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1 SEMANTICS TRANSLATION

Figure 1: The comparison of object positions before and after
the caption revision. Taking Stable Diffusion as an example,
where the accepted character limit is 77, the distribution of
key semantics in the revised caption generally satisfies the
character limits.

1.1 Instruction of Caption Revision
This section provides a detailed instruction for caption revision.
Since ChatGPT cannot perceive visual signals, we provide it with
the manual annotation results to aid its understanding of the draft
caption. Specifically, we expect the model to extract key elements,
including scenes, existent objects, their attributes, and other crucial
semantic information. Moreover, to mitigate the impact of redun-
dant or speculative descriptions in the draft captions on image
generation, we aim for the corrected captions to omit unimportant
information like emotional expressions or irrelevant associations.
Ultimately, our goal is to generate a concise and easily understand-
able English image caption using simple vocabulary, not exceeding
80 words. As shown in Figure 3, the revised caption successfully
captures the attribute semantics of objects in the image, such as
’three people walking.’ Compared to the original ’some individuals
walking,’ the former better aligns with the visual semantics and can
accurately prompt the generation model. Furthermore, the revised
caption removes redundant information, such as ’indicating that
they might be enjoying a recreational activity,’ which provides no
additional benefit to image synthesis. We also compare the distribu-
tion of key objects in caption before and after revision, as shown in
Figure 1, the length of the revised caption is generally in line with
the word limit set by the generative model, ensuring that all key
semantic information can effectively prompt the generative model.

1.2 Segmentation Tools in Image Filtering
To ensure authentic semantics in synthetic images, we mainly focus
on avoiding (i) the depiction of objects not existing in natural images
or (ii) introducing objects that contradict human cognition. Thus
we initially extract objects using automated segmentation tools [5]

Figure 2: The segmentation results on the candidate set of
synthetic images. The annotation results of corresponding
natural image is: "sky, tree, giraffe and grass". The red box
indicates the final selected synthetic image.

(SEEM) and compare the consistency of the extracted objects on
natural and synthetic images. SEEM is a promptable and interactive
model for segmenting everything everywhere all at once in an
image. Specifically, we highlight its capability in open-vocabulary
segmentation. Figure 2 demonstrates a case of segmentation results
on the candidate set of synthetic images. We then eliminate images
displaying an excess or absence of objects in their annotation results
when compared to the corresponding natural image.

1.3 Similarity Calculation in Image Filtering
Metrics on Perceptual Similarity: We use DreamSim[2] to mea-
sure the perceptual similarity between the synthetic and its corre-
sponding natural image. We denote a distance between two images
as 𝐷 (·, ·; 𝑓𝜃 ), where 𝑓𝜃 is a feature extractor. We consider the en-
semble of three transformer-based backbones: DINO[1], CLIP[4]
and MAE[3]. Following the setting in DreamSim, the distance
𝐷 (𝑥, 𝑥 ; 𝑓𝜃 ) = 1 − cos(𝑓𝜃 (𝑥), 𝑓𝜃 (𝑥)) is taken as the cosine distance
between the [CLS] tokens taken from the last layer for DINO and
MAE, and the embedding vector for CLIP.

Metrics on Semantic Faithfulness: With the help of manual
annotations, we construct a batch of text descriptions for existing
objects. Specifically, we employ the common prompt template in
CLIP: "There is a photo of {object}". Subsequently, we utilize the
CLIP model to obtain the vision embedding 𝐸𝑣 and text embeddings
{𝐸𝑡1 , 𝐸𝑡2 , · · · , 𝐸𝑡𝑛 }, where𝑛 denotes the number of text descriptions.
We then calculate the average cosine similarity between each text
description and the given synthetic image using the CLIP model:
𝑆𝐶𝐿𝐼𝑃 = 1/𝑛∑𝑛

𝑖=1 𝑐𝑜𝑠𝑖𝑛𝑒 < 𝐸𝑣, 𝐸𝑡𝑖 >.
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