

How to Prompt LLMs for Text-to-SQL: A Study in Zero-shot, Single-domain, and Cross-domain Settings

Shuaichen Chang* and Eric Fosler-Lussier The Ohio State University

Table Representation Learning Workshop @ NeurIPS 2023

* Now at AWS AI Lab

Text-to-SQL

NLQ

SQL

Find the name and rank of the 3 youngest winners across all matches.

Text-to-SQL Model

SELECT winner name, winner rank FROM matches ORDER BY winner age ASC LIMIT 3

Date		Ranking			
S	t_Name	Last_Name			
	Winner	Rank	Age		
	1	32			

LLMs for Text-to-SQL with In-context Learning

7K examples

Few-shot Prompt (< 32 demonstrations)</pre>

LLMs for Text-to-SQL with In-context Learning

These studies enhance the LLMs' performance with different approaches: demonstration retrieval or intermediate reasoning (their main proposals)

However, they also employ different strategies for constructing the prompt text of databases and demonstrations • It's hard to compare two work on their main

contributions, or prompt constructions Future work still has to explore the effective prompt constructions for Text-to-SQL (prompt engineering)

LLMs for Text-to-SQL with In-context Learning

- Our goals:
 - Study how to represent structured database in unstructured prompt text for LLMs in three common scenarios:
 - Zero-shot text-to-SQL
 - Few-show single-domain text-to-SQL
 - Few-show cross-domain text-to-SQL
 - Study how to construct demonstrations for cross-domain text-to-SQL

Zero-shot Text-to-SQL Prompt

Zero-shot Prompt

Task Instruction

```
-- Using valid SQLite, answer the following questions for the tables
provided above.
```

Test Question

```
Question: How many high schoolers are there?
SELECT
```

Zero-shot Text-to-SQL Results

Table relationship and database content are crucial, however, it requires careful • representation in the prompt.

		Codex		ChatGPT	
Database Prompt Construction		# Tokens	EX	# Tokens	EX
Table Schema	Table(Columns)	147	71.9	115	70.5
	Columns=[]	167	71.8	135	69.1
+Relationship	Columns=[]+ForeignKey	223	73.1	174	71.2
	CreateTable	356	73.1	254	71.7
+Relationship+Content	CreateTable+InsertRow 3	1013	71.9	872	71.8
······································	CreateTable+SelectRow 3	770	74.1	674	72.1
	CreateTable+SelectCol 3	831	75.7	712	73.6

Single-domain Text-to-SQL Prompt Example

Few-shot Single-domain Prompt

Database

```
CREATE TABLE Highschooler (
ID int primary key,
name text,
grade int
);
/*
3 example rows:
SELECT * FROM Highschooler LIMIT 3;
ID
      name
               grade
1510
        Jordan
                   9
1689
        Gabriel
                    9
1381
        Tiffany
                    9
*/
```

Task Instruction

```
    Using valid SQLite, answer the following questions for the tables
provided above.
```

Demonstration

```
Question: What is Kyle's id?
SELECT ID FROM Highschooler WHERE name = "Kyle";
```

Test Question

```
Question: How many high schoolers are there?
SELECT
```

In-domain demonstrations are annotated NLQ and SQL pairs from the same database as the test question.

Single-domain Text-to-SQL Results

- The performance of LLMs continues to enhance as the number of in-domain examples increases.
- Table relationship becomes less important when having in-domain examples, however, database content is still important.
- LLMs are robust to database content representation when having in-domain examples.

* Demonstration examples were randomly selected and the experiments were repeated three times.

Cross-domain Text-to-SQL Prompt Example

Few-shot Cross-domain Prompt

Demonstration

```
create table track (
track_id int,
                                                                            name text,
name text,
                                                                            grade int
location text,
                                                                            );
seating real,
                                                                            /*
year_opened real,
                                                                            3 example rows:
primary key (track_id)
                                                                            ID
                                                                            1510
/*
                                                                            1689
3 example rows:
                                                                            1381
select * from track limit 3:
                                                                            */
track_id
            name
                     location
                                  seating
                                             year_opened
     Auto Club Speedway
                                            92000.0
1
                            Fontana, CA
                                                        1997.0
                                                                            Task Instruction
2
     Chicagoland Speedway
                              Joliet, IL
                                             75000.0
                                                         2001.0
з
     Darlington Raceway
                            Darlington, SC
                                                           1950.0
                                               63000.0
*/
-- Using valid SQLite, answer the following questions for the tables
                                                                            Test Question
provided above.
Question: Show the name and location for all tracks.
                                                                            SELECT
select name, location from the track;
```

Out-of-domain demonstrations are the NLQ and SQL pairs along with their respective databases, which are different from the test database.

CREATE TABLE Highschooler (ID int primary key,

SELECT * FROM Highschooler LIMIT 3; grade Jordan 9 Gabriel 9 Tiffany 9

name

Database

-- Using valid SQLite, answer the following questions for the tables provided above.

Question: How many high schoolers are there?

• Can out-of-domain demonstrations enhance the performance of LLMs?

We consider a general scenario where the demonstrations contains M databases, each • with K examples.

Codex

Why does the performance increases and then decreases when more demonstration • databases are provided?

1,4

2000

2,2

- Why does the performance increases and then decreases when more demonstration ulletdatabases are provided?
 - It is related to the length of the prompt text. •

- 1 example/DB
- 2 examples/DB
- examples/DB • 4
- 8 examples/DB
- 16 examples/DB

- Are table relationship and content still important with out-of-domain demonstrations?
 - Table relationship and content are database-specific knowledge.
 - LLMs cannot learn them from out-of-domain demonstrations.

Database Prompt Construction		0-shot	1-shot	2-shot	4-shot	8-shot	16-shot
Table Schema	Table(Columns)	71.9	72.0	73.0	73.2	72.8	73.9
	Columns=[]	71.8	71.9	73.6	74.2	73.7	74.4
+Relationship	Columns=[]+ForeignKey	73.1	<u>73.3</u>	74.5	74.9	74.9	75.2
P	CreateTable	73.1	72.1	73.4	73.7	74.1	75.1
+Relationship+Content	CreateTable+InsertRow 3	71.9	72.2	74.1	74.9	74.9	74.8
CreateTable+SelectRow 3		<u>74.1</u>	73.0	<u>75.0</u>	<u>76.2</u>	<u>75.7</u>	<u>76.0</u>
	CreateTable+SelectCol 3	75.7	74.4	75.5	76.5	76.8	76.5

It-of-domain demonstrations? knowledge. trations.

Takeaways

- Table relationship and database content play a crucial role. However, it requires careful designs in zero-shot and cross-domain settings.
- In-domain demonstrations mitigate LLMs' sensitivity to database constructions, but cannot replace database content knowledge.
- The prompt length has a significant impact on LLMs' performance.

