
A Checklist

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Abstract claims an RL algorithm for learning a Whittle
index policy. See section 5 for results.

(b) Did you describe the limitations of your work? [Yes] See section 5.5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See section 3
and 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See appendix B
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See appendices
E, F, G for experiments’ details, and submitted code for implementation.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See appendices E,F, G for details.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Confidence intervals were plotted for 50 independent
runs. See section 5 for results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix D for computing
resources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See code for licensing agreement.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

B Proof of Deadline Scheduling’s Strong Indexability

Theorem 2. The restless bandit for the deadline scheduling problem is strongly indexable.

Proof. Fix a state s = (D,B), the function Ds(λ) := (Qλ,act(s)−Qλ,pass(s)) is a continuous and
piece-wise linear function since the number of states is finite. Thus, it is sufficient to prove that Ds(λ)
is strictly decreasing at all points of λ where Ds(λ) is differentiable. Let Lλ,act(s) be the sequence
of actions taken by a policy that activates the arm at round 1, and then uses the optimal policy starting

13

from round 2. Let Lλ,pass(s) be the sequence of actions taken by a policy that does not activate the
arm at round 1, and then uses the optimal policy starting from round 2. We prove this theorem by
comparing Lλ,act(s) and Lλ,pass(s) on every sample path. We consider the following two scenarios:

In the first scenario, Lλ,act(s) and Lλ,pass(s) are the same starting from round 2. Let b be the
remaining job size when the current deadline expires under Lλ,act(s). Since Lλ,pass(s) is the same
as Lλ,act(s) starting from round 2, its remaining job size when the current deadline expires is b+ 1.
Thus, Ds(λ) = 1 − c − λ + βD−1(F (b + 1) − F (b)), which is strictly decreasing in λ whenever
Ds(λ) is differentiable.

In the second scenario, Lλ,act(s) and Lλ,pass(s) are not the same after round 2. Let τ be the first
time after round 2 that they are different. Since they are the same between round 2 and round τ , the
remaining job size under Lλ,act(s) is no larger than that under Lλ,pass(s). Moreover, by [34], the
Whittle index is increasing in job size. Hence, we can conclude that, on round τ , Lλ,pass(s) activates
the arm and Lλ,act(s) does not activate the arm. After round τ , Lλ,act(s) and Lλ,pass(s) are in the
same state and will choose the same actions for all following rounds. Thus, the two sequences only
see different rewards on round 1 and round τ , and we have Ds(λ) = (1− c− λ)(1− βτ−1), which
is strictly decreasing in λ whenever Ds(λ) is differentiable.

Combining the two scenarios, the proof is complete.

C Additional NeurWIN Results For Neural Networks With Different
Number of Parameters

In this section, we show the total discounted rewards’ performance for NeurWIN when trained on
different-sized neural networks. We compare the performance against each case’s proposed baseline
in order to observe the convergence rate of NeurWIN. We use the same training parameters as
in section 5, and plot the results for (4, 1), (10, 1), (100, 25). Fig. 7 shows the performance for a
larger neural network per arm with {48, 64} neurons in 2 hidden layers. Fig. 8 provides results for
a smaller neural network per arm with {8, 14} neurons in 2 hidden layers. For the deadline and
wireless scheduling cases, the larger neural network has 3345 parameters per arm compared with 625
parameters for each network from section 5, and 165 parameters for the smaller neural network. A
recovering bandits’ network has a larger network parameters’ count of 3297 parameters compared
with 609 parameters for results in section 5, and 157 parameters for the smaller neural network.

It can be observed that a neural network with more parameters is able to converge to the baseline
with fewer episodes compared with the smaller and original neural networks. In the case of dead-
line scheduling, the smaller network requires 1380 episodes in (4, 1) to reach the Whittle index
performance. The larger network, in contrast, reaches the Whittle index performance in terms of
total discounted rewards with considerably fewer episodes at 180 episodes. The original network
used in section 5 converges in approximately 600 episodes. The same observation is true for the
wireless scheduling case, with the smaller network requiring 10,000 episodes for (4, 1), and fails to
outperform the baseline for (10, 1).The larger network converges in fewer episodes compared to the
smaller and original networks.

More interestingly, the smaller neural networks fail to outperform the baselines in the recovering
bandits case for (4, 1) and (10, 1), which suggests that the selected neural network architecture is not
rich-enough for learning the Whittle index.

14

0 500 1000 1500 2000−3
50

−2
50

−1
50

−5
0

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 500 1000 1500 2000
Training Episodes

−9
00

−7
50

−6
00

−4
50

N = 10 M = 1

0 500 1000 1500 2000

−7
70

0
−5

70
0

−3
70

0
−1

75
0

N = 100 M = 25

NeurWIN
Deadline Index

0 10000 20000 3000050
0

54
0

56
0

60
0

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 10000 20000 30000
Training Episodes

65
0

70
0

75
0

75
0

N = 10 M = 1

0 10000 20000 30000

12
00

0
12

90
0

13
90

0
14

80
0 N = 100 M = 25

NeurWIN
Oracle, d = 20

0 10000 20000 30000−3
40

−2
95

−2
50

−2
05

−1
60

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 10000 20000 30000
Training Episodes−9

80
−8

20
−6

60
−5

00

N = 10 M = 1

0 10000 20000 30000

−8
58

0
−6

78
0

−4
92

0
−3

12
0 N = 100 M = 25

NeurWIN
Size Aware Index

Figure 7: NeurWIN performance results when training a larger network with 3345 parameters per
arm for the deadline and wireless scheduling cases, and 3297 parameters for the recovering bandits’
case.

D Training and Testing Environments

For all cases, we implement NeurWIN algorithm using PyTorch, and train the agent on a single arm
modelled after OpenAI’s Gym API.

All algorithms were trained and tested on a Windows 10 build 19043.985 machine with an AMD
Ryzen 3950X CPU, and 64 GB 3600 MHz RAM.

E Deadline Scheduling Training and Inference Details

E.1 Formulated Restless Bandit for the Deadline Scheduling Case

The state s[t], action a[t], reward r[t], and next state s[t+ 1] of one arm are listed below:

State s[t]: The state is a vector (D,B). B denotes the job size (i.e. amount of electricity needed for
an electric vehicle), and D is the job’s time until the hard drop deadline d is reached (i.e. time until
an electric vehicle leaves).

15

0 500 1000 1500 2000−3
50

−2
50

−1
50

−5
0

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 500 1000 1500 2000
Training Episodes−9

50
−8

00
−6

00
−4

50

N = 10 M = 1

0 500 1000 1500 2000

−8
30

0
−6

10
0

−3
90

0
−1

70
0 N = 100 M = 25

NeurWIN
Deadline Index

0 10000 20000 3000050
0

54
0

56
0

60
0

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 10000 20000 30000
Training Episodes

65
0

70
0

70
0

75
0

N = 10 M = 1

0 10000 20000 30000

12
00

0
12

90
0

13
90

0
14

80
0 N = 100 M = 25

NeurWIN
Oracle, d = 20

0 10000 20000 30000−2
75

−2
50

−2
20

−1
95

−1
65

T
ot

al
 D

is
co

un
te

d
R

ew
ar

ds

N = 4 M = 1

0 10000 20000 30000
Training Episodes−8

00
−7

00
−6

20
−5

20

N = 10 M = 1

0 10000 20000 30000

−6
00

0
−5

10
0

−4
20

0
−3

30
0

N = 100 M = 25

NeurWIN
Size Aware Index

Figure 8: NeurWIN performance results for a smaller network size with 165 parameters per arm for
the deadline and wireless scheduling cases, and 157 parameters for the recovering bandits’ case.

Action a[t]: The agent can either activate the arm a[t] = 1, or leave it passive a[t] = 0. The next
state changes based on two different transition kernels depending on the selected action. The reward
is also dependent on the action at time t.

Reward r[t]: The agent, at time t, receives a reward r[t] from the arm,

r[t] =


(1− c)a[t] if B[t] > 0, D[t] > 1,

(1− c)a[t]− F (B[t]− a[t])if B[t] > 0, D[t] = 1,

0 otherwise.
(2)

In the equation above, c is a constant processing cost incurred when activating the arm, F (B[t]−a[t])
is the penalty function for failing to complete the job before D = 1. The penalty function was chosen
to be F (B[t]− a[t]) = 0.2(B[t]− a[t])2.

Next state s[t+ 1]: The next state s[t+ 1] is given by

s[t+ 1] =

{
(D[t]− 1, B[t]− a[t]) if D[t] > 1,

(D,B) w.p. Q(D,B) if D[t] ≤ 1,
(3)

where Q(D,B) is the arrival probability of a new job (i.e. a new electric vehicle arriving at a
charging station) if the position is empty. For training and inference, we set Q(0, 0) = 0.3 and
Q(D,B) = 0.7/119 for all D > 0, B > 0.

16

E.2 Training Setting

NeurWIN training is made for 2000 episodes on the deadline scheduling case. We save the trained
model parameters at an interval of 10 episodes for inferring the control policy after training. The
training produces 200 different set of parameters that output the estimated index given their respective
training limit. The neural network had 625 trainable parameters given as layers {2, 16, 32, 1}, where
the input layer matches the state size.

For the deadline scheduling training, we set the sigmoid value m = 1, episode’s time horizon
T = 300 timesteps, mini-batch size to 5 episodes, and the discount factor β = 0.99. The processing
cost is set to c = 0.5. Training procedure follows section 4.2 from the main text. The arm randomly
picks an initial state s[t = 0] = (D,B), with a maximum D̄ = 12, and maximum B̄ = 9. The initial
states are the same across episodes in one mini-batch for return comparison. The sequence of job
arrivals in an episode’s horizon is also fixed across a mini-batch. This way, the mini-batch returns are
compared for one initial state, and used in tuning the estimated index value fθ(·).

At the agent side, NeurWIN receives the initial state s[t = 0], sets the activation cost from a random
state λ = fθ(s0). Training follows as described in NeurWIN’s pseudo code.

For the MDP algorithms (REINFORCE, AQL, WOLP-DDPG), the training hyperparameters are
the same as NeurWIN: Initial learning rate is L[t = 0] = 0.001, episode time horizon T = 300
timesteps, discount factor β = 0.99. Neural networks had two hidden layers with total parameters’
count slightly larger than N number of NeurWIN networks for proper comparison.

QWIC was trained for the sets
(

4
1

) (
10
1

) (
100
25

)
with a Q-table for each arm. QWIC selects from a

set of candidate threshold values λ ∈ Λ as index for each state. The algorithm learns Q function
Q ∈ RΛ×S×{0,1}. The estimated index λ̃[s] per state s is determined during training as,

λ̃[s] = argmin
λ∈Λ

|Q(λ, s, 1)−Q(λ, s, 0)| (4)

Initial timestep ε was selected to be εmax = 1, and at later timesteps set to be ε = min(1, 2t−0.5).
Other training hyperparameters: Initial learning rate L[t = 0] = 0.001, training episode time horizon
of T = 300 timesteps, discount factor β = 0.99.

E.3 Inference Setting

In inferring the control policy, we test the trained parameters at different episode intervals. In other
words, the trained models’ parameters are tested at an interval of episodes, and their discounted
rewards are plotted for comparison.

From the trained NeurWIN models described in E.2, we instantiate N arms, and activate M arms
at each timestep based on their indices. For example, we load a NeurWIN model trained for 100
episodes on one arm, and set N arms each with its own trained agent on 100 episodes. Once the
testing is complete, we load the next model trained at 110 episodes, and repeat the process for 110
episodes. The testing setting has the same parameters as the training setting with horizon T = 300
timesteps, and discount factor β = 0.99.

For the deadline Whittle index, we calculate the indices using the closed-form Whittle index and
activate the highest M indices-associated arms. The accumulated reward from all arm (activated and
passive) is then discounted with β.

For the MDP algorithms (REINFORCE, AQL, WOLP-DDPG), N arms combined states form the
MDP state which is passed to the trained neural network. Reward is the sum of all rewards from the
N arms. Testing is made for neural networks trained at different episode limits. The same testing
parameters as NeurWIN were chosen: horizon T = 300 timestep, discount factor β = 0.99.

We perform the testing over 50 independent runs up to 2000 episodes, where each run the arms are
seeded differently. All algorithms were tested on the same seeded arms. Results were provided in the
main text for this setting.

17

Table 1: Θ values used in the recovering bandits’ case.

CLASS θ0 VALUE θ1 VALUE

A 10 0.2
B 8.5 0.4
C 7 0.6
D 5.5 0.8

F Recovering Bandits’ Training and Inference Details

F.1 Formulated Restless Bandit for the Recovering Bandits’ Case

We list here the terms that describes one restless arm in the recovering bandits’ case:

State s[t]: The state is a single value s[t] = z[t] called the waiting time. The waiting time z[t]
indicates the time since the arm was last played. The arm state space is determined by the maximum
allowed waiting time zmax, giving a state space S := [1, zmax].

Action a[t]: As with all other considered cases, the agent can either activate the arm a[t] = 1, or not
select it a[t] = 0. The action space is then A := {0, 1}.
Reward r[t]: The reward is provided by the recovering function f(z[t]), where z[t] is the time since
the arm was last played at time t. If the arm is activated, the function value at z[t] is the earned
reward. A reward of zero is given if the arm is left passive a[t] = 0. Fig. 9 shows the four recovering
functions used in this work. The recovering functions are generated from,

f(z[t]) = θ0(1− e−θ1·z[t]) (5)

Where the Θ = [θ0, θ1] values specify the recovering function. The Θ values for each class are
provided in table 1.

Next state s[t+ 1]: The state evolves based on the selected action. If a[t] = 1, the state is reset to
s[t + 1] = 1, meaning that bandit’s reward decayed to the initial waiting time z[t + 1] = 1. If the
arm is left passive a[t] = 0, the next state becomes s[t+ 1] = min{z[t] + 1, zmax}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
z∈{1, zmax}

2

3

4

5

6

7

8

9

10

f(z
)

Recovering function A
Recovering function B
Recovering function C
Recovering function D

Figure 9: The selected recovering functions f(z) for the recovering bandits’ case.

18

F.2 Training Setting

Training procedure for NeurWIN algorithm follows the pseudocode in section 4. Here we discuss the
parameter selection and details specific to the recovering bandits’ case. We train the neural network
using NeurWIN for 30, 000 episode, and save the trained parameters at an episode interval of 100
episodes. In total, for 30, 000 training episodes, we end up with 300 models for inference. The
selected neural network has 609 trainable parameters with two hidden layers given as {1, 16, 32, 1}
neurons.

For training parameters, we select the sigmoid value m = 5, the episode’s time horizon T = 300
timesteps, the mini-batch size to 5 episodes, and the discount factor β = 0.99. As with all other cases,
each mini-batch of episodes has the same initial state s[t = 0] which is provided by the arm. To
ensure the agent experiences as many states in [1, zmax] as possible, we set an initial state sampling
distribution given as Pr{s[t = 0] = z} = 2z

21+22+...+2zmax . Hence, the probability of selecting the
initial state to be s[t = 0] = zmax is 0.5.

At the agent side, we set the activation cost λ at the beginning of each mini-batch. λ is chosen to be
the estimate index value fθ(s1) of a randomly selected state in s1 ∈ [1, zmax]. The training continues
as described in NeurWIN’s pseudo code: the agent receives the state, and selects an action a[t]. If
the agent activates the arm a[t] = 1, it receives a reward equal to the recovery function’s value at z,
and subtracts λ from it. Otherwise, the reward r[t] is kept the same for a[t] = 0. We train NeurWIN
independently for each of the four activation functions described in table 1.

For the MDP algorithms, training hyperparameters were selected as: Initial learning rate L[t = 0] =
0.001, discount factor β = 0.99. The algorithms are trained on the MDP representation, where the
state is the combined states of the N arms.

QWIC training hyperparameters are the same. Training process is the same as in the deadline
scheduling case from E.2.

F.3 Inference Setting

The inference setup measures NeurWIN’s control policy for several
(
N
M

)
settings. We test, for a

single run, the control policy of NeurWIN over a time horizon T = 300 timesteps. We set N arms
such that a quarter have one recovering function class from table 1. For

(
10
1

)
, we have three type A,

three type B, two type C, and two type D arms.

At each timestep, the 8-lookahead and 20-lookahead policies rank the recovering functions reward
values, and select the M arms with the highest reward values for activation. The incurred discounted
reward at time t is the discounted sum of all activated arms’ rewards. The total discounted reward is
then the discounted rewards over time horizon T = 300. For inferring NeurWIN’s control policy, we
record the total discounted reward for each of the 300 models. For example, we instantiate N arms
each having a neural network trained to 10, 000 episodes. At each timestep t, the neural networks
provide the estimated index fi,θ(si[t]) for i = 1, 2, . . . , N . The control policy activates the M arms
with the highest index values. We then load the model parameters trained on 10, 100 episodes, and
repeat the aforementioned testing process using the same seed values.

With REINFORCE, AQL, WOLP-DDPG, testing happens for the same seeded arms as NeurWIN and
d-lookahead policies. The MDP state is the combined states of N arms, and the total reward is the
sum of all arm rewards. Testing is done for the 300 saved models, with discount factor β = 0.99 over
horizon T = 300. QWIC and WIBQL are also tested for the 300 saved index mappings and Q-tables.

G Wireless Scheduling Training and Inference Details

G.1 Restless Arm Definition for the Wireless Scheduling Case

Here we list the state s[t], action a[t], reward r[t], and next state s[t+ 1] that forms one restless arm:

State s[t]: The state is a vector (y[t], v[t]), where y[t] is the arm’s remaining load in bits, and v[t] is
the wireless channel’s state indicator. v[t] = 1 means a good channel state and a higher transmission
rate r2, while v[t] = 0 is a bad channel state with a lower transmission rate r1.

19

Action a[t]: The agent either activates the arm a[t] = 1, or keeps it passive a[t] = 0. The reward and
next state depend on the chosen action.

Reward r[t]: The arm’s reward is the negative of the holding cost ψ, which is a cost incurred at each
timestep for not completing the job.

Next state s[t+ 1]: Next state is [y[t+ 1], v[t+ 1]]. Remaining load y[t+ 1] equals y[t]− a[t]rd,
where d = 2 if v[t] = 1, and d = 1 if v[t] = 0. v[t + 1] is 1 with probability q, and 0, otherwise,
where q is a parameter describing the probability that the channel is in a good state.

G.2 Training Setting

The neural network has 625 trainable parameters given as layers {2, 16, 32, 1} neurons. The training
happens for 30, 000 episodes, and we save the model parameters at each 1000 episodes. Hence, the
training results in 30 models trained up to different episode limit.

For the wireless scheduling case, we set the sigmoid value m = 0.75, mini-batch size to 5 episodes,
and the discount factor to β = 0.99. Maximum episode time horizon is set to T = 300 timesteps.
The holding cost is set to c = 1, which is incurred for each timestep the job is not completed. We
also set the good transmission rate r2 = 33.6 kb, and the bad channel transmission rate r1 = 8.4
kb. During training, we train NeurWIN on two different good channel probabilities, q = 75%, and
q = 10%.

The episode defines one job size sampled uniformly from the range y[t = 1] ∼ (0, 1 Mb]. All
episodes in one mini-batch have the same initial state, as well as the same sequence of channel states
[v[t = 0], v[t = 1], . . . , v[t = T − 1]].

At the agent side, NeurWIN receives the initial state s[t = 0], and sets the activation cost from a
random state λ = fθ(s1) for all timesteps of all mini-batch episodes. As mentioned before, we save
the trained model at an interval of 1000 episodes. For 30, 000 training episodes, this results in 30
models trained up to their respective episode limit.

G.3 Inference Setting

Testing compares the induced control policy for NeurWIN with the size-aware index and learning
algorithms. The algorithms’ control policies are tested at different training episodes’ limits. We
instantiate N arms and activate M arms at each timestep t until all users’ jobs terminate, or the time
limit T = 300 is reached.

Half of the arms have a good channel probability 75%. The other half has a good channel probability
10%.

The size-aware index is defined as follows: at each timestep, the policy prioritizes arms in the good
channel state, and calculates their secondary index. The secondary index v̂i of arm i state (yi[t], vi[t])
is defined as,

v̂i(yi[t], vi[t]) =
ciri,2
yi[t]

(6)

The size-aware policy then activates the highest M indexed arms. In case the number of good channel
arms is below M , the policy also calculate the primary index of all remaining arms. The primary
index vi of arm i state (yi[t], vi[t]) is defined as,

vi(yi[t], vi[t]) =
ci

qi[t](ri,2/ri,1 − 1)
(7)

Rewards received from all arms are summed, and discounted using β = 0.99. The inference phase
proceeds until all jobs have been completed.

For NeurWIN’s control policy, we record the total discounted reward for the offline-trained models.
For example, we set N arms each coupled with a model trained on 10, 000 episodes. The models
output their arms’ indices, and the top M indexed arms are activated. In case the remaining arms are
less than M , we activate all remaining arms at timestep t. timestep reward βtR[t] = βt

∑N
i=1 ri[t] is

20

the sum of all arms’ rewards. Once testing for the current model is finished, we load the next model
11, 000 for each arm, and repeat the process. For the MDP algorithms, the MDP state is the combined
states of all N arms, with the reward being the sum of arms’ rewards.

We note that the arms’ initial loads are the same across runs, and that the sequence of good channel
states is random. For all algorithms, we average the total discounted reward for all control policies
over 50 independent runs using the same seed values.

21

