and relevance distance. Relevance distance dist(·, ·) can be set
alignment, aggregated-hinge, aggregated-MLP or aggregated-NTN. ω represents the interaction
structure (injective vs. non-injective), and η defines the interaction non-linearity (Neural, dot product,
or hinge). For early interaction (bottom left panel), message passing involves obtaining embeddings
via cross-graph alignment, which is used for dist(·, ·) if set alignment is used for relevance distance
(shown by thick arrow). In late interaction (bottom right panel), η and ω are absent during message
passing, but become active if we use set alignment to approximate dist(Gq, Gc).

suitable number of nodes to obtain the same number of nodes across Gq and Gc, we obtain Aq

and Ac as the 0/1 adjacency matrices of size N × N . We write the neighbors of u as nbr(u).
Ω denotes both node and edge alignment matrices, which are used during cross-graph interaction
or relevance computation using set alignment. a denotes an attention matrix, where a[u, u′] is the
attention weight from u to u′, with

∑
u′ a[u, u′] = 1. Similarly, we use b for an edge attention

matrix with
∑

e′ b[e, e
′] = 1. Given the nodes u ∈ Vq and u′ ∈ Vc, we write h

(q)
k (u) ∈ Rdimh and

h
(c)
k (u′) ∈ Rdimh to denote their embeddings, obtained after k-layer message passing using a GNN.

The last layer is numbered K. We collect these embeddings into matrices H(q)
k ,H

(c)
k ∈ RN×dimh .

[·]+ = max {0, ·} is the ReLU or hinge function, [N ] denotes the set {1, ..., N}, and ∥X∥1,1 denotes∑
i,j |X[i, j]|. PN and BN indicate the set of N ×N permutation matrices and doubly stochastic

matrices respectively. We generally use ‘permutation’ and ‘alignment’ interchangeably.

Subgraph search and (asymmetric) relevance score In the context of subgraph matching, we
define the relevance label rel(Gq, Gc) = 1, when Gq ⊆ Gc (Gq is a subgraph of Gc) and 0
otherwise. Given Gq , we define Cq✓ = {Gc | rel(Gq, Gc) = 1} as the set of relevant corpus graphs
and Cq✗ = C \ Cq✓ as the irrelevant corpus subset. dist(Gq, Gc) denotes a relevance distance,
which is inversely related to rel(Gq, gc). In general, Gq ⊆ Gc ≠⇒ Gc ⊆ Gq, so relevance labels
are inherently asymmetric: rel(Gq, Gc) ̸= rel(Gc, Gq). This necessitates an asymmetric distance
dist(·, ·) with dist(Gq, Gc) ̸= dist(Gc, Gq) in most cases (Roy et al., 2022; Ranjan et al., 2022; Lou
et al., 2020).The goal is to rank Cq✓ above Cq✗, given query Gq .

3 DESIGN SPACE OF GRAPH REPRESENTATIONS FOR SUBGRAPH MATCHING

From existing methods (Bai et al., 2019; Zhuo and Tan, 2022; Qin et al., 2021; Zhang et al., 2021; Roy
et al., 2022; Li et al., 2019; Ranjan et al., 2022), we catalogue the salient design axes: (1) relevance
distance, (2) interaction stage (late vs. early), (3) interaction structure (4) interaction non-linearity
and (5) interaction granularity (node vs. edge). We first present a unified view of these design axes.
Then, to control the complexity of exposition, we divide our analysis by interaction granularity, first
analyzing the various options for node interactions, followed by a discussion for edge interactions.
Figure 1 illustrates our framework.
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3.1 UNIFIED FRAMEWORK (INTERACTION GRANULARITY: NODE)

Given a query graph Gq and a corpus graph Gc, existing work computes the relevance distance
in two steps. The first step applies GNN to perform iterative message passing across edges for
K propagation layers. At the end of each layer, we obtain the embeddings H

(q)
k and H

(c)
k with

1 ≤ k ≤ K, for Gq and Gc, respectively. The second step compares H(q)
K and H

(c)
K to approximate

dist(H
(q)
K ,H

(c)
K ) ≈ dist(Gq, Gc). We now present a generalized view of these two steps.

Generalized message passing Given a task on a single graph, e.g., link prediction or node classifi-
cation, GNN updates the node embeddings by collecting messages only from its neighbors, within
that graph. If the task involves two graphs, we can adopt either late interaction after all K layers of
the GNN are computed, or early interaction between corresponding layers of the GNNs. E.g., Li
et al. (2019) modified the GNN on Gq , so that it can incorporate signals from Gc, and vice-versa. To
capture this interaction, we compute two node alignment matrices Ωq,c

k ∈ RN×N and Ωc,q
k ∈ RN×N

after each propagation layer k ∈ {0, ..,K − 1}, based on the embeddings H(q)
k and H

(c)
k . Each of

these matrices is computed in two layers: in the first layer, we apply a non-linear map η to compute
the similarity between H

(q)
k and H

(c)
k and then use another function ω to obtain the alignment scores

across different node pairs.

Ωq,c
k = ω

(
η
(
H

(q)
k ,H

(c)
k

))
, Ωc,q

k = ω
(
η
(
H

(c)
k ,H

(q)
k

))
(1)

As we shall discuss later, η and ω represent the interaction structure and interaction non-linearity,
which are described in Items (3) and (4) in the design space. Here, Ωq,c

k [u, u′],Ωc,q
k [u′, u] ∈ [0, 1].

Both of them estimate the alignment score that u′ ∈ Vc match with u ∈ Vq. However, they are
not necessarily equal except for certain design choices. Next, we use Ωq,c

k to update the query
embeddings h(q)

k (u) → h
(q)
k+1(u). To make this update for u ∈ Vq , we multiply Ωq,c

k H
(c)
k to extract

signals from the other graph Gc; aggregate messages from the neighbors nbr(u) in its own graph Gq ,
obtained through a neural network msgθ; and combine these signals as follows:

h
(q)
k+1(u) = updateθ

(
h
(q)
k (u);

∑
v∈nbr(u)

msgθ(h
(q)
k (u),h

(q)
k (v))︸ ︷︷ ︸

Neighbors in own graph

;
∑

u′∈[N ]

Ωq,c
k [u, u′]h

(c)
k (u′)︸ ︷︷ ︸

Nodes in other graph

)
(2)

Likewise, we update h(c)
k (u′) → h

(c)
k+1(u

′). For k = 0, the embeddings {h•
0(u)} are computed using

node features. Having updated the embedding at layer k + 1, we assemble them into the the matrices
H

(q)
k+1 and H

(c)
k+1 and then use them to compute fresh alignment matrices Ω•

k+1.

Computation of the relevance distance dist(·, ·) As discussed in Section 2, the relevance distance
is asymmetric, because the relevance label rel is asymmetric, owing to the asymmetric nature of the
subgraph matching task (Roy et al., 2022; Ranjan et al., 2022; Lou et al., 2020). We briefly justify
such asymmetric constructions. If Gq ⊆ Gc, then there exist some row-column permutation of Ac,
which will cover all ones in Aq . I.e., there will exist a permutation matrix P of size N ×N such that,
whenever Aq[u, u

′] = 1, we have (PAcP
⊤)[u, u′] = 1, which indicates any edge (u, u′) ∈ Eq is

also present in Ec, leading to Gq ⊆ Gc. This implies that, for subgraph isomorphism, we will have
Aq ≤ PAcP

⊤, elementwise. This suggests the natural definition

dist(Gq, Gc) = minP∈PN

∥∥[Aq − PAcP
⊤]+

∥∥
1,1

. (3)

Existing works (Roy et al., 2022; Ranjan et al., 2022; Lou et al., 2020) use a surrogate of dist(Gq, Gc),
by applying a hinge distance across elements of the set of node embeddings H(q)

K and H
(c)
K or the

whole graph representations g(q) and g(c). Note that if rel(Gq, Gc) = 1 (i.e., Gq ⊆ Gc), we have
dist(Gq, Gc) = 0. The above distance also draws a parallel from the problem of graph isomorphism,
where we have a symmetric distance minP∈PN

∥∥[Aq − PAcP
⊤]
∥∥
1,1

, instead of asymmetric dis-
tance (3). Because of the PAcP

⊤ term, Eq. (3) aims to solve a quadratic assignment problem (QAP)
which is NP-Hard (Conte et al., 2004). Hence, existing works approximate dist(Gq, Gc) using an
asymmetric distance or trainable distance on the node embeddings H(q)

K and H
(c)
K . By overloading

the notation, we write such a distance as dist(H(q)
K ,H

(c)
K ). In the following, we describe each axis

of the design space, beginning with the relevance distance.
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3.2 RELEVANCE DISTANCE: SET ALIGNMENT VS. AGGREGATED-HINGE VS.
AGGREGATED-MLP VS. AGGREGATED-NTN

The relevance distance dist(H
(q)
K ,H

(c)
K ) can take four forms, based on (1) Set alignment, (2) Aggre-

gated-hinge: Comparing aggregated graph representations g(q), g(c) derived from H
(q)
K ,H(c)

K , and
subsequently using hinge distance, (3) Aggregated-MLP: a multi-layer perceptron (MLP) to compare
g(q) and g(c), and (4) Aggregated-NTN: a neural tensor network (NTN) comparing g(q) and g(c).

Set alignment Here, we relax the quadratic assignment problem (QAP) (3) to a linear assignment
problem (LAP), where we first represent the graphs Gq and Gc as sets of node embeddings H(q)

K and
H

(c)
K , and then quantify the alignment between these sets using the earth mover distance (EMD):

dist(H
(q)
K ,H

(c)
K ) = minP∈PN

∥∥[H(q)
K − PH

(c)
K ]+

∥∥
1,1

(4)
Note that the EMD is induced by hinge distance rather than symmetric Lp distances; therefore, it is
not a metric, unlike symmetric EMD. In the context of graph retrieval, solving such an LAP for a
large number of graph pairs is daunting, even though for one graph pair, LAP is more tractable than
QAP. To get past the blocker of this explicit optimization for each graph pair, we replace P with
the alignment matrix Ωq,c

K , which is end-to-end trained under the distant supervision of rel(Gq, Gc)

(Section 2). Therefore, we compute dist(H(q),H(c)) as:
dist(H

(q)
K ,H

(c)
K ) =

∥∥[H(q)
K −Ωq,c

K H
(c)
K

]
+

∥∥
1,1

(5)
The above distance provides a natural alternative to Eq. (4). Here, we fix the ordering of the query
nodes and align the corpus nodes using Ωq,c

K . Similarly, one can also fix the order of the corpus nodes
and apply Ωc,q

K on H
(q)
K . They do not provide a significant difference in retrieval accuracy.

Aggregated-hinge Here, instead of representing a graph as a variable-sized set of node embeddings,
we represent whole graphs Gq and Gc as single fixed-length vectors g(q) ∈ Rdimg and g(c) ∈ Rdimg ,
using a neural network combθ. Then, in Eq. (3), we replace Aq and PAcP

⊤ with the corresponding
whole graph representations g(q) and g(c) and compute dist(H(q),H(c)) as follows:
dist(H

(q)
K ,H

(c)
K ) = ∥[g(q) − g(c)]+∥1, where g(q) = combθ

(
H

(q)
K

)
, g(c) = combθ

(
H

(c)
K

)
. (6)

Aggregated-MLP Here we feed g(q) and g(c) defined in Eq. (6) into a trainable neural network γθ
to compute the distance, where γθ is an MLP, which is free to implement an asymmetric function:

dist(H
(q)
K ,H

(c)
K ) = γθ(g

(q), g(c)). (7)

Aggregated-NTN SimGNN (Bai et al., 2019) proposed the usage of Neural Tensor Net-
works (Socher et al., 2013) to combine graph-level embeddings, as shown in Eq. (8) below. Here,
L represents the latent dimension of the score, W

[1:L]
NTN ∈ Rdimg × dimg ×L is a weight tensor,

VNTN ∈ RL×2 dimg is a weight matrix applied on the concatenation of the two embedding sets,
bNTN ∈ RL is a bias vector, and γθ is an MLP that outputs the scalar distance.

dist(H
(q)
K ,H

(c)
K ) = γθ

(
g(q)⊤W

[1:L]
NTN g(c) + VNTN[g

(q); g(c)] + bNTN

)
(8)

Time complexity In set alignment (4), computation of Ωq,c
K H

(c)
K takes O(N2) time, where N is

the number of nodes and H(c) ∈ RN×dimh . For all other choices, the complexity is O(N).

Variants in existing works Among existing works, GotSim (Doan et al., 2021) uses set alignment
based distance of the form in Eq. (4) and optimizes for P using the Hungarian algorithm (Edmonds
and Karp, 1972). In contrast, IsoNet (Roy et al., 2022) uses set alignment distance of the form in
Eq. (5). GMN (Li et al., 2019), GREED (Ranjan et al., 2022), Neuromatch (Lou et al., 2020) use
aggregated embedding based distance. SimGNN (Bai et al., 2019), ERIC (Zhuo and Tan, 2022),
EGSC (Qin et al., 2021), and GraphSim (Bai et al., 2020) use neural distances. SimGNN (Bai et al.,
2019) and ERIC (Zhuo and Tan, 2022) leverage distances in the form of Eq. (8), while EGSC (Qin
et al., 2021) and GraphSim (Bai et al., 2020) use Eq. (7)

� Takeaways and design tips Compressing the entire graph into a low dimensional vector can
result in information loss. Therefore, comparing the node embeddings in the set-level granularity
results in better performance than their single vector representations. Similar experience has been
reported from other domains. In knowledge graph alignment, encoding the neighborhood of an entity
as a set, and then aligning two such sets, has been found better than comparing compressed single-
vector representations of each entity (Tang et al., 2020). In textual entailment (Lai and Hockenmaier,
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2017; Chen et al., 2020; Bevan et al., 2023), allowing cross-interaction between all tokens of the two
sentences is generally better than compressing each sentence to a single vector and comparing them.
Our work reconfirms this intuition also for subgraph retrieval.

3.3 INTERACTION STAGE: EARLY VS. LATE

Early interaction If Ω•
k used during computation of the node embedding in Eq. (2) is non-zero,

then H
(c)
k and H

(q)
k become dependent on each other through the third term in the RHS of (2). This

leads to early interaction GNN architecture.

Late interaction In late interaction, no cross-graph interaction occurs during the message-passing
steps, as shown in Figure 1. Such models are obtained by setting Ω•

k = 0 in Eq. (2) (and similarly
in h

(c)
k+1). Here, the embedding update step becomes the same as a standard GNN. E.g., for Gq, we

have h
(q)
k (u) = updateθ(h

(q)
k (u);

∑
v∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (v))), separating the computation

of query and corpus graph embeddings. However, even if Ωq,c
k is not used in the message passing

interaction, it can still be used during relevance distance computation based on set alignment (5).

Time complexity For early interaction, we have the following computation costs: (1) Computation
of h•

u takes O(N) time. (2) For each layer k ∈ [K − 1], computation of Ω•,•
k takes O(N2) time.

(3) For each layer k, message passing in embedding update step takes O(|Eq|) and O(|Ec|) time for
Gq and Gc; computation of

∑
u′∈[N ] Ω

•,•
k [u, u′]h•

k(u
′) takes O(N2) time. Hence, the overall time

complexity is O(KN2). For late interaction model, the overall complexity is O(K|Eq|+K|Ec|).
Variants in existing works GMN (Li et al., 2019) and H2MN (Zhang et al., 2021) use early
interaction models, whereas SimGNN (Bai et al., 2019), IsoNet (Roy et al., 2022), ERIC (Zhuo and
Tan, 2022), GREED (Ranjan et al., 2022), GOTSim (Doan et al., 2021), EGSC (Qin et al., 2021) and
Neuromatch (Lou et al., 2020) use late interaction models.

� Takeaways and design tips Although late interaction potentially enables fast nearest neighbor
search, early interaction is generally known to be superior in text retrieval (Khattab and Zaharia, 2020,
Figure 1). The comparison between IsoNet (Roy et al., 2022) vs GMN (Li et al., 2019) apparently
contradicts this general trend. Therefore, it is important to resolve this issue using carefully controlled
experiments.

3.4 INTERACTION STRUCTURE: NON-INJECTIVE VS. INJECTIVE

The interaction structure ω computes the alignment scores Ω•,•
k in Eq. (1), by normalizing across

different dimensions of η(H
(q)
k ,H

(c)
k ). Depending on the nature of normalization, we obtain

approximate non-injective or injective mappings for node to node alignment.

Non-injective Here, the function ω performs softmax-style normalization across different columns
for each row, which makes the entries of Ω•,•

k similar to “attention weights” or “probabilty parameters
in a multinomial distribution”. Given a temperature τ , we write the values of the alignment matrices:

Ωq,c
k [u, u′] =

eη(h
(q)
k (u),h

(c)
k (u′))/τ∑

u†∈[N ] e
η(h

(q)
k (u),h

(c)
k (u†))/τ

, Ωc,q
k [u′, u] =

eη(h
(q)
k (u),h

(c)
k (u′))/τ∑

u†∈[N ] e
η(h

(q)
k (u†),h

(c)
k (u′))/τ

(9)

The above form of Ωq,c
k enables a unique mapping from Gq to Gc but not vice-versa. I.e., the

mapping, even if 0-1, could be many-to-one. We note that
∑

u′ Ω
q,c
k [u, u′] = 1. Hence, for any fixed

node u ∈ Gq, the matrix Ωq,c distributes a unit score across all nodes u′ ∈ Gc. If τ → 0, u will
be matched to only one node u′. However, such allocation is performed independently for different
nodes in the query graph. Therefore, given u′ ∈ Gc, both Ωq,c[u, u′] and Ωq,c[v, u′] can be high
for u ̸= v ∈ Gq. Therefore, as τ → 0, we have two different matched nodes in Gq, resulting in an
approximate non-injective interaction structure.

Injective Injectivity seeks to mitigate the above limitation. Specifically, in addition to Gq → Gc,
an approximate unique mapping is also enforced from Gc → Gq. I.e., for each node u′ ∈ Gc, as
τ → 0, there will exist exactly one u for which Ωq,c

k [u, u′] = 1 and vice-versa. These constraints
naturally ensure that, as τ → 0, Ωq,c

k approaches a permutation matrix. Similar to the relaxation of
argmax operation using softmax function, the permutation matrix is approximated with a doubly
stochastic matrix using Sinkhorn iterations (Sinkhorn and Knopp, 1967; Cuturi, 2013; Mena et al.,
2018). Instead of only row normalization, it excutes iterative row-column normalization for T steps,
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starting with initialization: Z0 = exp(η(H
(q)
k ,H

(c)
k )/τ) at t = 0.

Zt+1[u, u
′] =

Z ′
t[u, u

′]∑
v′∈[N ] Z

′
t[u, v

′]
, where Z ′

t[u, u
′] =

Zt[u, u
′]∑

v∈[N ] Zt[v, u′]
, for all (u, u′) (10)

As T grows, ZT approaches a doubly stochastic matrix, satisfying
∑

u′∈[N ] ZT [u, u
′] = 1 and∑

u∈[N ] ZT [u, u
′] = 1. After T iterations, we set Ωq,c

k = ZT and Ωc,q
k = Z⊤

T .

Time complexity Computation of Ωc,q
k and Ωq,c

k requires O(N2) time for a non-injective mapping,
where N is the number of nodes. For an injective mapping, T iterations of row-column normalization
raise the complexity to O(TN2).

Variants in existing work GMN (Li et al., 2019) and H2MN (Zhang et al., 2021) use non-injective
mapping during early interaction, whereas GotSim (Doan et al., 2021) uses injective mapping.
However, as mentioned earlier, GotSim (Doan et al., 2021) optimizes the alignment using the
Hungarian method. IsoNet (Roy et al., 2022) uses trainable Sinkhorn iterations (10).

� Takeaways and design tips The combinatorial definition of graph matching includes finding an
injective mapping between pairs of nodes from the two graphs. The mapping is also an interpretable
artifact. Attention from one node to all nodes in the other graph, even if maintained from each
graph separately, cannot achieve a consistent 1-1 mapping. Our experiments suggest that an injective
mapping (or its continuous relaxation — doubly stochastic matrices) performs better.

3.5 INTERACTION NON-LINEARITY: NEURAL VS. DOT PRODUCT VS. HINGE

Alignment computation involves three possible choices of η:

Neural: η(H
(q)
k ,H

(c)
k )[u, u′] = LRLθ(h

(q)
k (u))⊤LRLθ(h

(c)
k (u′)), where LRLθ is a Linear-ReLU-

Linear network with parameter θ.
Dot product: Here, η(H(q)

k ,H
(c)
k )[u, u′] = (h

(q)
k (u))⊤h

(c)
k (u′).

Hinge: Here, η(H(q)
k ,H

(c)
k )[u, u′] = −

∥∥∥[h(q)
k (u)− h

(c)
k (u′)]+

∥∥∥
1
.

Time complexity All methods require O(N2) complexity, since we compute one scalar for each
node pair and computations along the embedding dimension are considered O(1).

Variants in existing works GMN (Li et al., 2019), H2MN (Zhang et al., 2021) perform dot-product
operations, and IsoNet (Roy et al., 2022) and GOTSim (Doan et al., 2021) use a neural model. In
this paper, we also investigate hinge-based similarity as an alternative, with justification provided in
Appendix D.1.

Comparison between different design choices Prior experimental work lacks systematic analysis
of this issue, which we address here.

3.6 GENERALIZING ALIGNMENTS FROM NODES TO EDGES

We complete our design space by altering the interaction and alignment granularity from nodes to
edges, which is largely unexplored. While IsoNet (Roy et al., 2022) proposed edge based interaction,
this was explored with specific choices of other design axes: set alignment, late interaction, injective
interaction structure and neural interaction non-linearity. More details are in Appendix D.

Unified framework Instead of node alignment (1), here we compute edge alignment matrices Ωq,c
k

and Ωc,q
k . These matrices are computed using edge embeddings M

(q)
k = [m

(q)
k (e) | e ∈ [N ′]] ∈

RN ′×dimm and M
(c)
k = [m

(c)
k (e′) | e′ ∈ [N ′]] ∈ RN ′×dimm , where N ′ is the total number of edges

after padding. After suitable padding with edges, we have: Ωq,c
k = ω(η(M

(q)
k ,M

(c)
k )), Ωc,q

k =

ω(η(M
(c)
k ,M

(q)
k )) Edge embeddings are obtained as m

(q)
k (u, v) = µθ(h

(q)
k (u),h

(q)
k (v)) and

m
(c)
k (u′, v′) = µθ(h

(c)
k (u′),h

(c)
k (v′)), where µθ is a neural network. To compute m

(q)
• , we use the

alignment matrix Ωq,c
k applied on the edge embeddings in Gc for cross graph signals (m(c)

k+1(u) is
computed likewise):

h
(q)
k+1(u) = updateθ

(
h
(q)
k (u);

∑
v∈nbr(u) msgθ

(
h
(q)
k (u),h

(q)
k (v),m

(q)
k (e)

))
(11)

m
(q)
k+1(e) = joinθ

(
msgθ

(
h
(q)
k+1(u),h

(q)
k+1(v),m

(q)
k (e)

)
︸ ︷︷ ︸

Query graph

,
∑

e′∈Ec
Ωq,c

k [e, e′]m
(c)
k (e′)︸ ︷︷ ︸

Corpus graph

)
(12)
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Relevance distance: We compute alignment between edge embedding sets as
∥∥[M (q)

k −
Ωq,cM

(c)
k ]+

∥∥
1,1

similar to Eq. (5) used in node interactions. Set aggregate based distances
or neural distances are computed similar to Eqs. (6) and (7).

Interaction stage: Eq. (12) results in early interaction for a non-zero Ωq,c
k , whereas setting Ω•,•

k to
zero leads to a late interaction model (with joinθ becoming dormant).

Interaction structure: Similar to section (3.4) ω can be injective or non-injective. For injective
ω, we perform iterative Sinkhorn iterations on η(m(q)(e),m(c)(e′)) for different edge pairs
e ∈ Gq, e

′ ∈ Gc, whereas for non-injective ω, we use attention.
Interaction non-linearity: Similar to section (3.5), we use neural, dot product and hinge.

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

≈IsoNet
≈GMN

≈SimGNN

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88 ≈IsoNet
≈GMN≈SimGNN

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

AIDS

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88

MUTAG

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

PTC-FM

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

NCI-H23H

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

MOLT-4H

Set-Alignment Agg-Hinge Agg-MLP Agg-NTN

Non-Injective Injective

Neural Dot Product Hinge

Figure 2: MAP for various choices of design axes. Each column corresponds to a data set. Each chart
has four bar groups, corresponding to interaction stage (late, early) × granularity (node, edge). In
the top row, each color represents a relevance distance (set alignment vs. aggregated hinge, MLP,
and NTN). In the middle row, colors correspond to non-injective and injective interactions. In the
bottom row, each color represents a different form of interaction non-linearity (neural, dot product,
and hinge). Each bar shows the test MAP after choosing all other axes, policies or hyperparameters to
maximize validation MAP. Individually, set alignment (first row), early interaction (third and fourth
groups of bars in each row), injective mapping (second row), hinge nonlinearity (third row) and edge
based interaction (second and fourth groups of bars) are the best choices in their corresponding axes.

4 EXPERIMENTS

In this section, we systematically evaluate different configurations across the five salient design axes
on ten real datasets with diverse graph sizes. Appendix F contains additional experiments.

4.1 EXPERIMENTAL SETUP

Datasets We select ten real-world datasets from the TUDatasets repository (Morris et al., 2020),
viz., AIDS, Mutag, PTC-FM (FM), NCI, MOLT, PTC-FR (FR), PTC-MM (MM), PTC-MR (MR),
MCF and MSRC. Detailed descriptions of these datasets are provided in Appendix E. Here, we
present results on the first five datasets, relegating others to Appendix F.

Training and Evaluation We split query graphs Q = {Gq} into training, validation and test folds
in the ratio 60:15:25. Given Cq✓, i.e., the set of all corpus graphs that are supergraphs of a query graph
Gq, we estimate model parameters by minimizing a ranking loss

∑
q∈Train-set

∑
c+∈Cq✓,c− ̸∈Cq✓

[δ +

dist(H
(q)
K ,H

(c+)
K ) − dist(H

(q)
K ,H

(c−)
K )]+, where δ is the margin hyperparameter, following the

approach in (Roy et al., 2022; Li et al., 2019). For each test query q, we rank corpus graphs by
ascending order of dist(H(q)

K ,H
(c)
K ). We evaluate performance using mean average precision (MAP).

(Additional settings, hyperparameters are reported in Appendix E).
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4.2 RESULTS

Optimal choice for each design axis The problem of selecting the best design choices entails
exploring five design axes with 66 configurations. To keep the exploration manageable in Figure 2,
each column corresponds to one data set. Within each chart, we vary (what we found as) the two
most influential axes: interaction stage (late, early) × granularity (node, edge). The top row explores
the effect of the choice of relevance distance. (Therefore, each color corresponds to one choice of
relevance distance.) The middle row explores the effect of non-injective vs. injective interactions.
The bottom row explores the effect of the choice of interaction non-linearity. This covers the five
major design axes. Each chart shows the best MAP over all choices of axes not involved.

(A)
AIDS NCI

Agg SA Agg SA
(Late → Early) (Late) (Late → Early) (Late)

Node 0.557 → 0.726 0.664 0.529 → 0.624 0.625
Edge 0.635 → 0.763 0.712 0.569 → 0.666 0.643

(C)
AIDS NCI

Node Edge Node Edge
(Agg → SA) (Agg) (Agg → SA) (Agg)

Late 0.557 → 0.664 0.635 0.529 → 0.625 0.569
Early 0.726 → 0.734 0.763 0.624 → 0.654 0.666

(B)
AIDS NCI

Agg SA. Agg SA.
(Node → Edge) (Node) (Node → Edge) (Node)

Late 0.557 → 0.635 0.664 0.529 → 0.569 0.625
Early 0.726 → 0.763 0.734 0.624 → 0.666 0.654

(D)
AIDS NCI

Late Early Late Early
(Agg → SA) (Agg) (Agg → SA) (Agg)

Node 0.557 → 0.664 0.726 0.529 → 0.625 0.624
Edge 0.635 → 0.712 0.763 0.569 → 0.643 0.666

Table 1: Does transition from worse to better choice in one design axis improve the performance of
the worse choice in another axis? Highlighted numbers show the best performer.
Figure 2 shows the results, which reveals the following observations. (1) Early interaction performs
better than late interaction (groups 1 vs. 3, 2 vs. 4 in each chart) across almost all datasets. While
this is consistent with the observations from other domains (Lai and Hockenmaier, 2017; Chen et al.,
2020; Wang et al., 2021; Khattab and Zaharia, 2020), this trend is opposite to what IsoNet (Roy et al.,
2022) reports — we dig deeper into this by comparing IsoNet against careful modifications to GMN,
later in this section. For AIDS and Mutag, we observe that the closest cousin of GMN outperforms
the closest cousin of IsoNet. We attribute this to upgrading GMN’s default non-injective mapping to
IsoNet’s injective mapping. (2) In terms of alignment granularity, edge is better than node (groups 1
vs. 2, 3 vs. 4). (3) Set alignment is the best relevance distance (top row). (4) Injective mapping is
better than non-injective (middle row). (5) Hinge is the best nonlinearity (third row).
Performance sensitivity to design choices To enhance clarity, we present numerical summaries in
Table 1 for the AIDS and NCI datasets, providing a quick reference to support our key arguments
alongside the detailed bar plots in Figure 2. In panel (A) of Table 1, replacing late interaction with
early, while keeping either edge or node granularity fixed, allows aggregated-hinge to outperform
set alignment in three out of four cases, with a near tie in the fourth. This demonstrates that shifting
from late to early interaction can offset some limitations of relevance distance. In contrast, Panel (B)
shows that transitioning from node to edge granularity with aggregated-hinge and set alignment has
less predictable effect, with set alignment retaining its lead in late-stage interaction. Panel (C) shows
that the performance gain from switching to set alignment is more pronounced in late interaction than
early interaction. Panel (D) reveals that while early interaction is generally superior, switching to set
alignment in the NCI dataset boosts performance, consistent with observations in IsoNet.
� Design guideline to maximize accuracy through change of only one axis: From these insights, we
propose the following design guidelines. (1) Shifting from late to early interaction can overcome
scoring layer limitations, (2) In late interaction, switching from aggregated-hinge to set alignment
is highly effective, accounting for IsoNet’s superiority over GMN; and, (3) In the absence of any
other design constraints, early edge interaction with set alignment with injective structure and hinge
nonlinearity is the optimal configuration.
Best design choices for accuracy-time trade off We investigate how to optimize design choices
while considering time constraints, by analyzing the trade-off between MAP and inference time.
Figure 3 presents the scatter plot for AIDS dataset, where each point represents a unique design
combination. Each subplot replicates the same set of points but colors them according to different
choices along the design axes. Here are the key takeaways.
� Design guideline to optimize accuracy-time trade off: (1) Set alignment consistently performs
best across both reduced-time late interaction models and high-MAP, slower early interaction setups.
In the mid-range accuracy-time trade-off, NTN and MLP occasionally perform better. (2) Early
interaction models generally achieve higher MAP, though even the fastest early variant is slower than
the slowest late interaction one. Some late interaction designs provide better MAP, making them an
effective choice if time is scarce. (3) Injective mappings consistently outperform non-injective ones
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Figure 3: Scatter plot of MAP versus inference time for different design choices on the AIDS dataset.
Each point represents a unique combination of design axes, with colors indicating variations in
relevance distance, interaction structure, stage, non-linearity, and granularity.

in both high-MAP, high-inference-time scenarios and low-MAP, low-inference-time setups. Their
better performance comes with only a slight time increase in low-time settings. But, in high-MAP,
in high-inference-time regimes, injective mappings result in significant increases in computational
cost, due to iterative Sinkhorn normalization, which makes makes non-injective mappings a viable
alternative in that regime. (4) Hinge and dot product perform best in high-MAP, slower setups,
while hinge and neural options excel in faster, lower-MAP configurations. Hinge offers balanced
performance and inference time. (5) Edge-level interaction consistently yields higher MAP than
node-level interaction, but mostly at the cost of slower query execution.

Comparison against baselines We now highlight the optimal combinations of the design space,
selected through the best validation MAP across all possible design choices, against existing state-of-
the-art (SOTA) methods. Table 2 shows the results, along with the underlying design choices. As
evident from the table, recent models occupy only a few isolated areas within the broader design
space, leaving many potential configurations unexplored. We make the following observations:
(1) Our best combination from early interaction models (Our-Early-Best) is the winner across all
datasets, whereas the our best possible late interaction model (Our-Late-Best) shows the second
best performance across four out of five datasets. (2) Models using set alignment, viz., IsoNet,
Our-Late-Best, Our-Early-Best, consistently outperform those employing aggregated heuristics.
GOTSim finds alignment by using a Hungarian solver, which prevents end-to-end differentiability.
resulting in poor performance. Other methods which use aggregated embeddings perform poorly.
(3) While Our-Early-Best leverages set alignment and injective structure, GMN uses aggregated
embeddings and non-injective interaction structure, showing lower performance. H2MN, despite
using edge granularity, under-performs significantly, suggesting that its other design choices made in
early interactions might not effectively leverage the structural advantages.

Rel. Dist. Structure Non-lin. Granularity AIDS Mutag FM NCI MOLT

L
at

e



SimGNN (Bai et al., 2019) Agg-NTN NA NA Node 0.326 0.303 0.416 0.39 0.421
GraphSim (Bai et al., 2020) Agg-MLP NA NA Node 0.173 0.182 0.231 0.468 0.499
GOTSim (Doan et al., 2021) Set align. Injective Neural Node 0.336 0.387 0.459 0.382 0.462
ERIC (Zhuo and Tan, 2022) Agg-NTN NA NA Node 0.512 0.558 0.624 0.556 0.549
EGSC (Qin et al., 2021) Agg-MLP NA NA Node 0.5 0.446 0.643 0.528 0.555
GREED (Ranjan et al., 2022) Agg-hinge NA NA Node 0.502 0.551 0.545 0.478 0.507
GEN (Li et al., 2019) Agg-hinge Non-inj Dot-Prod Node 0.557 0.594 0.636 0.529 0.537
Neuromatch (Lou et al., 2020) Agg-hinge NA NA Node 0.454 0.583 0.622 0.513 0.552
IsoNet (Roy et al., 2022) Set align. Inj Neural Edge 0.704 0.733 0.782 0.615 0.649
Our-Late-Best Set align. Inj Hinge Edge 0.712 0.721 0.793 0.643 0.662

E
ar

ly

{H2MN (Zhang et al., 2021) Agg-MLP Non-inj Dot-Prod Edge 0.267 0.282 0.364 0.381 0.405
GMN-Match (Li et al., 2019) Agg-hinge Non-inj Dot-Prod Node 0.609 0.693 0.686 0.588 0.603
Our-Early-Best Set align. Inj Hinge Edge 0.817 0.837 0.887 0.677 0.71

Table 2: Comparison of MAP between our best combination of choices across different design
axes, for both early (Our-Early-Best) and late (Our-Late-Best) interaction and the state-of-the-art
subgraph matching methods. Green, Blue and Yellow cells indicate best early, best late and second-
best late interaction methods.

5 CONCLUSION

In this work, we have methodically charted the design space of neural subgraph matching models,
which has been sparsely explored by previous models that proposed variants using a limited subset
of design choices. Our investigation into hitherto uncharted design regions gives new insights and
uncovers design combinations that significantly boost performance. We proposed a set of guidelines to
inform future work, helping researchers make optimal design choices based on accuracy requirements
and query time constraints.
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Charting the Design Space of Neural Graph Representations for
Subgraph Matching

(Appendix)
A LIMITATIONS

We present a thorough investigation into the design space of interaction models, with our best model
significantly outperforming existing variants, and provide valuable insights into accuracy and time
trade-offs. However, there could be potential limitations as follows:
(1) Many real-world applications, such as ligand-based screening in chemical compound libraries,
rely on 3D graph topology to orient subgraphs for maximizing binding affinity with target graphs. Our
approach does not account for such characteristics, which could potentially be encoded as features.
However, experimental verification of this encoding is necessary to establish its effectiveness.
(2) The robustness of the models within our outlined design space against noise remains uncertain.
There may be instances of missing or noisy ground truth information, as well as inaccuracies in node
or edge information caused by adversarial attacks or perturbations. Further investigation is required
to assess the impact of these factors on model performance.
(3) In scenarios where out-of-distribution (OOD) performance is essential, it is unclear which design
choices exhibit greater robustness. Some models may effectively leverage distributional characteristics
for subgraph matching in in-distribution datasets but may not perform as reliably when faced with
OOD data. This aspect warrants further exploration to determine the models’ adaptability to varying
data distributions.

B BROADER IMPACT

In recent years, there has been a surge of interest in this area, leading to numerous publications that
explore different facets of subgraph matching. However, the multitude of design choices available has
not been thoroughly investigated, often steering research efforts in suboptimal directions. By carefully
navigating this complex design space, we have provided a benchmark that outlines promising axes
for future exploration. Our findings offer a foundational framework upon which subsequent research
can build, guiding efforts toward more effective and efficient models. Additionally, our insights into
the intricacies of subgraph matching and scoring mechanisms could inspire further analyses of failure
cases and potential avenues for improvement, fostering advancements that could benefit a wide array
of applications.
In terms of practical applications, the broader impact of this work is significant across various
real-world graph similarity scoring and retrieval tasks.
(1) In-silico drug discovery (Rahman et al., 2009; Wang et al., 2023; Willett et al., 1998).
Subgraph matching based retrieval is a critical component of ligand-based virtual screening for in-
silico drug discovery, enabling the identification of potential drug candidates by comparing molecular
structures to known ligands. This is crucial for quickly searching for potential drug candidates from
large chemical compound libraries.
(2) Querying pathway fragments in biological graph databases (Tian et al., 2007). In bioinfor-
matics, subgraph matching assists in querying pathway fragments, allowing researchers to retrieve
and analyze biological pathways efficiently, thereby facilitating understanding of complex biological
interactions and mechanisms.
(3) Image localization (Shankar et al., 2016). Subgraph matching techniques are useful in
improving the accuracy of computer vision systems in real-world navigation scenarios, by identifying
and matching features between images and reference maps.
(4) Feature correspondence in computer vision (Saxena et al., 1998; Suh et al., 2015). Fur-
thermore, in computer vision tasks, subgraph matching enables effective feature correspondence,
improving object recognition and scene understanding by identifying similar structures across differ-
ent images.
(5) Hardware Trojan detection (Piccolboni et al., 2017). Subgraph matching is useful in hardware
security for detecting hardware Trojans in integrated circuits, by identifying malicious modifications.
While our work presents numerous practical applications across various domains, we do not anticipate
any ethical concerns inherent in our investigations as part of this paper. Our focus has been on
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advancing the understanding and effectiveness of subgraph matching techniques, and we believe that
our findings will contribute positively to the relevant fields without raising ethical issues.

C RELATED WORK

Parts of the design space we explore have been latent in various applied set and graph analysis
communities in recent years.

Interaction modeling in graphs across different domains Knowledge graphs (KGs) provide
well-motivated graph search and alignment applications. E.g., one may want partial alignments
between KGs with nodes (entities) and edges (relations) labeled in multiple languages. Representing
nodes u, v as bags of embeddings of their respective neighborhoods, and featurizing the Cartesian
space of their member embeddings, has been found superior to comparing single vectors representing
u and v (Tang et al., 2020; Chakrabarti et al., 2022). Others exploit duality between edge and node
embeddings (Wu et al., 2019; Sun et al., 2020; Zhu et al., 2020; 2021).

Set based relevance distance models In dense text retrieval (Mitra and Craswell, 2018), a query
and a corpus document are each represented by a single vector, obtained by encoding each of
them separately through a suitable contextual embedding transformer network, and these vectors
are compared with a similarity function (commonly cosine). The late interaction enables use of
approximate nearest neighbor indexes (Simhadri et al., 2023). Today’s large language models (LLM)
beat such “single-vector” probes. Typically, the query and shortlisted passages, together with a tuned
instruction or ‘prompt’ are all concatenated into the input context of an LLM, which is then asked to
output passage IDs in decreasing order of relevance (as it deems) (Reddy et al., 2024). However, this
early interaction comes with a steep price of slower execution. ColBERT (Khattab and Zaharia, 2020)
strikes an effective compromise related to set alignment: compute contextual embeddings of all query
and corpus words, and then, for each query word embedding, find the best-matching ‘partner’ from a
candidate passage to score it.

Subgraph matching in other domains Searching knowledge graphs like Wikidata or YAGO
present strong motivation for graph matching (Bhalotia et al., 2002; Suchanek et al., 2007; Kasneci
et al., 2009; Bast et al., 2016). In such applications, the query is usually a connected small graph with
wildcard features on nodes or edges, e.g., (?m, mother-of, Barack Obama), (?m, attended-school,
?s), or a natural language question (“where did Barack Obama’s mother go to school?”) that is
‘compiled’ to such a small query graph Gq. This graph must then be ‘overlaid’ on to a large corpus
graph (the knowledge graph) with low distortion with regard to node and edge features. XML search
(Deutsch et al., 1999; Liu and Chen, 2008) and code search (Ling et al., 2020) have many of the same
characteristics.

Automated network structure search Within specific families of graph encoder networks, such
as GNNs/GATs (Zhang et al., 2023b) or graph transformers (Zhang et al., 2023a), researchers have
proposed super-networks to explore the parametric space of encoder networks, using a bi-level
optimization framework. We do not yet see NAS as automating the combination of design spaces
described in our paper. But it would be of future interest to investigate if NAS methods can be
extended to subgraph search and other combinatorial graph problems, to automatically explore
network design spaces.
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D ADDITIONAL DETAILS ABOUT THE UNIFIED FRAMEWORKS AND DIFFERENT
DESIGN COMPONENTS

D.1 JUSTIFICATION BEHIND THE HINGE NON-LINEARITY

The neural surrogate of the optimization problem for the subgraph isomorphism problem can be
written as follows:

min
Ωq,c∈PN

∥∥[H(q) −Ωq,cH(c)]+
∥∥
1,1

(13)

We manipulate the optimization target as follows:∥∥[H(q) −Ωq,cH(c)]+
∥∥
1,1

=
∑
u,v

∑
i

[H(q)[u, i]−H(c)[v, i]]+︸ ︷︷ ︸
C

Ωq,c[u, v]

= Trace(C⊤Ωq,c)

Differentiable optimization of Ωq,c
K is carried out by adding a entropic regularizer (Cuturi, 2013;

Sinkhorn and Knopp, 1967; Mena et al., 2018).
min

Ωq,c∈BN

Trace(C⊤Ωq,c) + ϵ
∑
u,v

Ωq,c[u, v] logΩq,c[u, v] (14)

Hence, the iterative row-column normalization described in Eq. (10) is reduced to
Z0 = exp(C/τ) (15)

Zt+1[u, u
′] =

Z ′
t[u, u

′]∑
v′∈[N ] Z

′
t[u, v

′]
, where Z ′

t[u, u
′] =

Zt[u, u
′]∑

v∈[N ] Zt[v, u′]
, for all (u, u′) (16)

Clearly, here C = η(H
(q)
k ,H

(c)
k )). Hence, such an initialization leads to solve optimization of the

problem described in Eq. (13), leading to a high inductive bias.

D.2 UNIFIED FRAMEWORK FOR EDGE-GRANULARITY MODELS

The message passing framework requires modification to conform to edge-level granularity. The
query graph equations are shown in Eqs. (11), (12) in the main text. The equations for corpus graphs
are shown below, with edge e′ = (u′, v′).

h
(c)
k+1(u

′) = updateθ

(
h
(c)
k (u′);

∑
v′∈nbr(u′)

msgθ

(
h
(c)
k (u′),h

(c)
k (v′),m

(c)
k (e′)

))
(17)

m
(c)
k+1(e

′) = joinθ

(
msgθ

(
h
(c)
k+1(u

′),h
(c)
k+1(v

′),m
(c)
k (e′)

)
︸ ︷︷ ︸

Corpus graph

,
∑
e∈Eq

Ωc,q
k [e′, e]m

(q)
k (e)︸ ︷︷ ︸

Query graph

)
(18)

For a late interaction model, Eqs. (12) and (18) respectively transform into the following:

m
(q)
k+1(e) = msgθ

(
h
(q)
k+1(u),h

(q)
k+1(v),m

(c)
k (e)

)
(19)

m
(c)
k+1(e

′) = msgθ

(
h
(c)
k+1(u

′),h
(c)
k+1(v

′),m
(c)
k (e′)

)
(20)

D.3 END-TO-END FRAMEWORK FOR OUR BEST MODEL

In this section, we describe the components of our best-performing model Our-Early-Best, which
ranks first on nine out of ten datasets with respect to MAP.

Relevance distance: Set Alignment
Interaction stage: Early
Interaction structure: Injective
Interaction non-linearity: Hinge
Interaction granularity: Edge

The following equations represent message passing within the GNN which emits M (q)
K and M

(c)
K .

h
(q)
k+1(u) = updateθ

(
h
(q)
k (u);

∑
v∈nbr(u)

msgθ

(
h
(q)
k (u),h

(q)
k (v),m

(q)
k (e)

))
(21)

17



Published as a conference paper at ICLR 2025

m
(q)
k+1(e) = joinθ

(
msgθ

(
h
(q)
k+1(u),h

(q)
k+1(v),m

(q)
k (e)

)
︸ ︷︷ ︸

Query graph

,
∑

e′∈Ec

Ωq,c
k [e, e′]m

(c)
k (e′)︸ ︷︷ ︸

Corpus graph

)
(22)

At each layer of message passing, the edge representations are used to compute the injective alignment
matrices Ωq,c

• and Ωc,q
• using the following equations. E represents the number of edges.

Z0 = exp(η(M
(q)
k ,M

(c)
k )/τ) (23)

Zt+1[e, e
′] =

Z ′
t[e, e

′]∑
f ′∈[E] Z

′
t[e, f

′]
, where Z ′

t[e, e
′] =

Zt[e, e
′]∑

f∈[E] Zt[f, e′]
, for all (e, e′) (24)

Ωq,c
k = ZT Ωc,q

k = Z⊤
T (25)

The Hinge non-linearity is used to compute the initial alignment estimate Z0 in Eq. (23) as such:

η(M
(q)
k ,M

(c)
k )[e, e′] = −

∥∥∥[m(q)
k (e)−m

(c)
k (e′)]+

∥∥∥
1

(26)

Finally, the relevance distance Set align. is used to compute the score between the query and corpus
graphs. It utilizes the computation of Ωq,c and Ωc,q shown above.

dist(Gq, Gc) =
∥∥[M (q)

K −Ωq,c
K M

(c)
K

]
+

∥∥
1,1

(27)

D.4 DIFFERENCE BETWEEN GMN AND GMN⋆

Li et al. (2019) proposed GMN for the graph isomorphism task, which matches the query and corpus
nodes as is. This leads to an unbalanced Optimal Transport (OT) problem if the query and corpus
graphs differ in size, which is the case for subgraph isomorphism. Roy et al. (2022) introduced
padding nodes to have equi-sized graphs, thus converting it into a balanced OT problem.

Suppose we have two graphs Gq = (Vq, Eq) and Gc = (Vc, Ec) and we pad the query graph
with |Vc| − |Vq| disconnected nodes to obtain G′

q = (Vq ∪ Vpad, Eq). Two different non-injective

alternatives are described below. As a shorthand, we represent sim(a, b) = η(h
(q)
k (a),h

(c)
k (b)) here.

• Including the padding nodes Vpad to compute the alignment. The following equations hold for all
u ∈ Vq ∪ Vpad and u′ ∈ Vc.

Ωq,c
k [u, u′] =

esim(u,u′)/τ∑
u†∈Vc

esim(u,u†)/τ
, Ωc,q

k [u′, u] =
esim(u,u′)/τ∑

u†∈Vq∪Vpad
esim(u†,u′)/τ

(28)

• Mask out the padding nodes from the attention computation. For u ∈ Vq, u
′ ∈ Vc, the following

equations hold. Note the difference in the denominator for computation of Ωc,q .

Ωq,c
k [u, u′] =

esim(u,u′)/τ∑
u†∈Vc

esim(u,u†)/τ
, Ωc,q

k [u′, u] =
esim(u,u′)/τ∑

u†∈Vq
esim(u†,u′)/τ

(29)

For u ∈ Vpad, u
′ ∈ Vc, we simply set Ωq,c

k [u, u′] = Ωc,q
k [u′, u] = 0.

The first alternative induces the total mass on the query nodes and that on the corpus nodes to be
identical, as should be the case with a perfect alignment and hence, we choose it to improve the
inductive bias.
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E ADDITIONAL DETAILS ABOUT EXPERIMENTS

E.1 DATASETS

Ten datasets are chosen from the TUDatasets repository (Morris et al., 2020), six of which were
earlier used by (Roy et al., 2022). Key statistics about these datasets are shown in Table 3. count(y)
represents the number of pairs (Gq, Gc) such that rel(Gq, Gc) = y.

Observe that the final four datasets - NCI, MOLT, MSRC and MCF have significantly higher query
and corpus graph sizes than the remaining six. These datasets were added to the analysis to study the
generalizability of our methods to large input graph sizes.

Since these are real-world datasets not readily available in a format suitable for the subgraph matching
task, we adopt the technique proposed by Lou et al. (2020) to sample query and corpus graphs from
these datasets. A graph size |V | is randomly sampled from a range (maximum specified in Table 3)
and a Breadth First Search (BFS) is commenced from an arbitrary node till |V | number of nodes are
traversed. We perform this operation independently to obtain 300 query graphs and 800 query graphs,
and their pairwise subgraph isomorphism relationship (rel, the ground truth) is computed using the
VF2 algorithm (Cordella et al., 2004) from the NetworkX library (Hagberg et al., 2008).

Avg. |Vq| Max |Vq| Avg. |Eq| Avg. |Vc| Max |Vc| Avg. |Ec| count(1) count(0) count(1)
count(0)

AIDS 11.61 15 11.25 18.50 20 18.87 41001 198999 0.2118
Mutag 12.91 15 13.27 18.41 20 19.89 42495 197505 0.2209
FM 11.73 15 11.35 18.30 20 18.81 40516 199484 0.2085
FR 11.81 15 11.39 18.32 20 18.79 39829 200171 0.2043
MM 11.80 15 11.37 18.36 20 18.79 40069 199931 0.2056
MR 11.87 15 11.49 18.32 20 18.78 40982 199018 0.2119
MSRC 14.01 20 20.28 45.41 50 93.58 41374 198626 0.2140
MCF 22.03 26 21.60 44.79 50 46.50 35951 204049 0.1805
NCI 19.02 25 18.70 44.89 50 46.55 40548 199452 0.2094
MOLT 19.04 25 18.69 44.94 50 46.56 40177 199823 0.2058
Table 3: Statistics for the 10 datasets selected from the TUDatasets collection (Morris et al., 2020)

E.2 METRICS

For a query graph Gq , we sort the set of corpus graphs C = {Gc} in increasing order of dist(Gq, Gc)
to obtain the ranked list Cq,sort. As noted in the main text, Cq✓ refers to the set of supergraphs of Gq ,
and is a subset of C.

Average Precision (AP) is defined as the ratio of the rank (according to Cq,sort) of a relevant item in
Cq✓ to its rank in C, averaged over all relevant corpus items. Note that rel(Gq, Gc) = 1[Gc ∈ Cq✓].

AP(q) =
1

|Cq✓|

|C|∑
pos=1

rel(Gq, Cq,sort[pos])×
∑pos

i=1 rel(Gq, Cq,sort[i])

pos

Mean Average Precision is the mean of AP(q) over all query items q ∈ Q.

MAP =

∑
q∈Q AP(q)
|Q|
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E.3 IMPLEMENTATION DETAILS ABOUT GNN, MLPS

We list all the hyperparameters and details for different network components here. we use Linear(a, b)
to denote a linear layer with input dimension a and output dimension b. Composition of Linear(a, b),
ReLU and Linear(b, c) networks is denoted by MLP(a, b, c) (similarly for > 3 arguments).

• Node features are set to [1] following (Roy et al., 2022), since the goal is to ensure feature
agnostric subgraph matching. Such identical featurization ensures that two structurally
isomorphic graphs have exact same embeddings.

• The node and edge embedding sizes are respectively set to dimh = 10 and dimm = 20.
Below, we use dim to refer to one of these based on the granularity of the network involved.

• msgθ computes messages by operating on the concatenation of the embeddings of the nodes
that form the edge and optionally the edge’s embeddings, as shown in Eq. (2). To ensure
that the undirected nature of graphs is respected, msgθ is applied to both ordered pairs (u, v)
and (v, u) and their sum is returned. For node-granularity models, the edge embedding is a
fixed one-sized vector and thus, the msgθ is a Linear(21, 20) network. For edge-granularity
models, the edge embedding is of size 20, resulting in a Linear(40, 20) network.

• updateθ is modeled as a GRU where the initial hidden state is the node representation
(the first argument) of size 10, as shown in Eqs. (2) and (11). Exactly one GRU update is
performed on top of this base vector. However, the update vector varies based on the stage
and granularity of the network. For early interaction networks with edge granularity and
late interaction networks, the update vector is simply an aggregation (sum) of all message
vectors corresponding to this node, of dimension 20. For node-granularity early interaction
networks, the update vector is the concatenation of the aggregated message vector and the
difference between the node representation and the signal from the other graph: ∑

v∈nbr(u)

msgθ(h
(q)
k (u),h

(q)
k (v));

h
(q)
k (u)−

∑
u′∈[N ]

Ωq,c
k [u, u′]h

(c)
k (u′)


The dimension of this vector is 30 (20 from the first term, 10 from the second term).

• joinθ operates on the concatenation of messages from the same graph and alignment-based
signal from the other graph. It is modeled as an MLP(40, 40, 20) network.

• combθ inputs the node/edge embeddings and outputs whole graph embeddings, as shown
in Eq. (6). For each individual node/edge, We first apply a Linear(dim, 2 · dim) network
on its embedding, split into two dim-sized vectors and use the first as a gate (by applying
sigmoid) for the second vector, sigmoid(v1)× v2. Individual vectors are added and passed
through a Linear(dim,dim) layer to obtain the dim-sized whole graph vector.

• The MLP in Eq. (7) operates on the concatenation of whole graph embeddings, and is
modeled as an MLP(2 · dim,dim, 1) network.

• Neural Tensor Network - We use a latent dimension of L = 16. The MLP in Eq. (8), γθ is
an MLP(16, 8, 4, 1) network, resulting in a scalar score for every graph pair.

• LRLθ, used for Neural non-linearity in Section 3.5, is an MLP(dim,dim, 16) network.

E.4 TRAINING DETAILS

We adopt a common training procedure for all models. The Adam optimizer is used to perform
gradient descent on the ranking loss with a learning rate of 10−3 and a weight decay parameter of
5× 10−4. We use a batch size of 128, a margin of 0.5 for the ranking loss, and cap the number of
training epochs to 1000. To prevent overfitting on the training dataset, we adopt early stopping with
respect to the MAP score on the validation split, with a patience of 50 epochs & a tolerance of 10−4.

Seed Selection We select three integers uniformly at random from the range [0, 104] to obtain our
seed set (1704, 4929, 7762). We train each model on all three seeds for 10 epochs, choose the best
seed per model per dataset based on the MAP score for the validation split and train this selected
seed till completion.

Software & Hardware Details All models were implemented with PyTorch 2.1.2 in Python
3.10.13. Experiments were run on Nvidia RTX A6000 (48 GB) GPUs.

20



Published as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTS

F.1 SELECTION OF THE BEST CHOICE ON OTHER DATASETS

Figure 4 is an extension of Figure 2 to all ten datasets. We observe similar trends overall across all ten
datasets. (1) Edge-granularity models dominate those with node granularity and early interaction usu-
ally outperforms late interaction. (2) Injective mapping allows for significantly greater performance,
compared to non-injective. (3) Hinge non-linearity remains the best among the three options.

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

≈IsoNet
≈GMN

≈SimGNN

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88 ≈IsoNet
≈GMN≈SimGNN

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.51

0.60

0.69

0.77

0.86

M
A

P
→

AIDS

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.55

0.63

0.72

0.80

0.88

MUTAG

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.60

0.68

0.75

0.82

0.90

PTC-FM

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.55

0.61

0.67

0.72

NCI-H23H

Late,
Node

Late,
Edge

Early,
Node

Early,
Edge

0.50

0.56

0.62

0.69

0.75

MOLT-4H

Set-Alignment Agg-Hinge Agg-MLP Agg-NTN

Non-Injective Injective

Neural Dot Product Hinge

(a) MAP for various choices of design axes for AIDS, Mutag, FM, NCI and MOLT datasets.
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(b) MAP for various choices of design axes for FR, MM, MR, MSRC and MCF datasets.
Figure 4: Each column corresponds to a dataset. Each chart has four bar groups, corresponding to
interaction stage (late, early) × granularity (node, edge). In the top row, each color represents a
relevance distance (set alignment vs. aggregated hinge, MLP, and NTN). In the middle row, colors
correspond to non-injective and injective interactions. In the bottom row, each color represents a
different form of interaction non-linearity (neural, dot product, and hinge). Each bar shows the
test MAP after choosing all other axes, policies or hyperparameters to maximize validation MAP.
Individually, set alignment (first row), early interaction (third and fourth groups of bars in each row),
injective mapping (second row), hinge nonlinearity (third row) and edge based interaction (second
and fourth groups of bars) are the best choices in their corresponding design axes.
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F.2 COMPARISON BETWEEN GMN⋆ ON OTHER DATASETS

Here, we expand Table ?? to include all datasets. We observe that the trends noted in the main text
remain largely consistent:

(1) Modifying the non-linearity η in Eq. (1) from dot product to hinge significantly improves GMN⋆,
outperforming IsoNet in seven out of ten datasets.

(2) Changing interaction granularity from Node to Edge, or interaction structure from non-injective to
injective offers moderate benefits, improving GMN∗ over IsoNet in five and four datasets respectively.

(3) Altering the relevance distance dist from aggregated-hinge to set alignment does not help, as
IsoNet continues to outperform GMN⋆ in eight out of ten datasets. This is likely due to the sensitivity
of relevance distance in late interaction models, whereas GMN⋆ uses early interaction.

(4) Combining set alignment and injective mapping, allows GMN⋆ to surpass IsoNet’s performance.

(5) While Hinge non-linearity alone helps GMN⋆ outperform IsoNet, combining it with set alignment
reduces performance. This is perhaps due to the incompatibility of GMN⋆’s non-injective mapping
with hinge non-linearity.

(6) Combining hinge non-linearity with injective structure affords moderate benefits, allowing GMN⋆

to outperformIsoNet in three out of ten cases.

(7) Transitioning to edge-level models and adjusting any single design axis consistently improves
GMN⋆ over IsoNet across all datasets, underscoring the critical role of edge granularity in enhancing
subgraph matching performance.

Prior art Change one design axis in GMN⋆ Change two design axes in GMN⋆

Dataset IsoNet GMN Agg-Hinge
→ Set-Align.

Non-Inj
→ Inj

DP
→ Hinge

Node
→ Edge

Set align.,
Inj.

Set align.,
Hinge

Inj.,
Hinge

Set align.,
Edge

Inj.,
Edge

Hinge,
Edge

AIDS 0.704 0.609 0.608 0.64 0.726 0.7 0.71 0.676 0.662 0.715 0.755 0.763
Mutag 0.733 0.693 0.754 0.75 0.723 0.734 0.779 0.669 0.734 0.779 0.763 0.753
FM 0.782 0.686 0.759 0.79 0.79 0.78 0.8 0.772 0.785 0.812 0.826 0.831
NCI 0.615 0.588 0.603 0.619 0.618 0.625 0.632 0.599 0.624 0.635 0.656 0.666
MOLT 0.649 0.603 0.62 0.63 0.651 0.653 0.652 0.637 0.635 0.659 0.67 0.686
FR 0.734 0.667 0.706 0.73 0.75 0.727 0.774 0.678 0.733 0.799 0.8 0.772
MM 0.758 0.627 0.691 0.699 0.723 0.706 0.736 0.711 0.713 0.789 0.777 0.799
MR 0.764 0.683 0.715 0.736 0.787 0.746 0.803 0.768 0.752 0.81 0.803 0.815
MSRC 0.411 0.416 0.423 0.423 0.414 0.421 0.436 0.419 0.403 0.421 0.415 0.423
MCF 0.587 0.549 0.553 0.574 0.584 0.601 0.593 0.601 0.575 0.609 0.616 0.612

Table 4: Changing one or two design axes in GMN outperforms IsoNet’s default design.
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F.3 MAP-TIME TRADE OFF ON OTHER DATASETS (CORRESPONDING FIGURES ARE IN NEXT
TWO PAGES)

In the main paper, we presented MAP vs. inference time scatter plots for the AIDS dataset. Here, we
extend this analysis to all ten datasets to validate whether the initial conclusions still hold. Our key
observations are:

(1) The trade-off between early and late-stage interaction remains consistent across all datasets. While
early interaction models yield significantly higher MAP scores, they come with a notable increase in
inference time. In contrast, late interaction models are much faster, and although they lag behind the
top-performing early models, they still outperform a significant portion of the early variants. This
makes late interaction a viable compromise when inference time is a critical factor.

(2) Set alignment continues to be the best choice in both early and late interaction setups, offering
the highest MAP scores without a significant increase in inference time compared to other relevance
distance measures.

(3) Injective interaction structures consistently outperform non-injective variants across most datasets.
However, there are exceptions, such as in MSRC, where some non-injective variants come close to
matching the best-performing injective models.

(4) Interestingly, in several datasets, including MM, FR, MOLT, and Mutag, hinge non-linearity
significantly boosts MAP scores compared to other variants. This reinforces our recommendation
that hinge non-linearity is an optimal choice for subgraph matching tasks.

(5) Edge-level interaction continues to outperform node-level granularity. This supports our guideline
that, in graphs with a similar number of nodes and edges, edge granularity is the superior design
choice.

23



Published as a conference paper at ICLR 2025

25 50 75
Inf. Time (ms)→

0.6

0.7

0.8

M
A

P
→

25 50 75
Inf. Time (ms)→

0.6

0.7

0.8

25 50 75
Inf. Time (ms)→

0.6

0.7

0.8

25 50 75
Inf. Time (ms)→

0.6

0.7

0.8

25 50 75
Inf. Time (ms)→

0.6

0.7

0.8

Agg-Hinge
Agg-NTN

Agg-MLP
Set-Alignment

Early
Late

Non-Injective
Injective

Hinge
Dot Product
Neural

Edge
Node

(a) AIDS

25 50
Inf. Time (ms)→

0.7

0.8

M
A

P
→

25 50
Inf. Time (ms)→

0.7

0.8

25 50
Inf. Time (ms)→

0.7

0.8

25 50
Inf. Time (ms)→

0.7

0.8

25 50
Inf. Time (ms)→

0.7

0.8

Agg-Hinge
Agg-NTN

Agg-MLP
Set-Alignment

Early
Late

Non-Injective
Injective

Hinge
Dot Product
Neural

Edge
Node

(b) Mutag

25 50 75
Inf. Time (ms)→

0.7

0.8

M
A

P
→

25 50 75
Inf. Time (ms)→

0.7

0.8

25 50 75
Inf. Time (ms)→

0.7

0.8

25 50 75
Inf. Time (ms)→

0.7

0.8

25 50 75
Inf. Time (ms)→

0.7

0.8

Agg-Hinge
Agg-NTN

Agg-MLP
Set-Alignment

Early
Late

Non-Injective
Injective

Hinge
Dot Product
Neural

Edge
Node

(c) FM

25 50 75
Inf. Time (ms)→

0.600

0.625

0.650

0.675

M
A

P
→

25 50 75
Inf. Time (ms)→

0.600

0.625

0.650

0.675

25 50 75
Inf. Time (ms)→

0.600

0.625

0.650

0.675

25 50 75
Inf. Time (ms)→

0.600

0.625

0.650

0.675

25 50 75
Inf. Time (ms)→

0.600

0.625

0.650

0.675

Agg-Hinge
Agg-NTN

Agg-MLP
Set-Alignment

Early
Late

Non-Injective
Injective

Hinge
Dot Product
Neural

Edge
Node

(d) NCI

25 50 75
Inf. Time (ms)→

0.60

0.65

0.70

M
A

P
→

25 50 75
Inf. Time (ms)→

0.60

0.65

0.70

25 50 75
Inf. Time (ms)→

0.60

0.65

0.70

25 50 75
Inf. Time (ms)→

0.60

0.65

0.70

25 50 75
Inf. Time (ms)→

0.60

0.65

0.70

Agg-Hinge
Agg-NTN

Agg-MLP
Set-Alignment

Early
Late

Non-Injective
Injective

Hinge
Dot Product
Neural

Edge
Node

(e) MOLT
Figure 5: Scatter plot of MAP versus inference time for different design choices. Each point
represents a unique combination of design axes, with colors indicating variations in relevance
distance, interaction structure, stage, non-linearity, and granularity.
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Figure 6: Scatter plot of MAP versus inference time for different design choices. Each point
represents a unique combination of design axes, with colors indicating variations in relevance
distance, interaction structure, stage, non-linearity, and granularity.
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F.4 COMPARISON WITH BASELINES ON OTHER DATASETS

In Table 2 of the main paper, we compared the optimal configuration from our design space exploration
against state-of-the-art baselines across five datasets. Here, we extend these comparisons to all 10
datasets. Table 5 details the design choices made by each baseline according to our specified design
axes, highlighting that they occupy only sparse regions of the design space. Table 6 presents the full
performance results, reaffirming our previous observations. Specifically, (1) our best early interaction
model (Our-Early-Best) consistently outperforms all other methods across datasets, and (2) models
utilizing set alignment consistently surpass those relying on aggregated heuristics. (3) Despite using
an Injective structure with Set align. relevance distance, GOTSim performs poorly because it uses a
Hungarian solver (instead of Sinkhorn iterations) which doesn’t allow end-to-end differentiability.

Model Rel. Dist. Structure Non-linearity Granularity

L
at

e



SimGNN (Bai et al., 2019) Agg-NTN NA NA Node
GraphSim (Bai et al., 2020) Agg-MLP NA NA Node
GOTSim (Doan et al., 2021) Set align. Injective Neural Node
ERIC (Zhuo and Tan, 2022) Agg-NTN NA NA Node
EGSC (Qin et al., 2021) Agg-MLP NA NA Node
GREED (Ranjan et al., 2022) Agg-hinge NA NA Node
GEN (Li et al., 2019) Agg-hinge Non-injective Dot Product Node
NeuroMatch (Lou et al., 2020) Agg-hinge NA NA Node
IsoNet (Roy et al., 2022) Set align. Injective Neural Edge
Our-Late-Best Set align. Injective Hinge Edge

E
ar

ly

{H2MN (Zhang et al., 2021) Agg-MLP Non-injective Dot Product Edge
GMN-Match (Li et al., 2019) Agg-hinge Non-injective Dot Product Node
Our-Early-Best Set align. Injective Hinge Edge

Table 5: Choices corresponding to different design axes for state-of-the-art subgraph matching
methods.

Model AIDS Mutag FM NCI MOLT

L
at

e



SimGNN 0.326± 0.019 0.303± 0.012 0.416± 0.015 0.39± 0.018 0.421± 0.015
GraphSim 0.173± 0.007 0.182± 0.008 0.231± 0.011 0.468± 0.016 0.499± 0.016
GOTSim 0.336± 0.017 0.387± 0.018 0.459± 0.017 0.382± 0.016 0.462± 0.015
ERIC 0.512± 0.022 0.558± 0.027 0.624± 0.019 0.556± 0.018 0.549± 0.016
EGSC 0.5± 0.021 0.446± 0.021 0.643± 0.018 0.528± 0.019 0.555± 0.016
GREED 0.502± 0.022 0.551± 0.026 0.545± 0.019 0.478± 0.019 0.507± 0.017
GEN 0.557± 0.023 0.594± 0.03 0.636± 0.022 0.529± 0.019 0.537± 0.018
NeuroMatch 0.454± 0.025 0.583± 0.027 0.622± 0.019 0.513± 0.018 0.552± 0.017
IsoNet 0.704± 0.021 0.733± 0.023 0.782± 0.017 0.615± 0.019 0.649± 0.016
Late-Best 0.712± 0.018 0.721± 0.025 0.793± 0.016 0.643± 0.02 0.662± 0.016

E
ar

ly

{H2MN 0.267± 0.014 0.282± 0.012 0.364± 0.016 0.381± 0.015 0.405± 0.013
GMN-Match 0.609± 0.02 0.693± 0.026 0.686± 0.018 0.588± 0.019 0.603± 0.018
Early-Best 0.817± 0.017 0.837± 0.02 0.887± 0.012 0.677± 0.02 0.71± 0.018

Model FR MM MR MSRC MCF

L
at

e



SimGNN 0.355± 0.015 0.358± 0.015 0.308± 0.017 0.237± 0.008 0.141± 0.006
GraphSim 0.165± 0.007 0.2± 0.009 0.216± 0.013 0.348± 0.011 0.43± 0.016
GOTSim 0.361± 0.013 0.417± 0.017 0.430± 0.017 0.240± 0.009 0.352± 0.016
ERIC 0.572± 0.021 0.573± 0.02 0.639± 0.018 0.364± 0.011 0.502± 0.017
EGSC 0.602± 0.02 0.583± 0.019 0.576± 0.02 0.358± 0.011 0.47± 0.019
GREED 0.549± 0.022 0.492± 0.019 0.561± 0.02 0.354± 0.01 0.33± 0.019
GEN 0.577± 0.022 0.579± 0.02 0.618± 0.019 0.385± 0.011 0.492± 0.018
NeuroMatch 0.572± 0.023 0.522± 0.019 0.565± 0.02 0.359± 0.011 0.463± 0.019
IsoNet 0.734± 0.02 0.758± 0.016 0.764± 0.015 0.411± 0.012 0.587± 0.019
Our-Late-Best 0.744± 0.019 0.758± 0.015 0.782± 0.014 0.397± 0.013 0.572± 0.02

E
ar

ly

{H2MN 0.285± 0.011 0.308± 0.015 0.371± 0.013 0.265± 0.009 0.273± 0.016
GMN-Match 0.667± 0.021 0.627± 0.02 0.683± 0.017 0.416± 0.012 0.549± 0.018
Our-Early-Best 0.854± 0.013 0.849± 0.012 0.864± 0.011 0.424± 0.012 0.64± 0.018

Table 6: Comparison of MAP between our best combination of choices across different design axes,
for both early (Our-Early-Best) and late (Our-Late-Best) interaction and state-of-the-art subgraph
matching methods. Green, Blue and Yellow cells indicate best early, best late and second-best late
interaction methods.
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F.5 EXPLORATION THROUGH ALL POSSIBLE COMBINATIONS IN DESIGN SPACE

In this section, we present the detailed numerical data used to generate the bar plots in Figure 2. Fol-
lowing the analytical framework established in Figure 2, we categorize the runs into four components:
Late Node, Late Edge, Early Node, and Early Edge. Within each component, we provide separate
tables that group the runs along the three design axes: relevance distance, interaction structure, and
interaction nonlinearity. We will analyze each of these tables in turn.

Analysis of Late Node Interaction along Relevance Distance Design Choices In Table 28, we
observe: (1) For eight datasets, one of the networks using the Set align. distance emerges as the best
performer indicating its compatibility with late interaction. (2) Agg-NTN distance is the second
best alternative, winning on two datasets and demonstrating competitive performance across others.
(3) Agg-hinge & Agg-MLP distances consistently fail to match the performance of the previously
mentioned relevance distances in any of the datasets.

Rel. Dist. Structure Non-linearity AIDS Mutag FM NCI MOLT

Agg-hinge NA NA 0.557± 0.023 0.594± 0.03 0.636± 0.022 0.529± 0.019 0.537± 0.018
Agg-MLP NA NA 0.548± 0.022 0.64± 0.028 0.674± 0.019 0.566± 0.019 0.575± 0.018
Agg-NTN NA NA 0.576± 0.023 0.708± 0.027 0.744± 0.019 0.612± 0.019 0.627± 0.018
Set align. Non-injective Dot Product 0.6± 0.023 0.652± 0.027 0.702± 0.021 0.598± 0.02 0.617± 0.017
Set align. Non-injective Hinge 0.636± 0.022 0.647± 0.027 0.694± 0.022 0.617± 0.019 0.616± 0.017
Set align. Non-injective Neural 0.635± 0.022 0.681± 0.026 0.736± 0.017 0.605± 0.019 0.609± 0.017
Set align. Injective Dot Product 0.631± 0.022 0.66± 0.026 0.722± 0.019 0.608± 0.019 0.612± 0.016
Set align. Injective Hinge 0.633± 0.021 0.647± 0.028 0.72± 0.019 0.625± 0.019 0.622± 0.017
Set align. Injective Neural 0.664± 0.021 0.69± 0.026 0.758± 0.017 0.612± 0.019 0.621± 0.017

Rel. Dist. Structure Non-linearity FR MM MR MSRC MCF

Agg-hinge NA NA 0.577± 0.022 0.579± 0.02 0.618± 0.019 0.385± 0.011 0.492± 0.018
Agg-MLP NA NA 0.608± 0.023 0.577± 0.02 0.605± 0.018 0.368± 0.011 0.528± 0.02
Agg-NTN NA NA 0.674± 0.022 0.663± 0.023 0.707± 0.018 0.409± 0.011 0.552± 0.02
Set align. Non-injective Dot Product 0.621± 0.024 0.671± 0.019 0.681± 0.02 0.403± 0.012 0.56± 0.021
Set align. Non-injective Hinge 0.645± 0.024 0.634± 0.021 0.701± 0.02 0.392± 0.012 0.577± 0.019
Set align. Non-injective Neural 0.689± 0.021 0.705± 0.019 0.741± 0.017 0.399± 0.012 0.58± 0.019
Set align. Injective Dot Product 0.62± 0.023 0.664± 0.019 0.643± 0.019 0.415± 0.012 0.57± 0.019
Set align. Injective Hinge 0.652± 0.024 0.72± 0.017 0.694± 0.018 0.399± 0.012 0.574± 0.019
Set align. Injective Neural 0.683± 0.022 0.711± 0.017 0.738± 0.017 0.41± 0.012 0.576± 0.019

Table 7: Comparison of different relevance distances for late interaction models with node-level
granularity across ten datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset.

Analysis of Late Edge Interaction along Relevance Distance Design Choices In Table 8, we
observe: (1) Similar to node-granularity networks in Table 28, Set align. distance is the best per-
forming alternative, followed by Agg-NTN. (2) Agg-hinge & Agg-MLP distances again demonstrate
significantly weaker performance compared to the other alternatives.

Rel. Dist. Structure Non-linearity AIDS Mutag FM NCI MOLT

Agg-hinge NA NA 0.635± 0.024 0.694± 0.028 0.712± 0.018 0.569± 0.02 0.571± 0.019
Agg-MLP NA NA 0.607± 0.024 0.63± 0.029 0.727± 0.02 0.604± 0.02 0.613± 0.019
Agg-NTN NA NA 0.66± 0.026 0.718± 0.027 0.759± 0.019 0.627± 0.019 0.653± 0.019
Set align. Non-injective Dot Product 0.681± 0.022 0.681± 0.026 0.759± 0.019 0.611± 0.019 0.621± 0.017
Set align. Non-injective Hinge 0.702± 0.021 0.687± 0.027 0.774± 0.016 0.631± 0.021 0.638± 0.017
Set align. Non-injective Neural 0.7± 0.022 0.713± 0.025 0.77± 0.017 0.609± 0.02 0.618± 0.017
Set align. Injective Dot Product 0.68± 0.021 0.712± 0.026 0.755± 0.016 0.623± 0.02 0.634± 0.018
Set align. Injective Hinge 0.712± 0.018 0.721± 0.025 0.793± 0.016 0.643± 0.02 0.662± 0.016
Set align. Injective Neural 0.704± 0.021 0.733± 0.023 0.782± 0.017 0.615± 0.019 0.649± 0.016

Rel. Dist. Structure Non-linearity FR MM MR MSRC MCF

Agg-hinge NA NA 0.666± 0.022 0.665± 0.019 0.709± 0.019 0.389± 0.012 0.51± 0.019
Agg-MLP NA NA 0.669± 0.022 0.669± 0.02 0.669± 0.02 0.368± 0.011 0.561± 0.019
Agg-NTN NA NA 0.716± 0.021 0.671± 0.021 0.721± 0.02 0.414± 0.012 0.584± 0.02
Set align. Non-injective Dot Product 0.693± 0.022 0.702± 0.019 0.723± 0.019 0.411± 0.012 0.571± 0.02
Set align. Non-injective Hinge 0.731± 0.018 0.735± 0.017 0.776± 0.017 0.412± 0.012 0.609± 0.018
Set align. Non-injective Neural 0.716± 0.02 0.721± 0.016 0.757± 0.017 0.403± 0.011 0.572± 0.019
Set align. Injective Dot Product 0.719± 0.02 0.676± 0.018 0.735± 0.018 0.404± 0.012 0.58± 0.019
Set align. Injective Hinge 0.744± 0.019 0.758± 0.015 0.782± 0.014 0.397± 0.013 0.572± 0.02
Set align. Injective Neural 0.734± 0.02 0.758± 0.016 0.764± 0.015 0.411± 0.012 0.587± 0.019

Table 8: Comparison of different relevance distances for late interaction models with edge-level
granularity across ten datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset.
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Analysis of Early Node Interaction along Relevance Distance Design Choices In Table 9 and
Table 10, we observe: (1) The Set align. and Agg-NTN distances dominate in the presence of
injective and non-injective networks, respectively. (2) The Agg-hinge distance generally performs the
worst among the alternatives. (3) The Agg-MLP method demonstrates mediocre performance, falling
between the former two and the latter across datasets and base networks.

Relevance Distance ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Dot Product; Granularity - Node
Agg-hinge 0.64± 0.019 0.75± 0.023 0.79± 0.016 0.619± 0.019 0.63± 0.018
Agg-MLP 0.658± 0.019 0.768± 0.023 0.806± 0.016 0.641± 0.019 0.649± 0.017
Agg-NTN 0.721± 0.019 0.772± 0.022 0.812± 0.016 0.626± 0.019 0.636± 0.018
Set align. 0.71± 0.019 0.779± 0.022 0.8± 0.017 0.632± 0.02 0.652± 0.017

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Hinge; Granularity - Node
Agg-hinge 0.662± 0.019 0.734± 0.025 0.785± 0.017 0.624± 0.02 0.635± 0.018
Agg-MLP 0.683± 0.019 0.757± 0.023 0.785± 0.016 0.629± 0.019 0.627± 0.018
Agg-NTN 0.743± 0.018 0.773± 0.024 0.805± 0.016 0.615± 0.019 0.629± 0.017
Set align. 0.734± 0.019 0.774± 0.023 0.834± 0.016 0.64± 0.019 0.647± 0.018

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Neural; Granularity - Node
Agg-hinge 0.614± 0.021 0.736± 0.025 0.779± 0.017 0.613± 0.02 0.637± 0.019
Agg-MLP 0.629± 0.021 0.764± 0.024 0.777± 0.016 0.626± 0.02 0.641± 0.017
Agg-NTN 0.667± 0.02 0.791± 0.021 0.828± 0.015 0.629± 0.019 0.651± 0.018
Set align. 0.69± 0.02 0.783± 0.023 0.827± 0.015 0.654± 0.019 0.659± 0.018

Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Dot Product; Granularity - Node
Agg-hinge 0.609± 0.02 0.693± 0.026 0.686± 0.018 0.588± 0.019 0.603± 0.018
Agg-MLP 0.63± 0.022 0.713± 0.025 0.765± 0.016 0.593± 0.019 0.619± 0.017
Agg-NTN 0.669± 0.022 0.742± 0.025 0.75± 0.016 0.602± 0.019 0.628± 0.017
Set align. 0.608± 0.022 0.754± 0.024 0.759± 0.017 0.603± 0.019 0.62± 0.017
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Hinge; Granularity - Node

Agg-hinge 0.726± 0.02 0.723± 0.026 0.79± 0.016 0.618± 0.019 0.651± 0.018
Agg-MLP 0.637± 0.021 0.725± 0.024 0.808± 0.015 0.63± 0.02 0.636± 0.017
Agg-NTN 0.686± 0.019 0.758± 0.022 0.818± 0.015 0.641± 0.02 0.664± 0.017
Set align. 0.676± 0.022 0.669± 0.024 0.772± 0.018 0.599± 0.02 0.637± 0.018
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Neural; Granularity - Node
Agg-hinge 0.598± 0.021 0.694± 0.025 0.712± 0.019 0.591± 0.019 0.629± 0.018
Agg-MLP 0.629± 0.023 0.715± 0.025 0.769± 0.017 0.623± 0.018 0.627± 0.018
Agg-NTN 0.635± 0.025 0.755± 0.025 0.796± 0.016 0.633± 0.019 0.641± 0.017
Set align. 0.593± 0.021 0.748± 0.025 0.772± 0.016 0.614± 0.019 0.646± 0.017

Table 9: Comparison of different relevance distances for early interaction models with node-level
granularity across first five datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset..
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Relevance Distance ↓ FR MM MR MSRC MCF

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Dot Product; Granularity - Node
Agg-hinge 0.73± 0.019 0.699± 0.019 0.736± 0.016 0.423± 0.012 0.574± 0.018
Agg-MLP 0.751± 0.018 0.741± 0.017 0.809± 0.014 0.431± 0.012 0.577± 0.019
Agg-NTN 0.764± 0.019 0.748± 0.017 0.796± 0.015 0.426± 0.012 0.583± 0.019
Set align. 0.774± 0.017 0.736± 0.017 0.803± 0.014 0.436± 0.012 0.593± 0.019

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Hinge; Granularity - Node
Agg-hinge 0.733± 0.021 0.713± 0.018 0.752± 0.018 0.403± 0.011 0.575± 0.02
Agg-MLP 0.75± 0.019 0.774± 0.017 0.781± 0.016 0.42± 0.011 0.603± 0.019
Agg-NTN 0.768± 0.019 0.755± 0.017 0.798± 0.015 0.422± 0.012 0.571± 0.019
Set align. 0.774± 0.017 0.759± 0.016 0.806± 0.013 0.426± 0.012 0.584± 0.019

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Neural; Granularity - Node
Agg-hinge 0.73± 0.02 0.712± 0.018 0.733± 0.017 0.417± 0.011 0.579± 0.019
Agg-MLP 0.772± 0.017 0.707± 0.018 0.785± 0.015 0.416± 0.011 0.597± 0.019
Agg-NTN 0.766± 0.019 0.748± 0.018 0.8± 0.015 0.409± 0.011 0.584± 0.019
Set align. 0.746± 0.019 0.764± 0.016 0.776± 0.015 0.433± 0.012 0.613± 0.019

Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Dot Product; Granularity - Node
Agg-hinge 0.667± 0.021 0.627± 0.02 0.683± 0.017 0.416± 0.012 0.549± 0.018
Agg-MLP 0.687± 0.02 0.678± 0.018 0.741± 0.017 0.42± 0.011 0.562± 0.019
Agg-NTN 0.715± 0.021 0.711± 0.019 0.762± 0.017 0.415± 0.011 0.571± 0.019
Set align. 0.706± 0.02 0.691± 0.017 0.715± 0.019 0.423± 0.012 0.553± 0.019
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Hinge; Granularity - Node

Agg-hinge 0.75± 0.018 0.723± 0.018 0.787± 0.015 0.414± 0.012 0.584± 0.02
Agg-MLP 0.744± 0.02 0.71± 0.018 0.773± 0.016 0.41± 0.011 0.586± 0.02
Agg-NTN 0.765± 0.019 0.766± 0.016 0.8± 0.014 0.409± 0.012 0.572± 0.02
Set align. 0.678± 0.022 0.711± 0.018 0.768± 0.017 0.419± 0.012 0.601± 0.02
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Neural; Granularity - Node
Agg-hinge 0.674± 0.022 0.643± 0.02 0.662± 0.02 0.401± 0.011 0.554± 0.019
Agg-MLP 0.698± 0.021 0.698± 0.018 0.739± 0.018 0.415± 0.012 0.575± 0.019
Agg-NTN 0.707± 0.021 0.701± 0.019 0.69± 0.019 0.408± 0.011 0.586± 0.018
Set align. 0.719± 0.02 0.703± 0.019 0.742± 0.016 0.416± 0.012 0.579± 0.018

Table 10: Comparison of different relevance distances for early interaction models with node-level
granularity across last five datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset..
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Analysis of Early Edge Interaction along Relevance Distance Design Choices In Table 11 and
Table 12, we observe: (1) Set align. consistently outperforms Agg-NTN, regardless of the interaction
structure. The only exception is found in non-injective networks utilizing Hinge non-linearity,
where their performances are comparable. (2) Notably, the top-performing early interaction network
identified in our study, which surpasses all others across nine datasets, employs Set align. as its
relevance distance in conjunction with Hinge non-linearity.

Relevance Distance ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Dot Product; Granularity - Edge
Agg-hinge 0.755± 0.019 0.763± 0.025 0.826± 0.014 0.656± 0.02 0.67± 0.019
Agg-MLP 0.758± 0.019 0.773± 0.023 0.853± 0.014 0.662± 0.02 0.683± 0.017
Agg-NTN 0.74± 0.02 0.783± 0.023 0.833± 0.015 0.655± 0.02 0.672± 0.018
Set align. 0.798± 0.019 0.789± 0.023 0.862± 0.015 0.674± 0.019 0.688± 0.018

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Hinge; Granularity - Edge
Agg-hinge 0.758± 0.019 0.78± 0.023 0.83± 0.015 0.661± 0.02 0.681± 0.019
Agg-MLP 0.789± 0.017 0.807± 0.023 0.871± 0.013 0.663± 0.02 0.678± 0.018
Agg-NTN 0.76± 0.019 0.766± 0.025 0.855± 0.013 0.653± 0.021 0.679± 0.018
Set align. 0.817± 0.017 0.837± 0.02 0.887± 0.012 0.677± 0.02 0.71± 0.018

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Neural; Granularity - Edge
Agg-hinge 0.68± 0.022 0.755± 0.024 0.807± 0.016 0.625± 0.02 0.656± 0.019
Agg-MLP 0.703± 0.021 0.738± 0.026 0.815± 0.015 0.643± 0.021 0.644± 0.019
Agg-NTN 0.689± 0.022 0.749± 0.027 0.831± 0.015 0.651± 0.021 0.664± 0.019
Set align. 0.725± 0.021 0.784± 0.023 0.837± 0.015 0.649± 0.019 0.664± 0.018

Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Dot Product; Granularity - Edge
Agg-hinge 0.7± 0.022 0.734± 0.025 0.78± 0.018 0.625± 0.02 0.653± 0.018
Agg-MLP 0.677± 0.022 0.766± 0.023 0.792± 0.016 0.638± 0.019 0.65± 0.018
Agg-NTN 0.71± 0.022 0.751± 0.024 0.815± 0.016 0.653± 0.02 0.644± 0.017
Set align. 0.715± 0.021 0.779± 0.023 0.812± 0.017 0.635± 0.019 0.659± 0.017
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Hinge; Granularity - Edge

Agg-hinge 0.763± 0.018 0.753± 0.025 0.831± 0.015 0.666± 0.02 0.686± 0.017
Agg-MLP 0.748± 0.019 0.778± 0.023 0.847± 0.014 0.658± 0.021 0.684± 0.018
Agg-NTN 0.79± 0.017 0.785± 0.023 0.835± 0.014 0.661± 0.02 0.683± 0.018
Set align. 0.783± 0.017 0.785± 0.024 0.807± 0.015 0.657± 0.021 0.696± 0.018
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Neural; Granularity - Edge
Agg-hinge 0.677± 0.022 0.729± 0.025 0.747± 0.019 0.618± 0.019 0.633± 0.018
Agg-MLP 0.662± 0.024 0.735± 0.024 0.745± 0.019 0.629± 0.02 0.65± 0.018
Agg-NTN 0.701± 0.023 0.734± 0.028 0.811± 0.016 0.625± 0.02 0.648± 0.019
Set align. 0.708± 0.022 0.763± 0.024 0.807± 0.016 0.648± 0.019 0.655± 0.018

Table 11: Comparison of different relevance distances for early interaction models with edge-level
granularity across first five datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset.
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Relevance Distance ↓ FR MM MR MSRC MCF

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Dot Product; Granularity - Edge
Agg-hinge 0.8± 0.018 0.777± 0.018 0.803± 0.015 0.415± 0.011 0.616± 0.018
Agg-MLP 0.786± 0.017 0.791± 0.016 0.827± 0.014 0.404± 0.011 0.614± 0.018
Agg-NTN 0.771± 0.018 0.81± 0.014 0.858± 0.012 0.425± 0.012 0.617± 0.018
Set align. 0.817± 0.016 0.791± 0.016 0.819± 0.014 0.435± 0.012 0.63± 0.018

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Hinge; Granularity - Edge
Agg-hinge 0.798± 0.019 0.785± 0.016 0.817± 0.014 0.421± 0.012 0.619± 0.019
Agg-MLP 0.815± 0.016 0.833± 0.014 0.851± 0.011 0.423± 0.012 0.599± 0.018
Agg-NTN 0.824± 0.016 0.821± 0.014 0.844± 0.013 0.426± 0.012 0.635± 0.019
Set align. 0.854± 0.013 0.849± 0.012 0.864± 0.011 0.424± 0.012 0.64± 0.018

Fixed axes: Stage - Early; Structure - Injective; Non-linearity - Neural; Granularity - Edge
Agg-hinge 0.749± 0.022 0.705± 0.019 0.766± 0.016 0.406± 0.012 0.595± 0.018
Agg-MLP 0.771± 0.019 0.717± 0.018 0.795± 0.016 0.401± 0.011 0.601± 0.018
Agg-NTN 0.762± 0.02 0.767± 0.018 0.802± 0.016 0.411± 0.012 0.593± 0.018
Set align. 0.752± 0.02 0.773± 0.016 0.788± 0.015 0.433± 0.012 0.609± 0.02

Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Dot Product; Granularity - Edge
Agg-hinge 0.727± 0.019 0.706± 0.02 0.746± 0.019 0.421± 0.012 0.601± 0.018
Agg-MLP 0.751± 0.019 0.723± 0.019 0.788± 0.016 0.416± 0.011 0.596± 0.02
Agg-NTN 0.754± 0.019 0.719± 0.021 0.777± 0.016 0.418± 0.012 0.614± 0.018
Set align. 0.799± 0.017 0.789± 0.016 0.81± 0.016 0.421± 0.012 0.609± 0.02
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Hinge; Granularity - Edge

Agg-hinge 0.772± 0.018 0.799± 0.015 0.815± 0.014 0.423± 0.012 0.612± 0.019
Agg-MLP 0.756± 0.019 0.787± 0.015 0.786± 0.015 0.416± 0.012 0.628± 0.019
Agg-NTN 0.791± 0.017 0.8± 0.016 0.833± 0.014 0.421± 0.011 0.608± 0.02
Set align. 0.773± 0.019 0.814± 0.015 0.795± 0.016 0.435± 0.012 0.626± 0.02
Fixed axes: Stage - Early; Structure - Non-injective; Non-linearity - Neural; Granularity - Edge
Agg-hinge 0.704± 0.022 0.691± 0.02 0.722± 0.02 0.422± 0.011 0.589± 0.019
Agg-MLP 0.74± 0.02 0.687± 0.021 0.732± 0.02 0.416± 0.011 0.603± 0.018
Agg-NTN 0.723± 0.022 0.704± 0.02 0.753± 0.018 0.419± 0.012 0.584± 0.02
Set align. 0.733± 0.02 0.75± 0.018 0.782± 0.017 0.421± 0.011 0.607± 0.018

Table 12: Comparison of different relevance distances for early interaction models with edge-level
granularity across last five datasets, using mean average precision (MAP). Green and yellow cells
indicate the best and second best methods respectively for the corresponding dataset.
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Analysis of Late Node Interaction along Interaction Structure Design Choices In Table 13,
we observe: (1)The Injective structure is the preferred option across all non-linearities, achieving
victories in more than five datasets in each instance. (2)The Non-injective structure is also highly
competitive and, in some cases, significantly outperforms Injective, particularly evident in the MR
under the Dot Product non-linearity.

Interaction Structure ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.6± 0.023 0.652± 0.027 0.702± 0.021 0.598± 0.02 0.617± 0.017

Injective 0.631± 0.022 0.66± 0.026 0.722± 0.019 0.608± 0.019 0.612± 0.016
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Hinge; Granularity - Node

Non-injective 0.636± 0.022 0.647± 0.027 0.694± 0.022 0.617± 0.019 0.616± 0.017
Injective 0.633± 0.021 0.647± 0.028 0.72± 0.019 0.625± 0.019 0.622± 0.017

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Neural; Granularity - Node
Non-injective 0.635± 0.022 0.681± 0.026 0.736± 0.017 0.605± 0.019 0.609± 0.017

Injective 0.664± 0.021 0.69± 0.026 0.758± 0.017 0.612± 0.019 0.621± 0.017

Interaction Structure ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.621± 0.024 0.671± 0.019 0.681± 0.02 0.403± 0.012 0.56± 0.021

Injective 0.62± 0.023 0.664± 0.019 0.643± 0.019 0.415± 0.012 0.57± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Hinge; Granularity - Node

Non-injective 0.645± 0.024 0.634± 0.021 0.701± 0.02 0.392± 0.012 0.577± 0.019
Injective 0.652± 0.024 0.72± 0.017 0.694± 0.018 0.399± 0.012 0.574± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Neural; Granularity - Node
Non-injective 0.689± 0.021 0.705± 0.019 0.741± 0.017 0.399± 0.012 0.58± 0.019

Injective 0.683± 0.022 0.711± 0.017 0.738± 0.017 0.41± 0.012 0.576± 0.019

Table 13: Comparison of different interaction structures for late interaction models with node-level
granularity across ten datasets, using mean average precision (MAP). Green cells indicate the best
methods respectively for the corresponding datasets.

Analysis of Late Edge Interaction along Interaction Structure Design Choices In Table 14, we
observe: (1) The Injective structure continues to demonstrate superior performance, with one of its
models utilizing Hinge non-linearity emerging as the best-performing late interaction network in our
study. (2) While the Non-injective structure remains competitive, its effectiveness relative to Injective
diminishes as we transition from Dot Product to Hinge and finally to Neural, ultimately resulting in
no datasets won.

Interaction Structure ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.681± 0.022 0.681± 0.026 0.759± 0.019 0.611± 0.019 0.621± 0.017

Injective 0.68± 0.021 0.712± 0.026 0.755± 0.016 0.623± 0.02 0.634± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.702± 0.021 0.687± 0.027 0.774± 0.016 0.631± 0.021 0.638± 0.017
Injective 0.712± 0.018 0.721± 0.025 0.793± 0.016 0.643± 0.02 0.662± 0.016

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Neural; Granularity - Edge
Non-injective 0.7± 0.022 0.713± 0.025 0.77± 0.017 0.609± 0.02 0.618± 0.017

Injective 0.704± 0.021 0.733± 0.023 0.782± 0.017 0.615± 0.019 0.649± 0.016

Interaction Structure ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.693± 0.022 0.702± 0.019 0.723± 0.019 0.411± 0.012 0.571± 0.02

Injective 0.719± 0.02 0.676± 0.018 0.735± 0.018 0.404± 0.012 0.58± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.731± 0.018 0.735± 0.017 0.776± 0.017 0.412± 0.012 0.609± 0.018
Injective 0.744± 0.019 0.758± 0.015 0.782± 0.014 0.397± 0.013 0.572± 0.02

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Non-linearity - Neural; Granularity - Edge
Non-injective 0.716± 0.02 0.721± 0.016 0.757± 0.017 0.403± 0.011 0.572± 0.019

Injective 0.734± 0.02 0.758± 0.016 0.764± 0.015 0.411± 0.012 0.587± 0.019

Table 14: Comparison of different interaction structures for late interaction models with edge-level
granularity across ten datasets, using mean average precision (MAP). Green cells indicate the best
methods respectively for the corresponding datasets.
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Analysis of Early Node Interaction along Interaction Structure Design Choices In Tables 15
and 16, we observe: Networks with injective structures consistently outperform those with non-
injective structures, with a few notable exceptions. (1) The relevance distance using Agg-hinge with
non-linearity Hinge wins in eight datasets. (2) The relevance distance using Agg-NTN with non-
linearity Hinge wins in six datasets. (3) The relevance distance using Agg-MLP with non-linearity
Hinge wins in three datasets. These observations lead us to conclude that non-injective structures
tend to perform well when paired with Hinge non-linearity.

Interaction Structure ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.609± 0.02 0.693± 0.026 0.686± 0.018 0.588± 0.019 0.603± 0.018

Injective 0.64± 0.019 0.75± 0.023 0.79± 0.016 0.619± 0.019 0.63± 0.018
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.726± 0.02 0.723± 0.026 0.79± 0.016 0.618± 0.019 0.651± 0.018
Injective 0.662± 0.019 0.734± 0.025 0.785± 0.017 0.624± 0.02 0.635± 0.018
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.598± 0.021 0.694± 0.025 0.712± 0.019 0.591± 0.019 0.629± 0.018
Injective 0.614± 0.021 0.736± 0.025 0.779± 0.017 0.613± 0.02 0.637± 0.019

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.63± 0.022 0.713± 0.025 0.765± 0.016 0.593± 0.019 0.619± 0.017

Injective 0.658± 0.019 0.768± 0.023 0.806± 0.016 0.641± 0.019 0.649± 0.017
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.637± 0.021 0.725± 0.024 0.808± 0.015 0.63± 0.02 0.636± 0.017
Injective 0.683± 0.019 0.757± 0.023 0.785± 0.016 0.629± 0.019 0.627± 0.018
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.629± 0.023 0.715± 0.025 0.769± 0.017 0.623± 0.018 0.627± 0.018
Injective 0.629± 0.021 0.764± 0.024 0.777± 0.016 0.626± 0.02 0.641± 0.017

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.608± 0.022 0.754± 0.024 0.759± 0.017 0.603± 0.019 0.62± 0.017

Injective 0.71± 0.019 0.779± 0.022 0.8± 0.017 0.632± 0.02 0.652± 0.017
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.676± 0.022 0.669± 0.024 0.772± 0.018 0.599± 0.02 0.637± 0.018
Injective 0.734± 0.019 0.774± 0.023 0.834± 0.016 0.64± 0.019 0.647± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.593± 0.021 0.748± 0.025 0.772± 0.016 0.614± 0.019 0.646± 0.017
Injective 0.69± 0.02 0.783± 0.023 0.827± 0.015 0.654± 0.019 0.659± 0.018

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.669± 0.022 0.742± 0.025 0.75± 0.016 0.602± 0.019 0.628± 0.017

Injective 0.721± 0.019 0.772± 0.022 0.812± 0.016 0.626± 0.019 0.636± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.686± 0.019 0.758± 0.022 0.818± 0.015 0.641± 0.02 0.664± 0.017
Injective 0.743± 0.018 0.773± 0.024 0.805± 0.016 0.615± 0.019 0.629± 0.017
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.635± 0.025 0.755± 0.025 0.796± 0.016 0.633± 0.019 0.641± 0.017
Injective 0.667± 0.02 0.791± 0.021 0.828± 0.015 0.629± 0.019 0.651± 0.018

Table 15: Comparison of different interaction structures for early interaction models with node-
level granularity across first five datasets, using mean average precision (MAP). Green cells
indicate the best method for the corresponding datasets.
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Interaction Structure ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.667± 0.021 0.627± 0.02 0.683± 0.017 0.416± 0.012 0.549± 0.018

Injective 0.73± 0.019 0.699± 0.019 0.736± 0.016 0.423± 0.012 0.574± 0.018
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.75± 0.018 0.723± 0.018 0.787± 0.015 0.414± 0.012 0.584± 0.02
Injective 0.733± 0.021 0.713± 0.018 0.752± 0.018 0.403± 0.011 0.575± 0.02
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.674± 0.022 0.643± 0.02 0.662± 0.02 0.401± 0.011 0.554± 0.019
Injective 0.73± 0.02 0.712± 0.018 0.733± 0.017 0.417± 0.011 0.579± 0.019

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.687± 0.02 0.678± 0.018 0.741± 0.017 0.42± 0.011 0.562± 0.019

Injective 0.751± 0.018 0.741± 0.017 0.809± 0.014 0.431± 0.012 0.577± 0.019
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.744± 0.02 0.71± 0.018 0.773± 0.016 0.41± 0.011 0.586± 0.02
Injective 0.75± 0.019 0.774± 0.017 0.781± 0.016 0.42± 0.011 0.603± 0.019
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.698± 0.021 0.698± 0.018 0.739± 0.018 0.415± 0.012 0.575± 0.019
Injective 0.772± 0.017 0.707± 0.018 0.785± 0.015 0.416± 0.011 0.597± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.706± 0.02 0.691± 0.017 0.715± 0.019 0.423± 0.012 0.553± 0.019

Injective 0.774± 0.017 0.736± 0.017 0.803± 0.014 0.436± 0.012 0.593± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.678± 0.022 0.711± 0.018 0.768± 0.017 0.419± 0.012 0.601± 0.02
Injective 0.774± 0.017 0.759± 0.016 0.806± 0.013 0.426± 0.012 0.584± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.719± 0.02 0.703± 0.019 0.742± 0.016 0.416± 0.012 0.579± 0.018
Injective 0.746± 0.019 0.764± 0.016 0.776± 0.015 0.433± 0.012 0.613± 0.019

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Dot Product; Granularity - Node
Non-injective 0.715± 0.021 0.711± 0.019 0.762± 0.017 0.415± 0.011 0.571± 0.019

Injective 0.764± 0.019 0.748± 0.017 0.796± 0.015 0.426± 0.012 0.583± 0.019
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Hinge; Granularity - Node

Non-injective 0.765± 0.019 0.766± 0.016 0.8± 0.014 0.409± 0.012 0.572± 0.02
Injective 0.768± 0.019 0.755± 0.017 0.798± 0.015 0.422± 0.012 0.571± 0.019
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Neural; Granularity - Node

Non-injective 0.707± 0.021 0.701± 0.019 0.69± 0.019 0.408± 0.011 0.586± 0.018
Injective 0.766± 0.019 0.748± 0.018 0.8± 0.015 0.409± 0.011 0.584± 0.019

Table 16: Comparison of different interaction structures for early interaction models with node-
level granularity across last five datasets, using mean average precision (MAP). Green cells indicate
the best method for the corresponding datasets.
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Analysis of Early Edge Interaction along Interaction Structure Design Choices In Tables 17
and 18, we observe: (1) Similar to node granularity, several non-injective networks either match
or surpass the performance of their injective counterparts, primarily due to the Hinge non-linearity.
For instance, with relevance distance Agg-hinge and non-linearity Hinge, this configuration wins
in six datasets. (2) Additionally, with relevance distance Agg-NTN and non-linearity Hinge, this
combination wins in four datasets.

Interaction Structure ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.7± 0.022 0.734± 0.025 0.78± 0.018 0.625± 0.02 0.653± 0.018

Injective 0.755± 0.019 0.763± 0.025 0.826± 0.014 0.656± 0.02 0.67± 0.019
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.763± 0.018 0.753± 0.025 0.831± 0.015 0.666± 0.02 0.686± 0.017
Injective 0.758± 0.019 0.78± 0.023 0.83± 0.015 0.661± 0.02 0.681± 0.019
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.677± 0.022 0.729± 0.025 0.747± 0.019 0.618± 0.019 0.633± 0.018
Injective 0.68± 0.022 0.755± 0.024 0.807± 0.016 0.625± 0.02 0.656± 0.019

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.677± 0.022 0.766± 0.023 0.792± 0.016 0.638± 0.019 0.65± 0.018

Injective 0.758± 0.019 0.773± 0.023 0.853± 0.014 0.662± 0.02 0.683± 0.017
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.748± 0.019 0.778± 0.023 0.847± 0.014 0.658± 0.021 0.684± 0.018
Injective 0.789± 0.017 0.807± 0.023 0.871± 0.013 0.663± 0.02 0.678± 0.018
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.662± 0.024 0.735± 0.024 0.745± 0.019 0.629± 0.02 0.65± 0.018
Injective 0.703± 0.021 0.738± 0.026 0.815± 0.015 0.643± 0.021 0.644± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.715± 0.021 0.779± 0.023 0.812± 0.017 0.635± 0.019 0.659± 0.017

Injective 0.798± 0.019 0.789± 0.023 0.862± 0.015 0.674± 0.019 0.688± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.783± 0.017 0.785± 0.024 0.807± 0.015 0.657± 0.021 0.696± 0.018
Injective 0.817± 0.017 0.837± 0.02 0.887± 0.012 0.677± 0.02 0.71± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.708± 0.022 0.763± 0.024 0.807± 0.016 0.648± 0.019 0.655± 0.018
Injective 0.725± 0.021 0.784± 0.023 0.837± 0.015 0.649± 0.019 0.664± 0.018

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.71± 0.022 0.751± 0.024 0.815± 0.016 0.653± 0.02 0.644± 0.017

Injective 0.74± 0.02 0.783± 0.023 0.833± 0.015 0.655± 0.02 0.672± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.79± 0.017 0.785± 0.023 0.835± 0.014 0.661± 0.02 0.683± 0.018
Injective 0.76± 0.019 0.766± 0.025 0.855± 0.013 0.653± 0.021 0.679± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.701± 0.023 0.734± 0.028 0.811± 0.016 0.625± 0.02 0.648± 0.019
Injective 0.689± 0.022 0.749± 0.027 0.831± 0.015 0.651± 0.021 0.664± 0.019

Table 17: Comparison of different interaction structures for early interaction models with edge-
level granularity across first five datasets, using mean average precision (MAP). Green cells
indicate the best method for the corresponding datasets.
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Interaction Structure ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.727± 0.019 0.706± 0.02 0.746± 0.019 0.421± 0.012 0.601± 0.018

Injective 0.8± 0.018 0.777± 0.018 0.803± 0.015 0.415± 0.011 0.616± 0.018
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.772± 0.018 0.799± 0.015 0.815± 0.014 0.423± 0.012 0.612± 0.019
Injective 0.798± 0.019 0.785± 0.016 0.817± 0.014 0.421± 0.012 0.619± 0.019
Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.704± 0.022 0.691± 0.02 0.722± 0.02 0.422± 0.011 0.589± 0.019
Injective 0.749± 0.022 0.705± 0.019 0.766± 0.016 0.406± 0.012 0.595± 0.018

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.751± 0.019 0.723± 0.019 0.788± 0.016 0.416± 0.011 0.596± 0.02

Injective 0.786± 0.017 0.791± 0.016 0.827± 0.014 0.404± 0.011 0.614± 0.018
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.756± 0.019 0.787± 0.015 0.786± 0.015 0.416± 0.012 0.628± 0.019
Injective 0.815± 0.016 0.833± 0.014 0.851± 0.011 0.423± 0.012 0.599± 0.018
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.74± 0.02 0.687± 0.021 0.732± 0.02 0.416± 0.011 0.603± 0.018
Injective 0.771± 0.019 0.717± 0.018 0.795± 0.016 0.401± 0.011 0.601± 0.018

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.799± 0.017 0.789± 0.016 0.81± 0.016 0.421± 0.012 0.609± 0.02

Injective 0.817± 0.016 0.791± 0.016 0.819± 0.014 0.435± 0.012 0.63± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.773± 0.019 0.814± 0.015 0.795± 0.016 0.435± 0.012 0.626± 0.02
Injective 0.854± 0.013 0.849± 0.012 0.864± 0.011 0.424± 0.012 0.64± 0.018
Fixed axes: Rel. Dist. - Set align.; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.733± 0.02 0.75± 0.018 0.782± 0.017 0.421± 0.011 0.607± 0.018
Injective 0.752± 0.02 0.773± 0.016 0.788± 0.015 0.433± 0.012 0.609± 0.02

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Dot Product; Granularity - Edge
Non-injective 0.754± 0.019 0.719± 0.021 0.777± 0.016 0.418± 0.012 0.614± 0.018

Injective 0.771± 0.018 0.81± 0.014 0.858± 0.012 0.425± 0.012 0.617± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Hinge; Granularity - Edge

Non-injective 0.791± 0.017 0.8± 0.016 0.833± 0.014 0.421± 0.011 0.608± 0.02
Injective 0.824± 0.016 0.821± 0.014 0.844± 0.013 0.426± 0.012 0.635± 0.019
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Non-linearity - Neural; Granularity - Edge

Non-injective 0.723± 0.022 0.704± 0.02 0.753± 0.018 0.419± 0.012 0.584± 0.02
Injective 0.762± 0.02 0.767± 0.018 0.802± 0.016 0.411± 0.012 0.593± 0.018

Table 18: Comparison of different interaction structures for early interaction models with edge-
level granularity across last five datasets, using mean average precision (MAP). Green cells indicate
the best method for the corresponding datasets.
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Analysis of Late Node Interaction along Interaction Non-Linearity Design Choices In Table 19,
we observe: (1) The Neural non-linearity wins in six datasets for both Injective and Non-injective
structures, making it the preferred alternative in this context. (2) Both Hinge and Dot Product exhibit
competitive performance; however, the preferred option between these two varies depending on the
dataset.

Interaction Non-linearity ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Injective; Granularity - Node
Dot Product 0.631± 0.022 0.66± 0.026 0.722± 0.019 0.608± 0.019 0.612± 0.016

Hinge 0.633± 0.021 0.647± 0.028 0.72± 0.019 0.625± 0.019 0.622± 0.017
Neural 0.664± 0.021 0.69± 0.026 0.758± 0.017 0.612± 0.019 0.621± 0.017
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Non-injective; Granularity - Node

Dot Product 0.6± 0.023 0.652± 0.027 0.702± 0.021 0.598± 0.02 0.617± 0.017
Hinge 0.636± 0.022 0.647± 0.027 0.694± 0.022 0.617± 0.019 0.616± 0.017
Neural 0.635± 0.022 0.681± 0.026 0.736± 0.017 0.605± 0.019 0.609± 0.017

Interaction Non-linearity ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Injective; Granularity - Node
Dot Product 0.62± 0.023 0.664± 0.019 0.643± 0.019 0.415± 0.012 0.57± 0.019

Hinge 0.652± 0.024 0.72± 0.017 0.694± 0.018 0.399± 0.012 0.574± 0.019
Neural 0.683± 0.022 0.711± 0.017 0.738± 0.017 0.41± 0.012 0.576± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Non-injective; Granularity - Node

Dot Product 0.621± 0.024 0.671± 0.019 0.681± 0.02 0.403± 0.012 0.56± 0.021
Hinge 0.645± 0.024 0.634± 0.021 0.701± 0.02 0.392± 0.012 0.577± 0.019
Neural 0.689± 0.021 0.705± 0.019 0.741± 0.017 0.399± 0.012 0.58± 0.019

Table 19: Comparison of different interaction non-linearities for late interaction models with
node-level granularity across ten datasets, using mean average precision (MAP). Green and yellow
cells indicate the best and second best methods respectively for the corresponding dataset.

Analysis of Late Edge Interaction along Interaction Non-Linearity Design Choices In Table 20,
we observe: (1) Hinge non-linearity clearly outperforms other options for both Injective and Non-
injective structures. Notably, the Injective variant stands out as the best-performing late interaction
model in our study. (2) Neural non-linearity, while not as good as Hinge, outperforms Dot Product
for most datasets.

Interaction Non-linearity ↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Injective; Granularity - Edge
Dot Product 0.68± 0.021 0.712± 0.026 0.755± 0.016 0.623± 0.02 0.634± 0.018

Hinge 0.712± 0.018 0.721± 0.025 0.793± 0.016 0.643± 0.02 0.662± 0.016
Neural 0.704± 0.021 0.733± 0.023 0.782± 0.017 0.615± 0.019 0.649± 0.016
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Non-injective; Granularity - Edge

Dot Product 0.681± 0.022 0.681± 0.026 0.759± 0.019 0.611± 0.019 0.621± 0.017
Hinge 0.702± 0.021 0.687± 0.027 0.774± 0.016 0.631± 0.021 0.638± 0.017
Neural 0.7± 0.022 0.713± 0.025 0.77± 0.017 0.609± 0.02 0.618± 0.017

Interaction Non-linearity ↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Injective; Granularity - Edge
Dot Product 0.719± 0.02 0.676± 0.018 0.735± 0.018 0.404± 0.012 0.58± 0.019

Hinge 0.744± 0.019 0.758± 0.015 0.782± 0.014 0.397± 0.013 0.572± 0.02
Neural 0.734± 0.02 0.758± 0.016 0.764± 0.015 0.411± 0.012 0.587± 0.019
Fixed axes: Rel. Dist. - Set align.; Stage - Late; Structure - Non-injective; Granularity - Edge

Dot Product 0.693± 0.022 0.702± 0.019 0.723± 0.019 0.411± 0.012 0.571± 0.02
Hinge 0.731± 0.018 0.735± 0.017 0.776± 0.017 0.412± 0.012 0.609± 0.018
Neural 0.716± 0.02 0.721± 0.016 0.757± 0.017 0.403± 0.011 0.572± 0.019

Table 20: Comparison of different interaction non-linearities for late interaction models with
edge-level granularity across ten datasets, using mean average precision (MAP). Green and yellow
cells indicate the best and second best methods respectively for the corresponding dataset.
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Analysis of Early Node Interaction along Interaction Non-Linearity Design Choices In Ta-
bles 21 and 22 , we observe: (1) Hinge non-linearity is typically the best choice for non-injective
structures. (2) For injective networks, no alternative clearly stands out; however, both Neural and
Dot Product non-linearities demonstrate comparable performance to Hinge. (3) Notably, Dot Product
emerges as the best option in six datasets when used with Agg-MLP relevance distance in an injective
network.

Interaction Non-linearity↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Injective; Granularity - Node
Dot Product 0.64± 0.019 0.75± 0.023 0.79± 0.016 0.619± 0.019 0.63± 0.018

Hinge 0.662± 0.019 0.734± 0.025 0.785± 0.017 0.624± 0.02 0.635± 0.018
Neural 0.614± 0.021 0.736± 0.025 0.779± 0.017 0.613± 0.02 0.637± 0.019
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Injective; Granularity - Node

Dot Product 0.658± 0.019 0.768± 0.023 0.806± 0.016 0.641± 0.019 0.649± 0.017
Hinge 0.683± 0.019 0.757± 0.023 0.785± 0.016 0.629± 0.019 0.627± 0.018
Neural 0.629± 0.021 0.764± 0.024 0.777± 0.016 0.626± 0.02 0.641± 0.017

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Injective; Granularity - Node
Dot Product 0.71± 0.019 0.779± 0.022 0.8± 0.017 0.632± 0.02 0.652± 0.017

Hinge 0.734± 0.019 0.774± 0.023 0.834± 0.016 0.64± 0.019 0.647± 0.018
Neural 0.69± 0.02 0.783± 0.023 0.827± 0.015 0.654± 0.019 0.659± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Injective; Granularity - Node

Dot Product 0.721± 0.019 0.772± 0.022 0.812± 0.016 0.626± 0.019 0.636± 0.018
Hinge 0.743± 0.018 0.773± 0.024 0.805± 0.016 0.615± 0.019 0.629± 0.017
Neural 0.667± 0.02 0.791± 0.021 0.828± 0.015 0.629± 0.019 0.651± 0.018

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.609± 0.02 0.693± 0.026 0.686± 0.018 0.588± 0.019 0.603± 0.018

Hinge 0.726± 0.02 0.723± 0.026 0.79± 0.016 0.618± 0.019 0.651± 0.018
Neural 0.598± 0.021 0.694± 0.025 0.712± 0.019 0.591± 0.019 0.629± 0.018

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.63± 0.022 0.713± 0.025 0.765± 0.016 0.593± 0.019 0.619± 0.017

Hinge 0.637± 0.021 0.725± 0.024 0.808± 0.015 0.63± 0.02 0.636± 0.017
Neural 0.629± 0.023 0.715± 0.025 0.769± 0.017 0.623± 0.018 0.627± 0.018

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.608± 0.022 0.754± 0.024 0.759± 0.017 0.603± 0.019 0.62± 0.017

Hinge 0.676± 0.022 0.669± 0.024 0.772± 0.018 0.599± 0.02 0.637± 0.018
Neural 0.593± 0.021 0.748± 0.025 0.772± 0.016 0.614± 0.019 0.646± 0.017

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.669± 0.022 0.742± 0.025 0.75± 0.016 0.602± 0.019 0.628± 0.017

Hinge 0.686± 0.019 0.758± 0.022 0.818± 0.015 0.641± 0.02 0.664± 0.017
Neural 0.635± 0.025 0.755± 0.025 0.796± 0.016 0.633± 0.019 0.641± 0.017

Table 21: Comparison of different interaction non-linearities for early interaction models with
node-level granularity across first five datasets, using mean average precision (MAP). Green and
yellow cells indicate the best and second best methods respectively for the corresponding dataset.
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Interaction Non-linearity↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Injective; Granularity - Node
Dot Product 0.73± 0.019 0.699± 0.019 0.736± 0.016 0.423± 0.012 0.574± 0.018

Hinge 0.733± 0.021 0.713± 0.018 0.752± 0.018 0.403± 0.011 0.575± 0.02
Neural 0.73± 0.02 0.712± 0.018 0.733± 0.017 0.417± 0.011 0.579± 0.019
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Injective; Granularity - Node

Dot Product 0.751± 0.018 0.741± 0.017 0.809± 0.014 0.431± 0.012 0.577± 0.019
Hinge 0.75± 0.019 0.774± 0.017 0.781± 0.016 0.42± 0.011 0.603± 0.019
Neural 0.772± 0.017 0.707± 0.018 0.785± 0.015 0.416± 0.011 0.597± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Injective; Granularity - Node
Dot Product 0.774± 0.017 0.736± 0.017 0.803± 0.014 0.436± 0.012 0.593± 0.019

Hinge 0.774± 0.017 0.759± 0.016 0.806± 0.013 0.426± 0.012 0.584± 0.019
Neural 0.746± 0.019 0.764± 0.016 0.776± 0.015 0.433± 0.012 0.613± 0.019
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Injective; Granularity - Node

Dot Product 0.764± 0.019 0.748± 0.017 0.796± 0.015 0.426± 0.012 0.583± 0.019
Hinge 0.768± 0.019 0.755± 0.017 0.798± 0.015 0.422± 0.012 0.571± 0.019
Neural 0.766± 0.019 0.748± 0.018 0.8± 0.015 0.409± 0.011 0.584± 0.019

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.667± 0.021 0.627± 0.02 0.683± 0.017 0.416± 0.012 0.549± 0.018

Hinge 0.75± 0.018 0.723± 0.018 0.787± 0.015 0.414± 0.012 0.584± 0.02
Neural 0.674± 0.022 0.643± 0.02 0.662± 0.02 0.401± 0.011 0.554± 0.019

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.687± 0.02 0.678± 0.018 0.741± 0.017 0.42± 0.011 0.562± 0.019

Hinge 0.744± 0.02 0.71± 0.018 0.773± 0.016 0.41± 0.011 0.586± 0.02
Neural 0.698± 0.021 0.698± 0.018 0.739± 0.018 0.415± 0.012 0.575± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.706± 0.02 0.691± 0.017 0.715± 0.019 0.423± 0.012 0.553± 0.019

Hinge 0.678± 0.022 0.711± 0.018 0.768± 0.017 0.419± 0.012 0.601± 0.02
Neural 0.719± 0.02 0.703± 0.019 0.742± 0.016 0.416± 0.012 0.579± 0.018

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Non-injective; Granularity - Node
Dot Product 0.715± 0.021 0.711± 0.019 0.762± 0.017 0.415± 0.011 0.571± 0.019

Hinge 0.765± 0.019 0.766± 0.016 0.8± 0.014 0.409± 0.012 0.572± 0.02
Neural 0.707± 0.021 0.701± 0.019 0.69± 0.019 0.408± 0.011 0.586± 0.018

Table 22: Comparison of different interaction non-linearities for early interaction models with
node-level granularity across last five datasets, using mean average precision (MAP). Green and
yellow cells indicate the best and second best methods respectively for the corresponding dataset.
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Analysis of Early Edge Interaction along Interaction Non-Linearity Design Choices In Ta-
bles 23 and 24, we observe: (1). Hinge non-linearity is the best performer across all datasets,
regardless of the interaction structure, (2), Dot Product method ranks second in most cases, although
it occasionally outperforms Hinge., (3) Neural method is consistently the lowest performer among
the three.

Interaction Non-linearity↓ AIDS Mutag FM NCI MOLT

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Injective; Granularity - Edge
Dot Product 0.755± 0.019 0.763± 0.025 0.826± 0.014 0.656± 0.02 0.67± 0.019

Hinge 0.758± 0.019 0.78± 0.023 0.83± 0.015 0.661± 0.02 0.681± 0.019
Neural 0.68± 0.022 0.755± 0.024 0.807± 0.016 0.625± 0.02 0.656± 0.019
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Injective; Granularity - Edge

Dot Product 0.758± 0.019 0.773± 0.023 0.853± 0.014 0.662± 0.02 0.683± 0.017
Hinge 0.789± 0.017 0.807± 0.023 0.871± 0.013 0.663± 0.02 0.678± 0.018
Neural 0.703± 0.021 0.738± 0.026 0.815± 0.015 0.643± 0.021 0.644± 0.019

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Injective; Granularity - Edge
Dot Product 0.798± 0.019 0.789± 0.023 0.862± 0.015 0.674± 0.019 0.688± 0.018

Hinge 0.817± 0.017 0.837± 0.02 0.887± 0.012 0.677± 0.02 0.71± 0.018
Neural 0.725± 0.021 0.784± 0.023 0.837± 0.015 0.649± 0.019 0.664± 0.018
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Injective; Granularity - Edge

Dot Product 0.74± 0.02 0.783± 0.023 0.833± 0.015 0.655± 0.02 0.672± 0.018
Hinge 0.76± 0.019 0.766± 0.025 0.855± 0.013 0.653± 0.021 0.679± 0.018
Neural 0.689± 0.022 0.749± 0.027 0.831± 0.015 0.651± 0.021 0.664± 0.019

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.7± 0.022 0.734± 0.025 0.78± 0.018 0.625± 0.02 0.653± 0.018

Hinge 0.763± 0.018 0.753± 0.025 0.831± 0.015 0.666± 0.02 0.686± 0.017
Neural 0.677± 0.022 0.729± 0.025 0.747± 0.019 0.618± 0.019 0.633± 0.018

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.677± 0.022 0.766± 0.023 0.792± 0.016 0.638± 0.019 0.65± 0.018

Hinge 0.748± 0.019 0.778± 0.023 0.847± 0.014 0.658± 0.021 0.684± 0.018
Neural 0.662± 0.024 0.735± 0.024 0.745± 0.019 0.629± 0.02 0.65± 0.018

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.715± 0.021 0.779± 0.023 0.812± 0.017 0.635± 0.019 0.659± 0.017

Hinge 0.783± 0.017 0.785± 0.024 0.807± 0.015 0.657± 0.021 0.696± 0.018
Neural 0.708± 0.022 0.763± 0.024 0.807± 0.016 0.648± 0.019 0.655± 0.018

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.71± 0.022 0.751± 0.024 0.815± 0.016 0.653± 0.02 0.644± 0.017

Hinge 0.79± 0.017 0.785± 0.023 0.835± 0.014 0.661± 0.02 0.683± 0.018
Neural 0.701± 0.023 0.734± 0.028 0.811± 0.016 0.625± 0.02 0.648± 0.019

Table 23: Comparison of different interaction non-linearities for early interaction models with
edge-level granularity across first five datasets, using mean average precision (MAP). Green and
yellow cells indicate the best and second best methods respectively for the corresponding dataset.
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Interaction Non-linearity↓ FR MM MR MSRC MCF

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Injective; Granularity - Edge
Dot Product 0.8± 0.018 0.777± 0.018 0.803± 0.015 0.415± 0.011 0.616± 0.018

Hinge 0.798± 0.019 0.785± 0.016 0.817± 0.014 0.421± 0.012 0.619± 0.019
Neural 0.749± 0.022 0.705± 0.019 0.766± 0.016 0.406± 0.012 0.595± 0.018
Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Injective; Granularity - Edge

Dot Product 0.786± 0.017 0.791± 0.016 0.827± 0.014 0.404± 0.011 0.614± 0.018
Hinge 0.815± 0.016 0.833± 0.014 0.851± 0.011 0.423± 0.012 0.599± 0.018
Neural 0.771± 0.019 0.717± 0.018 0.795± 0.016 0.401± 0.011 0.601± 0.018

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Injective; Granularity - Edge
Dot Product 0.817± 0.016 0.791± 0.016 0.819± 0.014 0.435± 0.012 0.63± 0.018

Hinge 0.854± 0.013 0.849± 0.012 0.864± 0.011 0.424± 0.012 0.64± 0.018
Neural 0.752± 0.02 0.773± 0.016 0.788± 0.015 0.433± 0.012 0.609± 0.02
Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Injective; Granularity - Edge

Dot Product 0.771± 0.018 0.81± 0.014 0.858± 0.012 0.425± 0.012 0.617± 0.018
Hinge 0.824± 0.016 0.821± 0.014 0.844± 0.013 0.426± 0.012 0.635± 0.019
Neural 0.762± 0.02 0.767± 0.018 0.802± 0.016 0.411± 0.012 0.593± 0.018

Fixed axes: Rel. Dist. - Agg-hinge; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.727± 0.019 0.706± 0.02 0.746± 0.019 0.421± 0.012 0.601± 0.018

Hinge 0.772± 0.018 0.799± 0.015 0.815± 0.014 0.423± 0.012 0.612± 0.019
Neural 0.704± 0.022 0.691± 0.02 0.722± 0.02 0.422± 0.011 0.589± 0.019

Fixed axes: Rel. Dist. - Agg-MLP; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.751± 0.019 0.723± 0.019 0.788± 0.016 0.416± 0.011 0.596± 0.02

Hinge 0.756± 0.019 0.787± 0.015 0.786± 0.015 0.416± 0.012 0.628± 0.019
Neural 0.74± 0.02 0.687± 0.021 0.732± 0.02 0.416± 0.011 0.603± 0.018

Fixed axes: Rel. Dist. - Set align.; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.799± 0.017 0.789± 0.016 0.81± 0.016 0.421± 0.012 0.609± 0.02

Hinge 0.773± 0.019 0.814± 0.015 0.795± 0.016 0.435± 0.012 0.626± 0.02
Neural 0.733± 0.02 0.75± 0.018 0.782± 0.017 0.421± 0.011 0.607± 0.018

Fixed axes: Rel. Dist. - Agg-NTN; Stage - Early; Structure - Non-injective; Granularity - Edge
Dot Product 0.754± 0.019 0.719± 0.021 0.777± 0.016 0.418± 0.012 0.614± 0.018

Hinge 0.791± 0.017 0.8± 0.016 0.833± 0.014 0.421± 0.011 0.608± 0.02
Neural 0.723± 0.022 0.704± 0.02 0.753± 0.018 0.419± 0.012 0.584± 0.02

Table 24: Comparison of different interaction non-linearities for early interaction models with
edge-level granularity across last five datasets, using mean average precision (MAP). Green and
yellow cells indicate the best and second best methods respectively for the corresponding dataset.
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G REAL-WORLD LARGE DATASETS

Recent work such as Greed (Ranjan et al., 2022) proposes a heuristic for adapting small-scale, fast
neural graph solvers to the problem of subgraph localization within large-scale graphs. Inspired by
this approach, we extended our experiments to include three large-scale graphs drawn from the SNAP
repository:

1. com-Amazon: Represents an Amazon product co-purchasing network, with nodes as prod-
ucts and edges denoting co-purchasing relationships. It consists of 334,863 nodes and
925,872 edges.

2. email-Enron: Represents an email communication network, with nodes as individuals and
edges as email exchanges. It consists of 36,692 nodes and 183,831 edges.

3. roadnet-CA: Represents the road network of California, with nodes as road intersections
and edges as connecting roads. It consists of 1,965,206 nodes and 2,766,607 edges.

To integrate these datasets into our study, we followed the same preprocessing and subgraph extraction
methodology outlined in the paper and ran all the designed experiments to further explore the design
space of the subgraph matching methods.

Rel. Dist. Structure Non-linearity Amazon Email Roadnet

Agg-hinge NA NA 0.616 0.723 0.556
Agg-MLP NA NA 0.544 0.631 0.616
Agg-NTN NA NA 0.656 0.778 0.499
Set align. Non-injective Dot Product 0.66 0.798 0.618
Set align. Non-injective Hinge 0.739 0.826 0.609
Set align. Non-injective Neural 0.752 0.805 0.585
Set align. Injective Dot Product 0.739 0.852 0.637
Set align. Injective Hinge 0.772 0.864 0.576
Set align. Injective Neural 0.771 0.852 0.605

Table 25: MAP for late interaction models with node-level granularity across three large and
diverse datasets.

Rel. Dist. Structure Non-linearity Amazon Email Roadnet

Agg-hinge NA NA 0.692 0.847 0.744
Agg-MLP NA NA 0.652 0.783 0.682
Agg-NTN NA NA 0.678 0.851 0.706
Set align. Non-injective Dot Product 0.737 0.834 0.621
Set align. Non-injective Hinge 0.776 0.865 0.741
Set align. Non-injective Neural 0.771 0.838 0.72
Set align. Injective Dot Product 0.749 0.852 0.668
Set align. Injective Hinge 0.8 0.849 0.708
Set align. Injective Neural 0.788 0.871 0.724

Table 26: MAP for late interaction models with edge-level granularity across three large and
diverse datasets.
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Rel. Dist. Structure Non-linearity Amazon Email Roadnet

Agg-MLP Injective Hinge 0.805 0.902 0.68
Agg-MLP Injective Dot Product 0.725 0.911 0.643
Agg-MLP Injective Neural 0.798 0.895 0.668
Agg-MLP Non-Injective Hinge 0.77 0.869 0.646
Agg-MLP Non-Injective Dot Product 0.72 0.817 0.648
Agg-MLP Non-Injective Neural 0.748 0.834 0.586
Agg-NTN Injective Hinge 0.798 0.906 0.699
Agg-NTN Injective Dot Product 0.789 0.902 0.669
Agg-NTN Injective Neural 0.787 0.92 0.732
Agg-NTN Non-Injective Hinge 0.768 0.855 0.668
Agg-NTN Non-Injective Dot Product 0.668 0.829 0.612
Agg-NTN Non-Injective Neural 0.695 0.839 0.645
Agg-hinge Injective Hinge 0.756 0.866 0.659
Agg-hinge Injective Dot Product 0.748 0.861 0.682
Agg-hinge Injective Neural 0.743 0.862 0.66
Agg-hinge Non-Injective Hinge 0.799 0.878 0.662
Agg-hinge Non-Injective Dot Product 0.657 0.764 0.61
Agg-hinge Non-Injective Neural 0.676 0.759 0.592
Set align Injective Hinge 0.849 0.935 0.745
Set align Injective Dot Product 0.816 0.905 0.706
Set align Injective Neural 0.823 0.905 0.723
Set align Non-Injective Hinge 0.768 0.86 0.652
Set align Non-Injective Dot Product 0.729 0.827 0.648
Set align Non-Injective Neural 0.747 0.842 0.648

Table 27: MAP for early interaction models with node-level granularity across three large and
diverse datasets.

Rel. Dist. Structure Non-linearity Amazon Email Roadnet

Agg-MLP Injective Hinge 0.84 0.926 0.773
Agg-MLP Injective Dot Product 0.799 0.934 0.76
Agg-MLP Injective Neural 0.72 0.91 0.74
Agg-MLP Non-Injective Hinge 0.801 0.886 0.671
Agg-MLP Non-Injective Dot Product 0.74 0.837 0.745
Agg-MLP Non-Injective Neural 0.703 0.869 0.613
Agg-NTN Injective Hinge 0.791 0.922 0.731
Agg-NTN Injective Dot Product 0.783 0.916 0.76
Agg-NTN Injective Neural 0.789 0.908 0.737
Agg-NTN Non-Injective Hinge 0.795 0.868 0.816
Agg-NTN Non-Injective Dot Product 0.765 0.874 0.77
Agg-NTN Non-Injective Neural 0.701 0.853 0.708
Agg-hinge Injective Hinge 0.827 0.939 0.801
Agg-hinge Injective Dot Product 0.77 0.915 0.805
Agg-hinge Injective Neural 0.753 0.911 0.768
Agg-hinge Non-Injective Hinge 0.797 0.874 0.73
Agg-hinge Non-Injective Dot Product 0.736 0.845 0.607
Agg-hinge Non-Injective Neural 0.69 0.842 0.698
Set align Injective Hinge 0.863 0.944 0.834
Set align Injective Dot Product 0.827 0.921 0.828
Set align Injective Neural 0.826 0.909 0.752
Set align Non-Injective Hinge 0.783 0.875 0.832
Set align Non-Injective Dot Product 0.802 0.872 0.802
Set align Non-Injective Neural 0.769 0.858 0.74

Table 28: MAP for early interaction models with edge-level granularity across three large and
diverse datasets.
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H TRANSFER ABILITY ACROSS DATASETS

In this section, we test our models in an out-of-distribution transfer setting by evaluating models on
datasets other than the one they were originally trained on. We first fix AIDS as the target dataset and
iterate over Mutag, FR and MOLT as source datasets.

Analysis of transfer abilities of Early Node Interaction models In Tables 29 and 30, we observe:
(1) The strongest transfer abilities are displayed by models trained on the FR dataset, followed by the
Mutag dataset, while models trained on the MOLT dataset show severe degradation in performance
compared to the baseline model trained on AIDS itself. This pattern can be explained by the extent of
relative dissimilarity between the source datasets and AIDS, which is maximum for MOLT (doubly-
sized graphs as AIDS), followed by Mutag (mean node/edge counts off by one/two) and finally FR.
(2) Hinge non-linearity is consistently the best performer even in the transfer setting, similar to the
default setting of training and testing on the same dataset.

Rel. Dist. Structure Non-linearity AIDS → AIDS Mutag → AIDS FR → AIDS MOLT → AIDS

Agg-hinge Non-injective Dot Product 0.609 0.330 0.520 0.253
Agg-hinge Non-injective Hinge 0.726 0.360 0.626 0.369
Agg-hinge Non-injective Neural 0.598 0.331 0.510 0.238

Agg-hinge Injective Dot Product 0.64 0.394 0.581 0.322
Agg-hinge Injective Hinge 0.662 0.422 0.595 0.346
Agg-hinge Injective Neural 0.614 0.403 0.598 0.322

Agg-MLP Non-injective Dot Product 0.63 0.323 0.569 0.363
Agg-MLP Non-injective Hinge 0.637 0.378 0.624 0.437
Agg-MLP Non-injective Neural 0.629 0.363 0.552 0.337

Agg-MLP Injective Dot Product 0.658 0.486 0.612 0.427
Agg-MLP Injective Hinge 0.683 0.457 0.611 0.455
Agg-MLP Injective Neural 0.629 0.464 0.625 0.414

Agg-NTN Non-injective Dot Product 0.669 0.450 0.557 0.407
Agg-NTN Non-injective Hinge 0.686 0.442 0.623 0.405
Agg-NTN Non-injective Neural 0.635 0.367 0.549 0.268

Agg-NTN Injective Dot Product 0.721 0.487 0.635 0.420
Agg-NTN Injective Hinge 0.743 0.478 0.626 0.356
Agg-NTN Injective Neural 0.667 0.499 0.617 0.395

Set align. Non-injective Dot Product 0.608 0.377 0.574 0.419
Set align. Non-injective Hinge 0.676 0.394 0.600 0.451
Set align. Non-injective Neural 0.593 0.450 0.599 0.363

Set align. Injective Dot Product 0.71 0.510 0.663 0.448
Set align. Injective Hinge 0.734 0.505 0.684 0.480
Set align. Injective Neural 0.69 0.507 0.641 0.494

Table 29: Comparison of different network configurations for early interaction models with node-
level granularity, using mean average precision (MAP). Green and yellow cells indicate the best
and second best transfer methods respectively for the corresponding network. Cells in boldface
represent the best non-linearity individually for each transfer combination.
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Rel. Dist. Structure Non-linearity AIDS → AIDS Mutag → AIDS FR → AIDS MOLT → AIDS

Agg-hinge Non-injective Dot Product 0.7 0.400 0.560 0.290
Agg-hinge Non-injective Hinge 0.763 0.445 0.640 0.447
Agg-hinge Non-injective Neural 0.677 0.414 0.541 0.219

Agg-hinge Injective Dot Product 0.755 0.454 0.657 0.305
Agg-hinge Injective Hinge 0.758 0.477 0.664 0.274
Agg-hinge Injective Neural 0.68 0.422 0.578 0.278

Agg-MLP Non-injective Dot Product 0.677 0.451 0.589 0.341
Agg-MLP Non-injective Hinge 0.748 0.423 0.619 0.337
Agg-MLP Non-injective Neural 0.662 0.396 0.563 0.351
Agg-MLP Injective Dot Product 0.758 0.454 0.662 0.373
Agg-MLP Injective Hinge 0.789 0.491 0.718 0.425
Agg-MLP Injective Neural 0.703 0.419 0.620 0.312

Agg-NTN Non-injective Dot Product 0.71 0.444 0.603 0.399
Agg-NTN Non-injective Hinge 0.79 0.489 0.658 0.241
Agg-NTN Non-injective Neural 0.701 0.419 0.572 0.361

Agg-NTN Injective Dot Product 0.74 0.466 0.623 0.367
Agg-NTN Injective Hinge 0.76 0.518 0.714 0.431
Agg-NTN Injective Neural 0.689 0.409 0.599 0.320

Set align. Non-injective Dot Product 0.715 0.474 0.668 0.374
Set align. Non-injective Hinge 0.783 0.483 0.687 0.497
Set align. Non-injective Neural 0.708 0.429 0.594 0.412

Set align. Injective Dot Product 0.798 0.505 0.695 0.447
Set align. Injective Hinge 0.817 0.599 0.773 0.538
Set align. Injective Neural 0.725 0.468 0.599 0.428

Table 30: Comparison of different network configurations for early interaction models with edge-level
granularity, using mean average precision (MAP). Green and yellow cells indicate the best and
second best transfer methods respectively for the corresponding network. Cells in boldface represent
the best non-linearity individually for each transfer combination.
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I VARIATION IN PERFORMANCE WITH INTRINSIC DATASET CHARACTERISTICS

In this section, we study how different characteristics of the dataset affect the performance of our
models. In particular, we choose a metric (like edge count in a graph), split the corpus set into 4
equal-sized buckets based on this metric, and compute the MAP score over all test query graphs on
each of these splits independently, using the model trained on the entire corpus. Three metrics are
considered - (1) Node count (representative of graph size) (2) Edge count (representative of graph
size) (3) Standard deviation of degrees of all nodes in the graph (representative of the regularity of
graphs). We tackle each of these metrics individually in the subsections below. Subset 0 represents
the split of the dataset with the lowest value for that metric, while subset 3 is the other extreme, with
the highest values for the metric. For instance, subset 0 for the Standard deviation of node degrees
metric represents the set of graphs with the least variation in node degrees i.e. the most regularity.
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I.1 EDGE COUNT

In Tables 31 and 32, we observe: (1) With non-injective interaction structure, we observe that graphs
with more edges see better performance on average. (2) Under the injective interaction structure, the
difference in scores across subsets is more subtle, which indicates that injective mapping might not
be affected significantly by edge count.

Rel. Dist. Structure Non-linearity AIDS Subset 0 Subset 1 Subset 2 Subset 3

Agg-hinge Non-injective Dot Product 0.609 0.555 0.574 0.617 0.665
Agg-hinge Non-injective Hinge 0.726 0.763 0.703 0.738 0.739
Agg-hinge Non-injective Neural 0.598 0.519 0.547 0.606 0.659

Agg-hinge Injective Dot Product 0.64 0.655 0.627 0.658 0.672
Agg-hinge Injective Hinge 0.662 0.663 0.643 0.664 0.693
Agg-hinge Injective Neural 0.614 0.535 0.566 0.623 0.673

Agg-MLP Non-injective Dot Product 0.63 0.562 0.580 0.641 0.686
Agg-MLP Non-injective Hinge 0.637 0.624 0.613 0.651 0.671
Agg-MLP Non-injective Neural 0.629 0.564 0.584 0.646 0.674

Agg-MLP Injective Dot Product 0.658 0.687 0.650 0.670 0.677
Agg-MLP Injective Hinge 0.683 0.722 0.685 0.688 0.698
Agg-MLP Injective Neural 0.629 0.612 0.599 0.642 0.667

Agg-NTN Non-injective Dot Product 0.669 0.613 0.630 0.672 0.715
Agg-NTN Non-injective Hinge 0.686 0.681 0.641 0.690 0.726
Agg-NTN Non-injective Neural 0.635 0.572 0.579 0.628 0.698

Agg-NTN Injective Dot Product 0.721 0.736 0.697 0.728 0.745
Agg-NTN Injective Hinge 0.743 0.773 0.736 0.756 0.750
Agg-NTN Injective Neural 0.667 0.643 0.619 0.675 0.713

Set align. Non-injective Dot Product 0.608 0.574 0.592 0.614 0.650
Set align. Non-injective Hinge 0.676 0.706 0.671 0.693 0.703
Set align. Non-injective Neural 0.593 0.566 0.566 0.616 0.637

Set align. Injective Dot Product 0.71 0.767 0.698 0.713 0.721
Set align. Injective Hinge 0.734 0.821 0.735 0.740 0.724
Set align. Injective Neural 0.69 0.735 0.680 0.705 0.704

Table 31: Comparison of different network configurations for early interaction models with node-
level granularity across splits of the AIDS dataset with increasing edge count, using mean average
precision (MAP). Green and yellow cells indicate the subsets where the model trained on the full
dataset performs best and second best respectively.

Rel. Dist. Structure Non-linearity AIDS Subset 0 Subset 1 Subset 2 Subset 3

Agg-hinge Non-injective Dot Product 0.7 0.667 0.662 0.708 0.742
Agg-hinge Non-injective Hinge 0.763 0.784 0.754 0.773 0.774
Agg-hinge Non-injective Neural 0.677 0.642 0.617 0.693 0.723

Agg-hinge Injective Dot Product 0.755 0.763 0.742 0.770 0.765
Agg-hinge Injective Hinge 0.758 0.781 0.742 0.769 0.775
Agg-hinge Injective Neural 0.68 0.628 0.645 0.689 0.724

Agg-MLP Non-injective Dot Product 0.677 0.619 0.617 0.670 0.721
Agg-MLP Non-injective Hinge 0.748 0.767 0.731 0.751 0.770
Agg-MLP Non-injective Neural 0.662 0.592 0.619 0.665 0.715

Agg-MLP Injective Dot Product 0.758 0.778 0.737 0.762 0.773
Agg-MLP Injective Hinge 0.789 0.837 0.786 0.797 0.784
Agg-MLP Injective Neural 0.703 0.685 0.676 0.710 0.736

Agg-NTN Non-injective Dot Product 0.71 0.713 0.678 0.714 0.741
Agg-NTN Non-injective Hinge 0.79 0.842 0.786 0.794 0.794
Agg-NTN Non-injective Neural 0.701 0.663 0.671 0.711 0.744

Agg-NTN Injective Dot Product 0.74 0.718 0.725 0.749 0.762
Agg-NTN Injective Hinge 0.76 0.785 0.747 0.759 0.781
Agg-NTN Injective Neural 0.689 0.669 0.642 0.695 0.731

Set align. Non-injective Dot Product 0.715 0.656 0.664 0.695 0.755
Set align. Non-injective Hinge 0.783 0.805 0.750 0.790 0.786
Set align. Non-injective Neural 0.708 0.661 0.670 0.709 0.749

Set align. Injective Dot Product 0.798 0.829 0.782 0.796 0.805
Set align. Injective Hinge 0.817 0.879 0.812 0.827 0.801
Set align. Injective Neural 0.725 0.716 0.677 0.716 0.749

Table 32: Comparison of different network configurations for early interaction models with edge-
level granularity across splits of the AIDS dataset with increasing edge count, using mean average
precision (MAP). Green and yellow cells indicate the subsets where the model trained on the full
dataset performs best and second best respectively.
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I.2 NODE COUNT

In Tables 33 and 34, we observe: (1) Across splits with increasing node count, performance consis-
tently improves for all network configurations. This can be explained by the presence of padding
nodes in the injective / non-injective maps

Rel. Dist. Structure Non-linearity AIDS Subset 0 Subset 1 Subset 2 Subset 3

Agg-hinge Non-injective Dot Product 0.609 0.531 0.586 0.623 0.670
Agg-hinge Non-injective Hinge 0.726 0.687 0.714 0.724 0.758
Agg-hinge Non-injective Neural 0.598 0.511 0.577 0.603 0.660

Agg-hinge Injective Dot Product 0.64 0.594 0.629 0.652 0.687
Agg-hinge Injective Hinge 0.662 0.596 0.660 0.671 0.701
Agg-hinge Injective Neural 0.614 0.526 0.580 0.638 0.674

Agg-MLP Non-injective Dot Product 0.63 0.543 0.616 0.637 0.691
Agg-MLP Non-injective Hinge 0.637 0.567 0.620 0.653 0.685
Agg-MLP Non-injective Neural 0.629 0.540 0.603 0.634 0.689

Agg-MLP Injective Dot Product 0.658 0.614 0.658 0.674 0.693
Agg-MLP Injective Hinge 0.683 0.660 0.688 0.685 0.711
Agg-MLP Injective Neural 0.629 0.566 0.607 0.634 0.683

Agg-NTN Non-injective Dot Product 0.669 0.579 0.643 0.683 0.721
Agg-NTN Non-injective Hinge 0.686 0.614 0.643 0.692 0.745
Agg-NTN Non-injective Neural 0.635 0.543 0.603 0.642 0.707

Agg-NTN Injective Dot Product 0.721 0.665 0.714 0.726 0.757
Agg-NTN Injective Hinge 0.743 0.684 0.749 0.757 0.767
Agg-NTN Injective Neural 0.667 0.593 0.639 0.675 0.721

Set align. Non-injective Dot Product 0.608 0.533 0.594 0.623 0.662
Set align. Non-injective Hinge 0.676 0.633 0.672 0.697 0.727
Set align. Non-injective Neural 0.593 0.536 0.576 0.608 0.644

Set align. Injective Dot Product 0.71 0.678 0.704 0.709 0.744
Set align. Injective Hinge 0.734 0.723 0.746 0.732 0.747
Set align. Injective Neural 0.69 0.652 0.676 0.703 0.723

Table 33: Comparison of different network configurations for early interaction models with node-
level granularity across splits of the AIDS dataset with increasing node count, using mean average
precision (MAP). Green and yellow cells indicate the subsets where the model trained on the full
dataset performs best and second best respectively.

Rel. Dist. Structure Non-linearity AIDS Subset 0 Subset 1 Subset 2 Subset 3

Agg-hinge Non-injective Dot Product 0.7 0.633 0.666 0.706 0.751
Agg-hinge Non-injective Hinge 0.763 0.736 0.759 0.771 0.790
Agg-hinge Non-injective Neural 0.677 0.604 0.643 0.686 0.730

Agg-hinge Injective Dot Product 0.755 0.706 0.751 0.758 0.784
Agg-hinge Injective Hinge 0.758 0.716 0.753 0.765 0.791
Agg-hinge Injective Neural 0.68 0.602 0.660 0.688 0.731

Agg-MLP Non-injective Dot Product 0.677 0.584 0.649 0.683 0.732
Agg-MLP Non-injective Hinge 0.748 0.699 0.736 0.759 0.786
Agg-MLP Non-injective Neural 0.662 0.565 0.636 0.676 0.721

Agg-MLP Injective Dot Product 0.758 0.695 0.742 0.765 0.793
Agg-MLP Injective Hinge 0.789 0.754 0.791 0.790 0.813
Agg-MLP Injective Neural 0.703 0.635 0.687 0.714 0.742

Agg-NTN Non-injective Dot Product 0.71 0.660 0.696 0.704 0.752
Agg-NTN Non-injective Hinge 0.79 0.765 0.783 0.796 0.814
Agg-NTN Non-injective Neural 0.701 0.630 0.677 0.704 0.755

Agg-NTN Injective Dot Product 0.74 0.676 0.726 0.744 0.777
Agg-NTN Injective Hinge 0.76 0.715 0.750 0.762 0.794
Agg-NTN Injective Neural 0.689 0.615 0.666 0.694 0.741

Set align. Non-injective Dot Product 0.715 0.612 0.698 0.710 0.767
Set align. Non-injective Hinge 0.783 0.725 0.764 0.786 0.816
Set align. Non-injective Neural 0.708 0.615 0.680 0.722 0.755

Set align. Injective Dot Product 0.798 0.760 0.781 0.807 0.820
Set align. Injective Hinge 0.817 0.798 0.813 0.822 0.830
Set align. Injective Neural 0.725 0.653 0.696 0.731 0.756

Table 34: Comparison of different network configurations for early interaction models with edge-level
granularity across splits of the AIDS dataset with increasing node count, using mean average
precision (MAP). Green and yellow cells indicate the subsets where the model trained on the full
dataset performs best and second best respectively.
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