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A APPENDIX

A.1 PROOFS

Restatement of Proposition 5.1

Proposition A.1. Given the objective in Eq. 8, if D
1 = P (X,S) (infinite sample regime) and ✓0 in Algorithm 1 is the

weakest admissible regularization, then ⌧⇤ = ⌧✓0 , which also minimizes pinball loss over all admissible regularizations
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Proof. We first show that in the infinite sample regime the MCR is zero 8✓ 2 ⇥, making all ✓ equivalent according to the
MCR criteria. Then we show that Algorithm 1 would choose ✓⇤ = ✓0 and since ✓0 is the lowest regularization it achieves the
smallest expected pinball loss.

Given access to the real distribution D1 = P (X,S) for any ✓ 2 ⇥ we get a finite set partition G⌧✓ such that the 1 � ↵
quantile estimate q⌧✓ (X) is the exact group conditional quantile of the non-conformity score distribution for the group that
contains the instance X .

q⌧✓ (X) = F�1
S|G=g⌧✓ (X)(1� ↵) (14)

where g⌧✓ (X) 2 G⌧✓ , 8X 2 X . Then, in this asymptotic regime the group conditional miscoverage (Definition 4.1)
MC↵(q⌧✓ , g⌧✓ ; gj) = 0 8g 2 G⌧✓ , 8g 2 G⌧✓ and 8✓ 2 ⇥. Then MCR↵ (⌧✓) as defined in Eq. 7 is 0 8✓ 2 ⇥.

Since Algorithm 1 terminates on the first ✓ that achieves the minimum MCR then ✓⇤ = ✓0. Since ✓0 is the weakest regulariza-
tion, and we assume infinite sample regime to learn ⌧✓8✓ 2 ⇥ then ED

⇥
`1�↵(q⌧⇤(X), S))

⇤
 ED

⇥
`1�↵(q⌧✓ (X), S))

⇤
, 8✓ 2

⇥ such that ✓ � ✓0.

A.2 ADDITIONAL EXPERIMENTS

Figure 3b shows the decision trees that were obtain for the different datasets. We observe that the discovered regions have
different prediction interval widths indicating that the model’s prediction uncertainty is significantly different. Figure 4
shows the scatter and joint distribution between the prediction interval widths and coverage of the discovered groups. It
extends Figure 2 in the main manuscript including all datasets and the groups discovered by the RF-G approach proposed
by Amoukou and Brunel [2023]. Table 2 shows the same comparison presented in Table 1 but for a LASSO base model
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Figure 3: Example of decision trees identified for each regression dataset. (3a) In the Housing dataset groups are defined
based on the features corresponding to average number of rooms per dwelling (RM) and weighted distances to five Boston
employment centers (DIS). (3b) In the Concrete dataset the groups are defined based on the Cement and Fine Aggregate
components (kg in a m3 mixture). (3c) the groups in the Energy dataset are defined based on Glazing Area Distribution (X8),
Glazing Area (X7) and Wall Area (X3). (3d) In the Power dataset groups are defined based on Ambient Temperature (AT),
Exhaust Vacuum (V) and Relative Humidity (RH). (3e) In the kin8nm dataset the groups are defined by the measurements
on sensors from links 3, 5 and 6 from the robot arm. (3f) In the protein dataset the groups are defined by the features
corresponding to fractional area of exposed non polar residue (F3) and fractional area of exposed non polar part of residue
(F4).
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Figure 4: Scatter and distribution plot of the prediction interval widths (x-axis) versus coverage (y-axis) of the groups
discovered by the proposed MCR_DTREE, PB_DTREE and RF-G methods across 6 datasets. Here we plot all the groups
obtained across 5-Fold realizations. The size of the groups points represents the group size (number of samples). The
target coverage is 0.9, we observe that MCR_DTREE tends to identify a smaller number of groups of varying sizes, with
group-conditional coverages concentrated around the 0.9 objective. Moreover, the identified groups show diversity in the
range of interval widths. PB_DTREE detects a significant larger number of (smaller) groups, with a larger variance in terms
of group-conditional coverage.
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MCR coverage num
model average max group min group groups

Housing: nsamples = 506, nfeatures = 13 | LASSO-Regressor R2 = 0.69 ± 0.04

LCP-RF-G 2.71±0.77 0.8±0.06 0.91±0.08 0.75±0.07 2.6±0.55
RF-G 0.42±0.38 0.91±0.03 0.96±0.03 0.81±0.15 3.2±0.45
PB-KMEANS 1.47±0.49 0.86±0.03 0.98±0.03 0.44±0.43 14.2±15.02
MCR-KMEANS 1.35±0.74 0.88±0.04 0.97±0.03 0.69±0.38 7.4±11.52
PB_DTREE 0.32±0.21 0.88±0.03 0.98±0.05 0.83±0.05 4.0±1.87
MCR_DTREE 0.25±0.39 0.89±0.04 0.95±0.04 0.84±0.07 3.6±2.07

Concrete: nsamples = 1030, nfeatures = 8 | LASSO-Regressor R2 = 0.60 ± 0.05

LCP-RF-G 1.37±1.12 0.83±0.02 0.96±0.04 0.7±0.05 5.4±0.55
RF-G 0.29 ±0.15 0.91±0.02 0.98±0.03 0.8±0.08 5.0±0.71
PB-KMEANS 0.89±0.48 0.9±0.05 1.0±0.0 0.26±0.37 37.2±16.93
MCR-KMEANS 0.43±0.43 0.92±0.02 0.97±0.03 0.7±0.3 15.8±18.98
PB_DTREE 0.25±0.14 0.9±0.03 1.0±0.0 0.8±0.07 7.0±2.24
MCR_DTREE 0.15±0.09 0.9±0.03 1.0±0.0 0.84±0.04 6.8±2.39

Energy: nsamples = 768, nfeatures = 8 | LASSO-Regressor R2 = 0.91 ± 0.005

LCP-RF-G 0.38±0.19 0.88±0.05 0.98±0.03 0.8±0.08 4.8±0.45
RF-G 0.12±0.12 0.94±0.02 1.0±0.0 0.87±0.06 5.0±0.71
PB-KMEANS 1.07±0.77 0.87±0.04 0.99±0.02 0.18±0.4 38.2±19.15
MCR-KMEANS 0.32±0.41 0.94±0.03 0.98±0.04 0.83±0.13 13.0±11.92
PB_DTREE 0.12±0.16 0.94±0.02 0.99±0.03 0.84±0.11 9.0±3.46
MCR_DTREE 0.05±0.09 0.94±0.02 0.98±0.02 0.89±0.03 6.0±3.24

Power: nsamples = 9568, nfeatures = 4 | LASSO-Regressor R2 = 0.93 ± 0.003

LCP-RF-G 2.04±1.26 0.82±0.05 0.86±0.08 0.78±0.05 6.0±2.24
RF-G 0.83±0.57 0.9±0.0 0.93±0.02 0.87±0.01 5.2±0.84
PB-KMEANS 0.73±0.27 0.91±0.01 0.99±0.02 0.78±0.05 37.2±5.22
MCR-KMEANS 0.46±0.15 0.9±0.0 0.93±0.03 0.88±0.03 6.0±7.28
PB_DTREE 0.08±0.05 0.9±0.01 0.94±0.03 0.87±0.02 6.4±4.16
MCR_DTREE 0.06±0.05 0.9±0.0 0.94±0.01 0.88±0.02 7.4±3.71

Protein: : nsamples = 45730, nfeatures = 9 | LASSO-Regressor R2 = 0.28 ± 0.01

LCP-RF-G 0.89±0.56 0.87±0.03 0.92±0.02 0.75±0.04 5.8±1.6
RF-G 0.44±0.37 0.9±0.0 0.95±0.05 0.87±0.02 6.00±1.59
PB-KMEANS 0.71±0.75 0.9±0.0 1.0±0.0 0.65±0.21 42.6±7.86
MCR-KMEANS 0.52±0.21 0.9±0.0 0.96±0.05 0.76±0.24 16.2±12.91
PB_DTREE 0.44±0.37 0.9±0.0 1.0±0.0 0.83±0.02 15.6±0.89
MCR_DTREE 0.2±0.08 0.9±0.0 0.93±0.03 0.89±0.01 5.6±2.19

kin8mn: : nsamples = 8192, nfeatures = 8 | LASSO-Regressor R2 = 0.40 ± 0.007

LCP-RF-G 1.68±0.29 0.79±0.01 0.81±0.01 0.77±0.01 3.0±0.0
RF-G 0.21±0.04 0.9±0.01 0.91±0.01 0.88±0.0 3.2±0.45
PB-KMEANS 0.67±0.16 0.92±0.01 0.99±0.01 0.76±0.04 39.4±14.06
MCR-KMEANS 0.44±0.37 0.9±0.01 0.93±0.04 0.87±0.05 11.6±21.47
PB_DTREE 0.41±0.36 0.89±0.01 0.98±0.04 0.82±0.07 14.2±3.03
MCR_DTREE 0.24±0.18 0.9±0.01 0.94±0.04 0.88±0.02 6.4±5.37

Table 2: Comparison between the group discovery partition methods. We show MCR, marginal, minimum, and maximum
coverage group coverage on the identified partition. We also report the number of groups per approach. Standard deviations
are computed across 5 data splits. The proposed MCR_DTREE is consistently better in terms of MCR, with values consistently
below 1, indicating that the discovered groups improve worst-group under-coverage w.r.t. to single threshold SCP. Every
dataset uses a LASSO regressor as the base model. We highlight the lowest MCR and the smallest average coverage above the
objective (0.9). For methods that achieved the marginal coverage objective we highlight the max and min group coverage
closest to the 0.9 objective.
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