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ABSTRACT

Whittle index is a heuristic tool that leads to good performance for the restless
bandits problem. In this paper, we extend Whittle index to a new multi-agent
reinforcement learning (MARL) setting with multiple discrete actions and a pos-
sibly changing constraint on the state space, resulting in WIMS (Whittle Index
with Multiple actions and State constraint). This setting is common for inventory
management problems, where each agent chooses a replenishing quantity level
for the corresponding stock-keeping-unit (SKU) such that the total profit is max-
imized while the total inventory does not exceed a certain limit. Accordingly,
we propose a deep MARL algorithm based on WIMS for inventory management,
and evaluate our algorithm empirically on real large-scale inventory management
problems with up to 2307 SKUs. The results show that our algorithm outperforms
operation-research-based methods and baseline MARL algorithms.

1 INTRODUCTION

The inventory management problem is one of the most important problems in operation research (OR)
with a history dating back to Fukuda (1964). The objective of the problem is to balance the supply
and demand of different stock-keeping-units (SKUs) in the face of stochastic customer demands
and vendor lead time (VLT). A good strategy for inventory management can not only reduce the
operational cost and increase the profit but also improve customer satisfaction (Eckert, 2007).

Traditional methods from the operation research community solve the problem using dynamic
programming (DP). However, these methods often rely on strong assumptions such as i.i.d. customer
demands and deterministic lead time (Kaplan, 1970; Ehrhardt, 1984) which make them hard to apply
for a general setting. While approximate DP methods (Halman et al., 2009; Fang et al., 2013; Chen
& Yang, 2019) can solve for more problem formulations by relaxing the assumptions, they still
rely heavily on problem-specific expertise or assumptions, e.g., the zero or one period leading time
assumption (Halman et al., 2009). In contrast, reinforcement learning (RL) based methods 1) do not
rely on strong assumptions and are applicable to general scenarios; 2) can exploit the underlying
pattern from real data (instead of solving for fixed distributions of customer demands and VLT); and
3) enable efficient inference instead of, e.g., planning based on the prediction in the inference time
as in (Qi et al., 2020). However, it is quite inefficient for RL with a single agent to learn a global
policy to make decisions for all SKUs due to the exponentially large state and action space (Jiang &
Agarwal, 2018). Therefore, it is natural to adopt the multi-agent reinforcement learning (MARL)
paradigm, where each SKU is controlled by one agent whose state and action spaces are localized.

In this paper, we consider a constrained MARL setting for inventory management where a possibly
changing constraint on the total inventory capacity couples the otherwise independent dynamics
of a large number of SKUs. We refer to such a structure as weak coupling hereinafter. Existing
MARL algorithms face some challenges in this setting. The first challenge is the trade-off between
efficiency and performance. On the one hand, existing centralized-training-based MARL algorithms
(e.g., MADDPG (Lowe et al., 2017), MAPPO (Yu et al., 2021), and COMA (Foerster et al., 2018))
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need to estimate a centralized critic that receives the global state (i.e., the concatenation of local
states of all SKUs) as the input. However, in a typical industrial scenario, we have to manage up
to thousands of SKUs, which leads to computational inefficiency due to the exponentially large
global state space. On the other hand, existing independent-learning-based MARL algorithms (e.g.,
IQL (Tan, 1993) and IPPO (de Witt et al., 2020)) are efficient but may result in poor performance
due to the ignorance of the global constraint. The second challenge is that the limit of the total
inventory capacity can change across different seasons (due to promotion, holidays, etc. for inventory
management). Accordingly, previous MARL algorithms need to re-train the model on new inventory
limits or call for the meta RL formulation (see e.g., Finn et al., 2017; Nichol & Schulman, 2018)
which complicates the algorithm/model and results in higher time complexity.

To deal with the above challenges, we resort to Whittle index (Whittle, 1988) proposed as a heuristic
but effective tool to solve the restless bandits problem which presents a similar structure. In restless
bandits, the dynamics of different arms are independent MDPs (cf. the dynamics of different SKUs
are independent in our setting) but only M out of the N arms are allowed to be activated on each time
step (cf. the global inventory capacity constraint in our setting), and an algorithm needs to learn how
to activate arms to earn reward as much as possible. The basic idea of Whittle index is to estimate
the maximum affordable cost for activating each arm in its local state, and then activate the M arms
with highest maximum affordable cost. By this way, it decouples the global control into several local
learning procedures. However, Whittle index cannot be adopted directly to our setting due to the
following two gaps between our setting and restless bandits: 1) The constraint is imposed on the
global state (e.g., on the total inventory capacity) in inventory management whereas the constraint
is imposed on the global action (i.e., the number of activated arms) in restless bandits; 2) There
are multiple actions for each SKU (e.g., multiple candidate replenishment quantities) in inventory
management whereas the action for each arm is binary (i.e., activate or not) in restless bandits.

In this paper, we extend Whittle index to bridge the two gaps by defining a new form of Whittle index
called WIMS (Whittle Index with Multiple actions and State constraint). WIMS measures the cost of
unit budget consumption instead of the cost per arm activation (since our constraint is on the total
inventory capacity but not the total replenishment quantity) to bridge the first gap, and generates the
critical points of maximum affordable costs for different actions (i.e., a vector) on a given local state
instead of only a scalar to bridge the second gap. Then, we propose a practical MARL algorithm
called WIMSN that combines WIMS with the neural network to solve real inventory management
problems in a computationally efficient way. We evaluate our algorithm based on real data of up
to 2307 SKUs, and the experimental results indicate that our algorithm can outperform not only
operation-research-based (OR-based) methods but also previous MARL algorithms.

The contributions of our paper are summarized as follows:

• We propose WIMS (Whittle Index with Multiple actions and State constraint) that extends Whittle
index to a new constrained MARL setting where a possibly changing constraint is imposed on the
global state and there are multiple discrete actions for each agent.

• We propose WIMSN that combines WIMS with neural networks, resulting in a practical algorithm
that solves real inventory management problems efficiently.

• We conduct extensive experiments to demonstrate that WIMSN can outperform the OR-based
methods as well as previous MARL algorithms.

2 RELATED WORK

Inventory Management. In the OR community, representative strategies for inventory management
include the base-stock policy (Clark & Scarf, 1960; Kaplan, 1970), the (s, S)-policy (Ehrhardt, 1984),
and the (R,Q)-policy Chen (2000), which are proved to be optimal under specific assumptions (see
Chen, 2000). However, these assumptions are too strong to hold in practice and researchers start to
use the approximate form of dynamic programming (Halman et al., 2009; Fang et al., 2013; Chen &
Yang, 2019) instead of the exact form (Goldberg et al., 2016; Huh et al., 2009).

To better exploit the patterns from big data, reinforcement learning methods have been adopted to
solve the inventory management problem (see e.g., Giannoccaro & Pontrandolfo, 2002; Jiang &
Sheng, 2009; Kara & Dogan, 2018; Barat et al., 2019; Gijsbrechts et al., 2019; Oroojlooyjadid et al.,
2017; 2020). While these methods are able to outperform traditional approaches in different scenarios
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such as the multi-echelon setting and the setting with volatile customer demands and bullwhip effects,
they can hardly scale up to thousands of SKUs efficiently due to the ignorance of the weak coupling
structure in the problem. Ding et al. (2022) considers a similar setting to ours and can scale up
by decoupling the learning of different SKUs conditioned on the fixed context sequence where the
context indicates the allowed capacity for each SKU. However, the model is trained under a given
constraint level, and they need to retrain the model when the constraint level changes.

Whittle Index. Whittle index (Whittle, 1988) is a heuristic tool that is effective in solving the restless
bandits problem (a PSPACE-hard problem) (Papadimitriou & Tsitsiklis, 1994). Restless bandits
problem generalizes many real-world problems including HVAC control (Wei et al., 2017), wireless
sensor scheduling in cyber-physical systems (Leong et al., 2020), and dynamic multi-channel access
in wireless networks (Wang et al., 2018),(Wang et al., 2020), and Whittle index is shown to be
effective in these real-world applications (see e.g., Le Ny et al., 2008; Li et al., 2022). Some existing
researches also try to extend Whittle index to restless bandits with multiple actions (Killian et al.,
2021a; Xiong et al., 2022; Hodge & Glazebrook, 2015; Killian et al., 2021b), but they are still dealing
with constraints on the action space and cannot be applied to our setting (where the constraint is
on the state space). In this paper, we further extend Whittle index to a new MARL setting where
a constraint on the state space couples the otherwise independent agents (i.e., the weak coupling
structure), which could be applied in a wide range of applications, e.g., inventory management (Ding
et al., 2022), portfolio management in quantitative finance (Jiang et al., 2017), queue scheduling
(Chen et al., 2021), recommending systems (Liao et al., 2022), and the air campaign planning task
(Meuleau et al., 1998).

3 PRELIMINARY

Notations. δa is used to represent Dirac delta distribution centered at a. [N ] is a shorthand for
{1, 2, · · · , N}. I{cond} is the identity function which equals 1 if cond = True and equals 0 otherwise.
Given a vector x, we use [x]i to represent the i-th component of this vector.

Restless Bandits. The restless bandits problem is defined as follows: in each round t, a control
policy observes the state of each of the N arms (denoted by sit for all i ∈ [N ]) and activates
M arms (denoted by ait ∈ {0, 1} where 1 represents activation). The joint state space is the
Cartesian products of individual spaces, i.e., S̄ := SN , and the joint action space is defined as
Ā := {a ∈ AN |

∑
i∈[N ] ai = M} (here A := {0, 1}). Then, the policy receives a reward

rit ∼ Ri(sit, a
i
t) on every arm i, with Ri(sit, 0) = δ0 (i.e., if we do not activate arm i at this

time step, its reward must be 0), and the state of each arm transits to the next state sit+1 ∼ P i(·|sit, ait).
The objective is to find a policy π̄ : S̄ → ∆(Ā) that maximizes E[

∑∞
t=0

∑N
i=1 γ

trit|π̄] where γ is
the discount factor.

Whittle Index Policy. The Whittle index policy first decouples the joint optimization problem of N
arms into individual solutions for each arm, and then use a simple way to combine these solutions.

Therefore, we can first only consider an arbitrary arm i ∈ [N ]. We suppose the agent has to
pay a cost λ every time it activates this arm, and the objective is to find a policy π ∈ Π : S →
∆(A) (i.e., determine whether to activate this arm after observing the current state sit) to maximize
E[
∑∞

t=0 γ
t(rit − λait)|π]. Accordingly, we can define the Q function and the optimal Q function as

Qπ
λ(s, a) := E

[∑∞
t=0 γ

t(rit − λait)|si0 = s, ai0 = a, π
]

and Q∗
λ(s, a) = maxπ Q

π
λ(s, a) respectively.

The corresponding optimal policy can be defined as π∗
λ ∈ argmaxπ Q

π
λ(s, a).

Intuitively, the higher the cost λ, the less likely the optimal activation policy π∗
λ would activate the

arm in a given state. This intuition can be formulated as the following indexability property:

Definition 3.1 (Indexability). Let S(λ) be the set of the states where the optimal policy π∗
λ activates

this arm under activation cost λ. Then an arm is indexable if S(λ) decreases monotonically from S
to ∅ when λ increases from −∞ to +∞.

The Whittle index f(s) for a given state s ∈ S is defined as the maximum activation cost λ the
optimal policy π∗

λ is willing to pay to activate the arm on state s, i.e.,

Definition 3.2 (Whittle Index). If an arm is indexable, then its Whittle index of each state s is defined
as f(s) := supλ{λ : s ∈ S(λ)}.
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The Whittle index can be determined by estimating Q values owing to the following property:
Proposition 3.3 (Learnability). If an arm is indexable, then: 1) when λ < f(s), Q∗

λ(s, 1) > Q∗
λ(s, 0);

2) when λ > f(s), Q∗
λ(s, 1) < Q∗

λ(s, 0); 3) when λ = f(s), Q∗
λ(s, 1) = Q∗

λ(s, 0).

Given a global state s = (s1, s2, · · · , sN ), the Whittle index policy will first find a λg such that∑N
i=1 I{f(si) ≥ λg} = M and then activate the arms with f(si) ≥ λg .

4 INVENTORY MANAGEMENT AND WIMS

In this section, we will first introduce the multi-agent reinforcement learning (MARL) formulation of
the inventory management problem. Then, we will adapt the Whittle index policy to our setting by
bridging the gaps between restless bandits and the MARL formulation. Specifically, we formulate
the definition of Whittle Index for Multiple actions and State constraint (WIMS), and obtain some of
its properties. At last, we calculate WIMS and the corresponding policy on a simplified inventory
management task for illustration.

4.1 PROBLEM FORMULATION

In this paper, we formulate the inventory management problem considered as follows: There are
totally N agents, and each agent represents a single SKU. At the t-th time step, the policy receives
the local states of N agents {sit}Ni=1, while local state sit contains the current features of the i-th
SKU, e.g., the resource occupation, the procurement/selling prices, the historical demands, the
inventory/in-transit levels, etc. Then, the policy needs to decide the local actions {ait}Ni=1 for all
the N SKUs, i.e., the indices of a list of candidate quantities for replenishment orders. We denote
the local state and action space of each agent as S and A := [A] respectively, and denote the joint
state as s̄t = (s1t , · · · , sNt ) ∈ S̄ and the joint action as āt = (a1t , · · · , aNt ) ∈ Ā = AN . Then, the
environment returns a reward rt ∼ R(s̄t, āt) and transits to the next state s̄t+1 ∼ P (·|s̄t, āt).

The N agents are coupled weakly only through a global constraint
∑N

i=1 l(s
i
t) ≤ Lt, where l(sit)

is the resource occupation of the i-th agent (or the inventory of the i-th SKU) at the t-th time
step, and Lt is the budget level at the t-th time step. In other words, without this constraint,
we can decompose the reward and the transition dynamics as R(st, at) =

∑N
i=1 R

dec(sit, a
i
t) and

P (·|st, at) =
∏N

i=1 P
dec(·|sit, ait) for some decomposed reward Rdec and transition dynamics P dec.

4.2 WHITTLE INDEX WITH MULTIPLE ACTIONS AND STATE CONSTRAINT (WIMS)

In this subsection, we only consider one of the agents in the multi-agent system and omit the
superscript i ∈ [N ] for simplicity.

We suppose that there is a cost λ for the occupation of each unit of shared resource (in comparison,
the Whittle index policy uses λ to represent the activation cost of each arm). The Q function for a
given policy π and the optimal Q function are defined as

Qπ
λ(s, a) = E

[ ∞∑
t=0

γt(rt − λl(st))
∣∣∣s0 = s, a0 = a, π

]
, Q∗

λ(s, a) = max
π

Qπ
λ(s, a), (1)

for all s ∈ S , a ∈ A where the expectation is taken over all possible trajectories collected by rolling
out the policy π. According to Puterman (1990), there exists a deterministic optimal policy for any
given MDP, and we denote this deterministic policy as π∗

λ : S → A, i.e., π∗
λ(s) ∈ arg maxπQ

π
λ(s, a).

Similarly, we can define the indexability condition for our setting.
Definition 4.1 (Indexability). For all α ∈ [A− 1], let Sα(λ) be the set of the states where the optimal
policy chooses action a > α under unit inventory cost λ. Then an agent in the multi-agent system
formulated in Section 4.1 is indexable if for any α, Sα(λ) decreases monotonically from S to ∅ when
λ increases from −∞ to +∞.

Lemma 4.2 (Sufficient condition of indexability). An agent in the multi-agent system is indexable
if it satisfies the following action monotonicity condition: for any local state s ∈ S and two costs
λ1 > λ2, the optimal policies π∗

λ1
, π∗

λ2
of this agent satisfy π∗

λ1
(s) ≤ π∗

λ2
(s).
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Figure 1: (a) Illustration on how WIMS is calculated based on the Q values learned in the simplified
inventory management task. We show the case on state si = (i, 0, 8) and the Q values are normalized
by subtracting Q∗

λ(s
i, a = 2) from Q∗

λ(s
i, ·) where a = 1, 2, 3 indicates ordering 0, 1, 2 units for

replenishment respectively and λ represents the unit inventory cost. (b) Illustration on how to select
actions based on WIMS and a given λg . The bars indicate the WIMS of two agents on different local
states. The red bars indicate the values of [f(s)]2 and the green bars indicate the values of [f(s)]1.
(c) The WIMS policy combined with different λg results in near-optimal policies under different
budget levels. Each triangle represents the performance of the WIMS policies with different λg . The
black and blue dotted lines represent the best attainable reward under different inventory levels and
the performance of the best base-stock policies.

Lemma 4.2 indicates that the above action monotonicity condition can lead to indexability naturally,
and its proof is deferred to Appendix B.1. We provide intuition on why the condition is natural for
inventory management in Appendix B.2. Roughly speaking, the condition requires that an optimal
policy should not reduce the replenishment quantity when the inventory cost λ decreases.

Since we have A candidate actions, we define the Whittle index as a vector, i.e., f(s) =
(λ1, · · · , λA−1), where the α-th element represents the maximum inventory cost the optimal policy
is willing to pay to choose an action from {a|a > α} ⊂ A. Its formal definition is given below.
Definition 4.3 (WIMS). If an agent is indexable, then the WIMS of each state s is a vector f(s) such
that its α-th term is [f(s)]α := supλ{λ : s ∈ Sα(λ)},∀α ∈ [A− 1].

By observing Sα(λ) ⊆ Sα′(λ) if α′ < α, we can obtain the following proposition:
Proposition 4.4. [f(s)]1 ≥ [f(s)]2 ≥ · · · ≥ [f(s)]A−1 for any state s.

The WIMS values can be determined by comparing the following two types of aggregated Q values:
Q∗

λ(s,≤ j) = max
a≤j

Q∗
λ(s, a), Q∗

λ(s,> k) = max
a>k

Q∗
λ(s, a). (2)

Lemma 4.5 (Learnability of WIMS). If an agent in the multi-agent system is indexable, for any
s ∈ S and α ∈ [A − 1], we have that: 1) when λ < [f(s)]α, Q∗

λ(s,> α) ≥ Q∗
λ(s,≤ α); 2) when

λ > [f(s)]α, Q∗
λ(s,> α) ≤ Q∗

λ(s,≤ α); 3) when λ = [f(s)]α, Q∗
λ(s,> α) = Q∗

λ(s,≤ α).

This lemma leads to the update rule that we later use to determine WIMS in Section 5.

Given a global state s̄t = (s1t , s
2
t , · · · , sNt ) and a global cost λg , the WIMS policy takes the action

ait =
∑
α<A

I{[f(sit)]α ≥ λg}+ 1 (3)

for each agent indexed by i, i.e., selecting the maximum action α whose corresponding affordable
cost ([f(si)]α) exceeds λg. The global cost λg is determined by the constraint level Lt and λg can
be updated dynamically in an online manner: we decrease λg when the constraint is not violate and
otherwise increase it. More details will be introduced in Section 5.
Lemma 4.6 (Asymptotic optimality of the WIMS policy). When Lt →∞, the WIMS policy with the
global cost λg = 0 is optimal.

The proofs of Lemma 4.5 and 4.6 are deferred to Appendix B.3 and B.4 respectively.

4.3 WIMS FOR INVENTORY MANAGEMENT: A TOY EXAMPLE

To justify the formulation of WIMS, we design a tabular inventory management task to illustrate how
the policies based on WIMS can be used to solve the inventory management problem and indicate the
optimality gap of these policies for inventory management.
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We construct a minimum tabular example on N = 2 SKUs with stochastic demand and stochastic
VLT as follows: The state of the i-th SKU si = (i, Ii, T i) consists of the index and two integers
representing the in-stock quantity and the in-transit quantity respectively. We incorporate the index
into the state features to allow for the reward/dynamics of the two SKUs to be different. For compact
state representation, we clip the integers to [0, 9] and thus there are S = 200 possible local states.
The action space A = [3] with the list of candidate replenishing quantities to be {0, 1, 2}. We set
the unit profit, the order cost, the unit backlog cost to p = (10, 20), o = (10, 10), and b = (3, 3)
respectively where the two numbers stand for the values for two SKUs. We consider a constraint on
the total inventory capacity, i.e.,

∑2
i=1 l(s

i) ≤ L with l(si) = Ii and L to be constant. The demand
on each day is sampled uniformly from {0, 1, 2} and each unit of in-transit product arrives w.p. 1/3
on each day. We defer the details of the inventory management task in Appendix A.

We solve this simplified task by first learn Q∗
λ for different discretized λs using Q-learning and

calculate the WIMS indices following Definition 4.3. Then, by using different λg , we can obtain a set
of WIMS policies which will be shown to be near optimal for different budget levels.

How to calculate WIMS? To illustrate this, we fix a local state to see how WIMS is calculated based
on the learned Q values. We fix the local state si = (i, 0, 8) for the two SKUs and show the Q values
under different λs in Figure 1(a). Owing to the action monotonicity condition, the optimal action on
a given state decreases monotonically as λ increases. Therefore, when λ changes from −∞ to +∞,
the maximum Q value changes from the Q value of the largest action (cf. the green lines) to that of
the smallest action (cf., the red lines) monotonically. This ensures that there are at most A− 1 critical
points which are defined as WIMS. Note that it is possible that some action is never optimal for any
λ. For example, for the first SKU, the optimal action is a = 3 (green solid) when the unit inventory
cost λ < 0.39; whereas the optimal action becomes a = 1 (red solid) when the unit inventory cost
λ > 0.39. In this case, the two dimensions of WIMS on this state for the first SKU are both 0.39 (this
indicates that a = 2 is never optimal on this state). For the second SKU, when the unit inventory cost
λ increases, the optimal action transits a = 3 → 2 → 1 and [f(s2)]2 = 0.56, [f(s2)]1 = 1.46 are
the two critical points for the transition. Intuitively, WIMS can be interpreted as the priority (or the
maximum affordable cost) assigned to each local state for ordering at a larger quantity for that SKU.
Since the second SKU is more profitable than the first SKU, it is reasonable to see that the WIMS for
the second SKU is larger than that of the first SKU.

How to implement the WIMS policy? When a global cost λg is given, agent i selects action∑
α<A I{f(sit)α ≥ λg}+1, which is the same as the largest action a+1 as long as the corresponding

WIMS [f(si)]a on the local state si (i.e., the maximum affordable cost) is larger than the given λg.
By using different λg the policy can trade off between the cumulative reward and the constraint level.
We illustrate this process in Figure 1(b) where we consider two states for each of the two agents and
three actions. The three actions can be selected based on relationship between the WIMS vector
of the local state and the given λg. For example, when [f(s1(1))]2 < [f(s1(1))]1 < λg we choose
a1 = 0 + 1 = 1; and when [f(s2(3))]2 < λg < [f(s2(3))]1 we choose a2 = 1 + 1 = 2.

The optimality of the WIMS policy. To estimate the optimality gap of the WIMS policy, we compare
it with the optimal policies and the best base-stock policies (Clark & Scarf, 1960). The optimal
policies under different inventory levels are obtained by searching using the genetic algorithm from
pymoo (Blank & Deb, 2020). Note that, we search for the global optimal policy for each budget
level, whereas our WIMS policy only needs to learn for local agents and obtains the indices that work
for different inventory cost levels. For comparison, we also evaluate the performance of base-stock
policies which is a popular method from operation research. Given a base-stock level bi for each
agent, the policy orders max(bi − Ii − T i, 0) units for the agent in state si. We iterate over all
possible base-stock levels (b1, b2) and record the best performance of these base-stock policies under
different budget levels (i.e., the Pareto frontier). We present the results in Figure 1(c). We can see
that, while having the advantages of computational efficiency, our algorithm outperforms the best
base-stock policies and performs on par with the globally optimal policies.

Discussion. One advantage of the WIMS policy over other MARL algorithms is that it only needs
to learn the indices once for each SKU to obtain good policies over different constraint levels. In
contrast, to adopt popular MARL algorithms (such as IQL (Tan, 1993)), we first need to transform the
hard constraint into penalty terms in the reward function and re-train the model when the constraint
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Algorithm 1 WIMSN-c: Learn the WIMS policy with neural network on continuous λ

1: Initialize: The Q network Qθ : S ×A×R→ R and the Whittle index network fϕ : S → RA−1

2: ▷ Phase 1: Train agents independently without any constraint
3: Initialize the replay buffer D with warming-up samples collected by the random policy
4: for each iteration do
5: Select s ∼ D and α ∈ [A− 1] uniformly at random and obtain λ← [fϕ(s)]α
6: Roll out ϵ-greedy policy of µλ(·) := argmaxa Qθ(·, a, λ) and store new transitions to D
7: Sample a batch B := {(s, a, r, s′)} from D
8: Update the Q-network and the Whittle index network with (4) and (5) respectively on B
9: end for

10: ▷ Phase 2: Execute agents jointly with possibly changing global constraint
11: Initialize λg with a reasonably good prior value
12: for each step do
13: Take ai =

∑
α<A I{[fϕ(si)]α ≥ λg}+ 1 for each agent i ∈ [N ]

14: Update λg following (6)
15: end for

level changes. For this reason, we do not compare WIMS with MARL baselines in this simplified
task and defer the comparison to the experiments on real inventory management tasks in Section 6.

5 PRACTICAL ALGORITHM

In this section, we will introduce a practical algorithm called WIMSN (as shown in Algorithm 1)
that learns the WIMS policy using neural networks. In the training phase, we train two networks:
the Q network Qθ : S × A × R → R that estimates the Q value given local state s, action a, and
unit inventory cost λ, and the Whittle index network fϕ : S → RA−1 that outputs the Whittle index
vector for each local state s. (With slight abuse of notation, we move the subscript λ to the input
variable of Q in this section.) In the execution phase, we maintain a dynamically updated global cost
λg , which is used for making decisions combined with fϕ.

Training phase. In the training phase, each agent can learn independently in an environment without
the global constraint. This makes our algorithm scalable to a large number of agents. In our case,
we learn the Q network and the Whittle index network whose parameters are shared across different
agents. The network is trained through iterations, each of which consists of two steps: the sample
collection step (Line 5-6) and the network update step (Line 7-8).

In the sample collection step, we first select a random cost λ as one of the Whittle indices of a random
state from the replay buffer. Then, we collect samples by taking the action that yields the maximum
Q value conditioned on λ, and store the transitions to the replay buffer D.

In the network update step, we sample a batch of transitions B from the replay buffer D and update
the networks based on B. The Q network is updated with the following gradient update rule:

θ ← θ − β1∇θE(s,a,r,s′)∼BEλ

[
Qθ(s, a, λ)−

(
r − λl(st) + γmax

a′
Qθ(s

′, a′, λ)
) ]2

, (4)

where β1 is the learning rate, and the expectation Eλ is over different λ = [f(s)]α for random s ∈ D
and α ∈ [A− 1]. The Whittle index network is updated with the following gradient update rule:

ϕ← ϕ+ β2E(s,a,r,s′)∼B

[A−1∑
α=1

∇ϕ[fϕ(s)]α ·
(
Qθ(s,> α, [fϕ(s)]α)−Qθ(s,≤ α, [fϕ(s)]α)

)]
, (5)

where Qθ(s,> α, λ) := maxa>α Qθ(s, a, λ), and Qθ(s,≤ α, λ) := maxa≤α Qθ(s, a, λ). β2 is the
learning rate and we use β2 ≪ β1 as updating fϕ relies on well-estimated Qθ (Robledo et al., 2022).

Remark. The Q network Qθ and the Whittle index network fϕ are coupled through simultaneous
training: On one hand, Qθ is trained on the λs sampled from fϕ to gradually estimate more accurate
Q values around these λs. On the other hand, with a more accurate estimation of the Q values around
the current Whittle indices, fϕ can be updated more precisely.

Execution phase. In the execution phase, we execute the policy determined by a global cost λg.
Specifically, given the global cost λg, we select the action for each agent based on Eq. (3). We also
refer the readers to Figure 1(b) for an illustration on this process.
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The global cost λg is updated dynamically. The update rule is as follows:

λ(t+1)
g ← λ(t)

g + β3(L̂
(t) − Lt), with L̂(t) := max

t−T<τ≤t

N∑
i=1

l(siτ ) (6)

where λ
(0)
g is the prior value, L̂(t) is the maximum global resource occupation over a window T , and

β3 is the learning rate. When the budget is not fully utilized (i.e., L̂(t) − Lt < 0), we decrease the
global cost such that the agents are more willing to take aggressive actions (e.g., order more quantities
for replenishment in inventory management). Otherwise, if the constraint is violated, we will increase
the global cost so that the agents will not order too many quantities for replenishment afterwards.

6 EXPERIMENTS

In this section, we design experiments to 1) compare the performance of WIMSN with other baseline
MARL algorithms and OR methods with fixed budget levels; and 2) evaluate how WIMSN adapts
when the budget level changes. We provide the implementation details in Appendix C.

Settings. We evaluate WIMSN in several inventory management tasks with different scales (i.e.,
different number of SKUs) and different budget levels (by changing the inventory capacity limit). Our
experiment is conducted on a simulator that can simulate the replenishment procedure for multiple
SKUs in one store. Instead of sampling demands from some hypothetical distributions, we replay
the demand series from an authentic dataset from a retail partner that contains the sales history
of four years (2018-2021) with 2307 SKUs. We hold out the data of the last 200 days from the
training set and split these data into evaluation set (for parameter tuning) and testing set (for reporting
the performance) respectively. In the test procedure, when the total in-stock quantity exceeds the
inventory capacity, we reduce equal amount of in-stock quantities of different SKUs such that the
total in-stock quantity equals the capacity limit. The dropped quantities do not contribute any reward
(neither income nor penalty), just as they have never been replenished. See Appendix A for details.

OR-Based Methods. We compare our WIMSN policy with two popular operation research (OR)
methods: the base-stock policy (Clark & Scarf, 1960; Kaplan, 1970) and the (s, S)-policy (Ehrhardt,
1984). In these methods, we need to specify few parameters to control inventory replenishment. In
the baseline version, we find the optimal parameters for each SKU on the training set. In the skyline
version, we use those parameters that are optimal ad-hoc on the testing set. See Appendix C.1 for the
notion of optimality and implementation details.

Baseline MARL Algorithms. To apply off-the-shelf MARL algorithms for our constrained MARL
setting, we add penalty to reward when the constraint is violated during the training (see also
Appendix C.2). We choose IPPO (de Witt et al., 2020) and independent Q-learning (Tan, 1993) with
neural networks (Mnih et al., 2013) (IDQN) as the baselines. We do not compare with other MARL
algorithms (e.g., MAPPO (Yu et al., 2021)) that require to learn a joint critic for all agents since
they are not computationally efficient in our environment with thousands of agents. In addition, we
compare with Chen et al. (2021) which updates a global inventory cost for the constrained MARL
problem for each budget level. Note that all these MARL baselines need to re-train the model when
the budget level or the set of SKUs changes, but WIMS uses the same model for all tasks.

Versions of WIMSN. WIMSN-c intertwines the learning of the two networks (i.e., the Q network is
trained on different values of continuous λ sampled from the output of the Whittle index network).
It is also possible to decouple them by only training the two networks on a grid of discretized λs,
resulting in WIMSN-d with details introduced in Appendix C.4.

Experiment Results. We evaluate the above methods on inventory management tasks with 100, 1000,
and 2307 SKUs and different capacity limits, and present the results in Table 1. Here are some of our
observations. First, IPPO and IDQN tend to violate the constraint limit when the budget is tight1.
In contrast, WIMSN incurs less constraint violation (< 1% for all tasks) owing to our constrained
optimization formulation. Second, WIMSN earns more profit with less constraint violation than
previous methods, especially with a large number of SKUs. This indicates the effectiveness of
WIMSN in coordinating a large number of agents. Third, those baselines with a higher profit than

1Indeed, we can further increase the constraint violation penalty in the reward function to reduce constraint
violation for these MARL algorithms, but this causes instability during the training.
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OR-Based Methods RL-Based Methods
Baseline BS Baseline SS Skyline BS Skyline SS IPPO IDQN Primal-Dual WIMSN-d WIMSN-c

profit VIO profit VIO profit VIO profit VIO profit VIO profit VIO profit VIO profit VIO profit VIO

N100-C2.5k 7.52 20.88% 8.93 16.68% 10.25 6.03% 10.29 7.10% 6.44 38.21% 5.94 34.79% 5.86 8.75% 9.10 0.21% 8.84 0.76%
N100-C5k 11.38 6.45% 12.91 4.78% 14.16 0.00% 13.91 0.00% 13.53 28.43% 12.67 24.07% 11.60 0.62% 12.61 0.06% 12.38 0.06%
N100-C10k 15.29 2.36% 15.72 1.20% 16.57 0.00% 16.70 0.00% 18.31 16.54% 16.72 16.91% 14.84 0.00% 16.93 0.00% 17.43 0.00%
N100-C20k 16.61 0.06% 17.13 0.00% 17.23 0.00% 17.81 0.00% 17.89 7.18% 16.95 8.42% 16.60 0.00% 18.01 0.00% 17.51 0.00%
N1k-C25k 10.54 6.55% 10.93 4.86% 11.80 0.00% 11.83 0.00% 9.55 26.38% 9.13 19.67% 8.65 0.74% 10.83 0.15% 12.05 0.47%
N1k-C50k 13.44 2.61% 13.95 1.21% 14.10 0.00% 14.37 0.00% 11.64 8.97% 11.37 9.81% 10.91 0.00% 13.27 0.00% 14.08 0.00%
N1k-C100k 14.88 0.00% 15.63 0.00% 15.60 0.00% 16.01 0.00% 16.05 4.50% 17.39 5.32% 14.90 0.00% 16.94 0.00% 17.04 0.00%
N1k-C200k 15.90 0.00% 16.48 0.00% 15.96 0.00% 16.51 0.00% 16.54 0.88% 16.24 0.00% 15.87 0.00% 16.93 0.00% 16.26 0.00%
N2k-C58k 8.95 5.48% 9.70 4.63% 9.42 0.00% 9.57 0.00% 5.45 5.49% 6.82 7.27% 8.86 0.00% 9.17 0.00% 9.50 0.00%
N2k-C115k 11.30 0.87% 11.85 0.26% 11.94 0.00% 12.19 0.00% 9.36 0.88% 9.18 0.00% 11.11 0.00% 11.60 0.00% 12.20 0.00%
N2k-C231k 12.85 0.00% 12.99 0.00% 12.94 0.00% 13.42 0.00% 12.02 0.00% 12.38 0.00% 12.67 0.00% 12.58 0.00% 13.14 0.00%
N2k-C461k 13.02 0.00% 13.62 0.00% 13.13 0.00% 13.56 0.00% 13.09 0.00% 13.58 0.00% 13.19 0.00% 13.30 0.00% 14.27 0.00%

Table 1: The daily profit per SKU in ×103 USD and the ratio of violation on the capacity limit
of different algorithms in different inventory management tasks on held-out testing data. For the
tasks, “N” indicates the number of SKUs to control and “C” indicates the capacity limit on the shared
inventory (i.e., the budget level L). We compare WIMSN with OR-based methods and RL-based
methods: BS (base-stock policy), SS ((s, S)-policy), IPPO (de Witt et al., 2020), IDQN (Tan, 1993),
Primal-Dual (Chen et al., 2021), WIMSN-d (with discrete λs), and WIMSN-c (with continuous λs).
See details in Section 6. WIMSN models use the same model for all tasks with the different “N” and
“C” while others train separate models for different tasks. We present the average over 5 seeds. We
underline Parato optimal solutions and color Parato optimal solutions with constraint violation < 1%
(excluding skyline BS and skyline SS since they are ad-hoc solutions).

WIMSN always incur a higher constraint violation, which means they may behave worse in reality.
(In our experiment, constraint violation does not incur any loss, but in reality, a higher constraint
violation may lead to additional loss.) Besides, unlike the other methods, WIMSN does not need
to re-train the model for different tasks, therefore greatly reducing the computational costs (due to
space limit, the computational costs of different methods and the variance across different seeds are
provided in Appendix D).

Figure 2: On the task where the capacity limit
changes from 50k to 100k on the 50th day,
WIMSN-c earns 22.7% and 18.4% more cumula-
tive profit than IPPO (C100k) and IPPO (C50k)
respectively while incurring significantly less
constraint violation than IPPO (C100k).

Online Adaptation for Capacity Limit. To eval-
uate the adaptability of WIMSN to the changing
budget level, we select a 100-day period to con-
trol 1000 SKUs and change the capacity from 50k
to 100k on the 50th day. We present the cumula-
tive profit per SKU and the maximum constraint
violation over this period in Figure 2. We com-
pare WIMSN-c with two IPPO models trained
under the capacity limit 100k and 50k respectively
(i.e., C100k/C50k). We observe that the IPPO
(C100k) can overflow in the first 50 days and per-
form poorly due to the inconsistency between ca-
pacity limits used in training (100k) and testing
(50k), whereas the IPPO (C50k) does not perform
good enough for the last 50 days due to overly
conservative replenishment strategy. In contract,
WIMSN-c performs well across all the time pe-
riod by adjusting λg adaptively according to the
current capacity limit (cf. the purple curves in
Figure 2). When the capacity is tight, λg fluctuates around 4.2; and when the capacity doubles, λg

adapts quickly and decreases to values around 3.6 to allow agents to take more aggressive actions.

7 CONCLUSION
We proposed WIMS (Whittle Index with Multiple actions and State constraint), a novel form of
Whittle Index that extends to the multi-agent reinforcement learning (MARL) setting with multiple
discrete actions and a global constraint on the state space. This MARL setting is suitable for many
industrial tasks such as inventory management where each agent chooses a replenishing quantity
level for the corresponding stock-keeping-unit (SKU) such that the total profit is maximized while
the total inventory does not exceed a certain limit. Based on WIMS, we propose a deep MARL
algorithm called WIMSN for inventory management. Empirically, WIMSN is computationally
efficient (without the need to re-train the model when the constraint limit or the combinition of SKUs
changes), scalable (to thousands of agents), and high-performing (surpassing previous OR and MARL
baselines especially on hard tasks with tight constraints).
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A INVENTORY MANAGEMENT

We consider a simplified setting with one store and multiple SKUs to better focus on the constrained
MARL setting considered in this paper. We further assume that there is an upstream warehouse that
can fulfill all the requirements from the store. Our objective is to train a high-quality replenishing
policy for each SKU in the store, particularly when there are a large number of SKUs and when the
constraint on the inventory capacity is tight. Moreover, due to the flexibility of RL algorithms, our
method can also be applied to more complex settings, e.g., with multi-echelon structure or fluctuate
supply.

Similar to previous work, we follow the multi-agent RL (MARL) framework with decentralized
agents, each of which manages the inventory of one SKU in the store. We assume that the store has
N SKUs in sell, all of which share a common inventory capacity that can store up to Lt units at the
same time.

Replenishing decisions of each SKU are made on discretized time steps (which are days in this paper).
For the t-th time step and the i-th SKU, we denote the in-stock quantity by Iit ∈ Z. This quantity
is constrained by the limit of the inventory capacity (i.e., the shared resources). Accordingly, the
following constraint holds:

∀t ≥ 0,

n∑
i=1

Iit ≤ Lt. (7)

The dynamics of the system is as follows: For the t-th time step and the i-th SKU, the corresponding
agent can place a replenishment order to request Oi

t ∈ Z units of products from its upstream
warehouse. It takes several time steps (referred to as the leading time LT i

t ) before these products are
delivered to the store. We denote the total units in transit at the t-th time step by T i

t ∈ Z and the total
units arrived at the t-th time step by Ai

t ∈ Z. Meanwhile, the customer demand is Di
t and leads to an

actual sale of Si
t ∈ Z units. Due to the possibility of out-of-stock, Si

t may be smaller than Di
t. We

consider the setting where the leading time LT i
t and the demand Di

t are stochastic.

For clearness, we summarize the dynamics these variables as follows:

Si
t = min

(
Di

t, I
i
t

)
Ai

t =
∑

τ :τ+LT i
τ=t

Oi
τ

T i
t+1 = T i

t −Ai
t+1 +Oi

t+1 Iit+1 = Iit − Si
t +Ai

t+1

The immediate profit of the i-th SKU is calculated according to the following equation:

Ri
t = piS

i
t − qiO

i
t − oiI

[
Oi

t > 0
]
− bi(D

i
t − Si

t) (8)

where pi, qi, oi, bi are the unit sale price, the unit procurement price, the order cost, and the unit
backlog cost for the i-th SKU respectively, and I[·] is an indicator function which equals to one when
the condition is true and zero otherwise. The order cost reflects the fixed transportation cost or the
order processing cost, and yields whenever the order quantity is non-zero.

The objective of this task is to find a policy π that generates replenishment orders Oi
t for each SKU

to solve the following constrained optimization problem:

max
π

E

[ ∞∑
t=0

N∑
i=1

γtRi
t

∣∣∣π] , s.t.,

N∑
i=1

Iit ≤ Lt,∀t. (9)

When the total in-stock quantity
∑N

i=1 I
i
t exceeds the inventory capacity Lt, we reduce equal amount

of in-stock quantities of different SKUs such that the total in-stock quantity equals the capacity
limit. In the train procedure of baseline algorithms, we calculate the reward penalty for the dropped
quantities before dropping them, and use the with-penalty reward to train the model. In the test
procedure, the dropped quantities do not contribute any reward (neither income nor penalty), just as
they have never been replenished. In addition, we will also record the quantity of constraint violation
viot :=

∑N
i=1 I

i
t − Lt and report the maximum constraint violation VIO = maxt viot.

Remark. We formulate the inventory management problem as an optimization problem with hard
constraints. However, from a practical perspective, it is unlikely to strictly prevent constraint violation
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Notation Explanation
N The number of SKUs
Iit Inventory of the i-th SKU at the t-th time step
Oi

t Order quantity of the i-th SKU at the t-th time step
Di

t Demand of the i-th SKU at the t-th time step
LT i

t Lead time of the order placed at the t-th time step for the i-th SKU
Si
t Sale quantity of the i-th SKU at the t-th time step

T i
t Quantity in transit of the i-th SKU at the t-th time step

Ri
t Profit generated on the i-th SKU at the t-th time step

pi Unit sales price of the i-th SKU
qi Unit procurement cost of the i-th SKU
oi Unit order cost of the i-th SKU
bi Unit backlog cost of the i-th SKU
L Storage capacity of store

Table 2: Notation for the inventory management problem considered in this paper.

(exceeding the capacity limit) w/o reducing the profitability. Specifically, there are many practical
workarounds when the inventory overflows, such as clearance sale, renting additional storage space,
or returning products, and these workarounds are preferable than using an overly conservative and
low-profitability strategy. Therefore, our objective under this mathematical formulation is to obtain a
policy such that this constraint strictly holds in most of the cases while achieving as high profit as
possible.

For convenience, we summarize the notations used in this paper in Table 2.

B PROOF

B.1 PROOF OF LEMMA 4.2

Lemma 4.2 (action monotonicity to indexability) can be proved by contradiction as follows: We
assume that the action monotonicity condition is satisfied but there exists an α such that Sα(λ) does
not decrease monotonically (i.e., the agent is not indexable). This indicates that there exists a state
s ∈ S and λ1 < λ2 such that s /∈ Sα(λ1) but s ∈ Sα(λ2). In other words, when λ = λ1, the optimal
policy selects an action a ≤ α on state s; when λ = λ2, the optimal policy selects an action a > α
on the same state. Therefore, we have π∗

λ1
(s) ≤ α < π∗

λ1
(s) which contradicts the assumption that

π∗
λ1
(s) ≥ π∗

λ1
(s).

B.2 FEASIBILITY OF ACTION MONOTONICITY CONDITION IN LEMMA 4.2

In this section, we provide an intuition why this assumption is natural for inventory management. By
defining I(π) := E[

∑∞
t=0 γ

tl(st)|π] where the expectation is over the initial state distribution and
the randomness of the environment/policy, we can decompose Qλ(π) = J(π)− λI(π).

We can prove I(π∗
λ1
) ≤ I(π∗

λ2
) if λ1 > λ2. This indicates that we would better to maintain a higher

inventory level when λ decreases, which in turn requires us to take larger actions to order more
quantities for replenishment.

Lemma B.1. I(π∗
λ1
) ≤ I(π∗

λ2
) if λ1 > λ2

Proof. If I(π∗
λ1
) > I(π∗

λ2
), then

(λ1 − λ2)[I(π
∗
λ1
)− I(π∗

λ2
)] = λ1I(π

∗
λ1
)− λ2I(π

∗
λ1
)− λ1I(π

∗
λ2
) + λ2I(π

∗
λ2
) > 0,

i.e.,

λ1I(π
∗
λ1
)− λ2I(π

∗
λ1
)− λ1I(π

∗
λ2
) > −λ2I(π

∗
λ2
)
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Thus,
Qλ2

(π∗
λ1
) = J(π∗

λ1
)− λ2I(π

∗
λ1
)

= J(π∗
λ1
)− λ1I(π

∗
λ1
) + (λ1 − λ2)I(π

∗
λ1
)

≥ J(π∗
λ2
)− λ1I(π

∗
λ2
) + (λ1 − λ2)I(π

∗
λ1
)

= J(π∗
λ2
)− λ1I(π

∗
λ2
) + λ1I(π

∗
λ1
)− λ2I(π

∗
λ1
)

> J(π∗
λ2
)− λ2I(π

∗
λ2
)

= Qλ2(π
∗
λ2
),

which contradicts the fact that π∗
λ2

is the optimal policy for λ2.

B.3 PROOF OF LEMMA 4.5

The following proof goes for any s ∈ S and α ∈ [A− 1] and an arbitrary set of optimal policies π∗
λ

for λ ∈ R that define Sα and f(s).

1) If λ < [f(s)]α := supλ{λ : s ∈ Sα(λ)}, we have λ = [f(s)]α − ϵ for some ϵ > 0. By
Definition 4.1, when ϵ > 0, s ∈ Sα(λ) and therefore the optimal policy π∗

λ satisfies π∗
λ(s) > α, i.e.,

Q∗
λ(s,> α) ≥ Q∗

λ(s,≤ α).

2) Similarly, if λ > [f(s)]α, we have s /∈ Sα(λ) and therefore the optimal policy π∗
λ satisfies

π∗
λ(s) ≤ α, i.e., Q∗

λ(s,> α) ≤ Q∗
λ(s,≤ α).

3) If Q∗
λ(s,> α) and Q∗

λ(s,≤ α) is continuous w.r.t. λ, it is not hard to see Q∗
λ(s,> α) = Q∗

λ(s,≤
α) when λ = [f(s)]α by combining the previous two arguments.

Next, we prove the continuity of Q∗
λ(s, a) which easily leads to the continuity of Q∗

λ(s,> α)
and Q∗

λ(s,≤ α) since the maximum over several continuous functions is continuous. Suppose
π1 and π2 are the optimal policies when λ = λ1 and λ = λ2 respectively. Due to optimality,
we have Qπ2

λ2
(s, a) ≥ Qπ1

λ2
(s, a) and Qπ1

λ1
(s, a) ≥ Qπ2

λ1
(s, a) for any (s, a). By the definition of

Qπ
λ(s, a) in (1), Qπ

λ(s, a) is continuous w.r.t. λ for any (s, a), i.e., for given ϵ > 0, there exists
δ > 0 such that |λ1 − λ2| ≤ δ ⇒ |Qπ2

λ2
(s, a) − Qπ2

λ1
(s, a)| ≤ ϵ and |Qπ1

λ2
(s, a) − Qπ1

λ1
(s, a)| ≤ ϵ.

Therefore, we have Qπ2

λ2
(s, a)−Qπ1

λ1
(s, a) ≤ Qπ2

λ2
(s, a)−Qπ2

λ1
(s, a) ≤ ϵ and Qπ2

λ2
(s, a)−Qπ1

λ1
(s, a) ≥

Qπ1

λ2
(s, a)−Qπ1

λ1
(s, a) ≥ −ϵ, which imply |Qπ2

λ2
(s, a)−Qπ1

λ1
(s, a)| ≤ ϵ for any (s, a) and completes

the proof.

B.4 PROOF OF LEMMA 4.6

When Lt →∞, we want to show that the WIMS policy with the global cost λg = 0 is optimal. This
policy can be written as

ait =
∑
α<A

I[[f(sit)]α ≥ 0] + 1

=
∑
α<A

I[Q∗
0(s,> α) ≥ Q∗

0(s,≤ α)] + 1

= argmax
α

Q∗
0(s, α)

(10)

where the first equation follows the definition of the WIMS policy (Eq. 3), the second equation follows
Lemma 4.5, the third equation can be derived following the definition in Eq. 2. Notice that when the
capacity limit is infinite, the optimal policy should always take the action argmaxα Q∗

λ=0(s, α).

C IMPLEMENTATION

In addition to the WIMSN-c (that learns the WIMS policy with neural network on continuous λ)
presented in Algorithm 1. We also design another version called WIMSN-d (that learns the WIMS
policy with neural network on K discretized λ1, · · · , λK) and present it in Algorithm 2. With
prescribed grids of λs, WIMSN-d decouples the inter-dependency for learning the Q network and
learning the Whittle index network, and therefore is more stable. However, the performance of
WIMSN-d may be limited by the discretization of λ and this explains why WIMSN-c outperforms
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Algorithm 2 WIMSN-d: Learn the WIMS policy with neural network on discretized λs

1: Given Λ := (λ1, · · · , λK)
2: Initialize:
3: The Q network Qθ : S → RA×K with the (a, k)-th element representing Qθ(s, a, λk)
4: The Whittle index network fϕ : S → RA−1

5: ▷ Phase 1: Train agents independently without any constraint
6: Initialize the replay buffer D with warming-up samples collected by the random policy
7: for each iteration do
8: Select λ← λk for some k sampled from Unif([K])
9: Roll out the ϵ-greedy version of the policy µλ(·) = argmaxa Qθ(·, a, λ)

10: Store new transitions to the replay buffer D
11: Sample a batch B := {(s, a, r, s′)} from D
12: Update the Q-network following (4)
13: Generate Whittle index labels for the batch {(s, f̂)}
14: Update the Whittle index network by SGD on minϕ EB[∥fϕ(s)− f̂∥2]
15: end for
16: ▷ Step 2: Train joint agents
17: The same as Algorithm 1

WIMSN-d on tasks with over 1000 SKUs (cf. Table 1). We provide the source code in https:
//github.com/zhangchuheng123/WIMSN.

For OR-based methods and two previous MARL-based methods (IPPO and IDQN), the optimization
objective in the train procedure is the cumulative profit plus a reward penalty equal to 50% of the
procurement cost of dropped products, which defines a consistent notion of optimality in these
baselines.

C.1 IMPLEMENTATION OF OR-BASED METHODS

We select two popular OR algorithms, the base-stock policy and the (s, S)-policy, as our operational-
research-based benchmarks.

For each SKU, the (s, S)-policy has two parameters: sparam is the re-order point and Sparam is the
order up-to level. On each day, the policy places an order to replenish the inventory level up to the
order up-to level Sparam if the quantity of the order exceeds the re-order point sparam. Specifically, the
policy places an order with the quantity

O =

{
Sparam − I − T Sparam − I − T ≥ sparam

0 otherwise
, (11)

where O is the quantity of the replenishment order, I is the inventory level, T is the quantity in transit.

The base stock policy is a special case of the (s, S)-policy with sparam = 0.

For a task with N SKUs, the (s, S)-policy and the base stock policy need to specify 2N and N
parameters respectively. Consequently, it is not trivial to obtain the best set of parameters on a given
task, and we use genetic algorithm (GA) to search for these best parameters. First, we search for
the best set of shared parameters (i.e., using the same parameters for all the SKUs) and use it as
the initial solutions in GA. Second, we search using GA with the population size as 100 and the
minimum number of iterations as 1000. Third, we terminate the search only if the minimum number
of iterations is reached as well as the solution is a local optimum. To verify whether the solution is a
local optimum, we evaluate the performance of all the element-wise perturbations to this solution and
treat the solution as a local optimum only if the solution performs the best among these perturbed
candidates.

The evaluation metric (in the train procedure) of these OR-based methods is the same as the baseline
MARL algorithms for consistency, i.e., the cumulative profit plus a penalty equal to 50% of the
procurement cost of overflowed products. Indeed, we can trade off the constraint violation with the
profit by adjusting for the coefficient. However, we find that using different coefficients does not
influence the dominant advantage of our algorithm.
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Hyperparameters Values
The number of training iterations 5× 106

The number of episodes collected in each iteration 8
The number of time steps in each episode 100
The capacity (in #episodes) of the replay buffer 5000
ϵ annealing scheme for the ϵ-greedy exploration Linear annealing
ϵ annealing span for the ϵ-greedy exploration 4× 106 iterations
ϵ values for the ϵ-greedy exploration From 1.0 to 0.05
The number of layers in the Q network 4
The number of neurons in each hidden layer of the Q network 128
The number of layers in the Whittle index network 4
The number of neurons in each hidden layer of the Whittle index network 128
Discount rate γ 0.985
Optimizer PMSProp
Learning rate for the Q network 5× 10−4

Learning rate for the Whittle index network 1× 10−4

Gradient clip 10

Table 3: The hyperparameters of WIMSN

C.2 IMPLEMENTATION OF BASELINE MARL ALGORITHMS

For these MARL algorithms that do not follow the constrained MDP formulation, we penalize the
violation of the constraint into the immediate profit to help the algorithms account for the constraint.
Specifically, if

∑N
i=1 I

i
t > L for some time step t, we penalize each agent (indexed by j) with an

additional cost which equals to 0.5× 1
N (

∑N
i=1 I

i
t −L)× qj where qj is the unit procurement price of

the j-th SKU. We train the agents using individual rewards (IR) which provides penalty-regularized
reward to each agent, and we let all the agents amortize the overflowing penalty 2.

As mentioned before, in the train procedure, these MARL baselines use the reward function as
the cumulative profit plus a penalty equal to 50% of the procurement cost of overflowed products.
This penalty coefficient trades off the constraint violation with the profit. We observe that these
MARL baselines result in signification constraint violation, which calls for larger penalty coefficient.
However, we find that further increasing the coefficient will lead to instability, and this is the reason
why we set the coefficient to 50%.

For the MARL baselines and our WIMSN implementation, we additionally use the following
techniques to improve the stability and the generalization of the model:

• Observation normalization: Since different SKUs may vary greatly in prices, quantities, and
demands, we normalize different features in the observation individually. Specifically, we
divide the features with price/quantity/demand as the unit with the selling price/the storage
capacity/the average demand over the past 21 days respectively. For example, the feature
“in-stock quantity” is equal to 500 with the “quantity” unit and the storage capacity is 5000.
Then, we normalize the feature to 500/5000 = 0.1.

• Action normalization: Since different SKUs may vary greatly in the range of the demands,
we use the quantity of the replenishment orders as the multiply of the action and the
average demand of the corresponding SKU over the past 21 days. This greatly improve the
generalization of the model over different SKUs.

• State/reward normalization: We calculate the standard score (or z-score) (Huck et al., 1986)
of the state and the reward using the rolling average and standard deviation during the
training.

• Loss normalization: For WIMSN-d, since the Q values for different λs have different value
ranges, we normalize the loss separately for different dimensions of λ.

2We have also tried to use team reward (TR) which is free of the penalty assignment problem. However, the
experiment results suggested that using IR is better than or equal to using TR.
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Testing MARL-Based Methods
Performance Baselines Ours

IPPO IDQN Primal-Dual WIMSN-d WIMSN-c
N100-C2.5k 391 435 420

2652 in total
(One model
for all tasks)

2575 in total
(One model
for all tasks)

N100-C5k 400 432 423
N100-C10k 390 432 428
N100-C20k 397 430 425
N1k-C25k 1222 1959 1207
N1k-C50k 1228 2061 1247
N1k-C100k 1227 2061 1183
N1k-C200k 1190 2021 1253
N2k-C58k 1567 2728 1602
N2k-C115k 1618 2858 1689
N2k-C231k 1593 2847 1549
N2k-C461k 1548 2703 1612

Table 4: The computational cost of different algorithms in different inventory management tasks with
different numbers of SKUs (indicated by “N”) and capacity limits (indicated by “C”). See detailed
description of the algorithms in comparison in Section 6. We present the average wall time (in
minutes) of all the corresponding runs in Table 1. Note that in WIMSN-c or WIMSN-d, we use the
same model for all different tasks with different numbers of SKUs and capacity limits, this greatly
reduces the computational costs of WIMSN-c and WIMSN-d.

C.3 IMPLEMENTATION OF WIMSN-C

For WIMSN-c and WIMSN-d, we only train one model (i.e., the Whittle index network) on all
2307 SKUs and use it for evaluation on all tasks with different combinations of SKUs and capacity
limits. WIMSN-c is implemented based on the code of the IDQN implementation, and we list the
hyperparameters in Table 3.

Thanks to Proposition 4.4, the outcome of this rule is equivalent to the rule (3) we used in our
algorithm. However, we find that (3) is more robust since the output of the Whittle index network
may sometimes violate Proposition 4.4 slightly and it results in better empirical performance.

When initializing the Whittle index network, we add a constant offset λconst = 4 to the output.
The offset is chosen as a reasonable prior for the cost λ which should correspond to the maximum
affordable unit storage in a typical supply chain. This trick makes the networks are trained initially
over a reasonable range of λs.

C.4 IMPLEMENTATION OF WIMSN-D

We use K = 51 and (λ1, · · · , λK) = np.linspace(0, 10, 51).

Given a state s, the Q network outputs a matrix Q ∈ RA×K . The Whittle index label for this sample
f̂ can be calculated as follows:

Q_max_forward = np.maximum.accumulate(Q, axis=0)
Q_max_backward = np.maximum.accumulate(Q[::-1], axis=0)[::-1]
Q_diff = np.abs(Q_max_forward - Q_max_backward)
f̂ = np.argmin(Q_diff, axis=1)[:-1]

D EXTENDED EXPERIMENT RESULTS

We show the computational costs (in terms of the wall time in minutes) of different algorithms in
Table 4. We run our experiments on a machine with 24× Intel Xeon CPU E5-2690 v4 CPU, 1×
NVIDIA V100 16G GPU, and 512G memory. We also show the standard deviation of the daily profit
per SKU for different MARL-based algorithms in Table 5.

This dataset used in this paper is provided by one of our retail partners. The experiments are based on
the history of 2307 SKUs from 2018-08-01 to 2019-12-13. The training / validation / testing sets are
set to be the subset 2018-08-01 to 2019-05-27 (300 days) / 2019-05-28 to 2019-09-04 (100 days)
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Testing MARL-Based Methods
Performance Baselines Ours

IPPO IDQN Primal-Dual WIMSN-d WIMSN-c
N100-C2.5k 0.07 0.06 0.17 0.03 0.03
N100-C5k 0.39 0.41 0.85 0.15 0.20
N100-C10k 0.07 0.08 0.07 0.01 0.07
N100-C20k 0.01 0.07 0.08 0.00 0.07
N1k-C25k 0.46 0.43 0.36 0.14 0.15
N1k-C50k 0.67 0.78 0.93 0.23 0.40
N1k-C100k 0.44 0.02 0.38 0.10 0.36
N1k-C200k 0.23 0.34 0.20 0.14 0.10
N2k-C58k 1.67 0.98 0.50 0.08 0.01
N2k-C115k 1.28 1.42 0.80 0.39 0.46
N2k-C231k 0.47 0.33 0.15 0.45 0.27
N2k-C461k 0.13 0.30 0.01 0.18 0.19

Table 5: The standard deviation across different seeds on the daily profit per SKU for different
algorithms in different inventory management tasks with different number of SKUs (indicated by
“N”) and capacity limit (indicated by “C”).

/ 2019-09-05 to 2019-12-13 (100 days) respectively. For the experiments on 100/1000 SKUs, we
sample a subset of SKUs uniformly randomly from the 2307 SKUs.
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