
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Natural Language Induced Adversarial Images
Anonymous Authors

ABSTRACT
Research of adversarial attacks is important for AI security because
it shows the vulnerability of deep learningmodels and helps to build
more robust models. Adversarial attacks on images are most widely
studied, which includes noise-based attacks, image editing-based
attacks, and latent space-based attacks. However, the adversarial
examples crafted by these methods often lack sufficient semantic
information, making it challenging for humans to understand the
failure modes of deep learning models under natural conditions.
To address this limitation, we propose a natural language induced
adversarial image attack method. The core idea is to leverage a
text-to-image model to generate adversarial images given input
prompts, which are maliciously constructed to lead to misclassifica-
tion for a target model. To adopt commercial text-to-image models
for synthesizing more natural adversarial images, we propose an
adaptive genetic algorithm (GA) for optimizing discrete adversarial
prompts without requiring gradients and an adaptive word space re-
duction method for improving the query efficiency. We further used
CLIP to maintain the semantic consistency of the generated images.
In our experiments, we found that some high-frequency semantic
information such as “foggy”, “humid”, “stretching”, etc. can easily
cause classifier errors. These adversarial semantic information exist
not only in generated images, but also in photos captured in the real
world. We also found that some adversarial semantic information
can be transferred to unknown classification tasks. Furthermore,
our attack method can transfer to different text-to-image models
(e.g., Midjourney, DALL·E 3, etc.) and image classifiers.

CCS CONCEPTS
• Security and privacy → Social aspects of security and privacy;
• Computing methodologies → Computer vision; Bio-inspired
approaches.

KEYWORDS
Adversarial Example, Adversarial Attack, Text-to-Image model,
Social Aspects of Generative AI, Vision and Language

1 INTRODUCTION
As widely acknowledged, some carefully designed inputs called
adversarial examples can mislead the deep learning models. The
perturbation process is called adversarial attack [3, 17, 41]. Adver-
sarial attacks can identify the vulnerability of deep learning models,
and facilitate the development of more robust models. Currently,
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Figure 1: Different adversarial image attacks. (a) Noise-based
attack. (b) Image editing-based attack. (c) Latent space-based
attack. (d) Natural language induced adversarial image at-
tack (Ours).

most adversarial attacks focus on adversarial images, which can be
roughly categorized into three types (Figure 1).

The first type is noise-based attack [3, 17, 35, 41, 59], which
generates adversarial examples by adding adversarial noise to the
image. The second type is image editing-based attack [62, 63, 66],
which modifies certain properties (e.g. HSV, brightness, etc. ) of
the image. The third type is latent space-based attack [30, 64]. This
attack guides the generators such as GAN to generate adversarial
images by modifying the latent space variables of the generators.

If we want to understand under what natural conditions images
are easily misled in classification, the above methods are ineffec-
tive because they are difficult to incorporate semantic information
during attacks. To describe natural situations, the most convenient
method for users is language. For example, users can use language
to depict numerous natural scenes (such as various weather condi-
tions or different gestures of objects), utilize text-to-image models
to generate a large number of images, and test an image classifier
on which natural scenarios it is easy to be misled.

To achieve this goal, we propose a natural language induced ad-
versarial image attack method. Language is one of the easiest ways
to be understood by humans. The current progress in text-to-image
models [42, 48] makes it possible for us to use natural language to
generate adversarial images according to our needs. The core idea
is to leverage a text-to-image model to generate adversarial images
given input prompts, which are maliciously constructed to lead to
misclassification for a target model. We construct the adversarial
prompts by optimizing the words in prompts. Our language-based

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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method has rich semantic information and helps humans to analyze
the adversarial images from a natural language view.

Optimizing the words in prompts for text-to-image models faces
challenges. First, each word in a sentence is a discrete variable,
which is difficult to be optimized using gradient-based methods.
Second, many commercial text-to-image models such as Midjour-
ney are black-box models whose gradients and parameters are not
accessible. Third, some commercial models such as DALL·E 3 limit
the number of queries, which bring difficulty for the adversarial op-
timization. Besides, we should make the generated images contain
enough semantic information consistent with the prompts during
the optimization.

To adopt commercial text-to-imagemodels for synthesizingmore
natural adversarial images, we propose an adaptive genetic algo-
rithm (GA) for optimizing discrete adversarial prompts without
requiring gradients and an adaptive word space reduction method
for improving the query efficiency. We further used CLIP to main-
tain the semantic consistency of the the generated images.

We evaluated our method on different classification attack tasks.
In our experiments, we found that some high-frequency semantic
information such as “foggy”, “humid”, “stretching”, etc. can easily
cause classifier errors. These adversarial semantic information exist
not only in generated images, but also in photos captured in the real
world. We also found that some adversarial semantic information
can be transferred to unseen classification tasks. Furthermore, our
attack method can transfer to different text-to-image models (e.g.,
Midjourney, DALL·E 3, etc.) and image classifiers. Our method
helps people to better understand the weakness of classifiers from a
natural language perspective. Through experiments, we also reveal
the potential safety and fairness issues of current text-to-image
models. It inspires us to build more robust and fair AI models.

2 RELATEDWORKS
2.1 Noise-Based Attacks
These attacks generate adversarial images by adding adversarial
noises on the original images. Classical methods include L-BPGS
[52], FGSM [17], PGD [41], C&W [3], etc. Some recent works fur-
ther improved the strength and feasibility of noise-based attacks.
For example, SparseFool [43], ADMM [61] and LP-BFGS [67] en-
hanced the group sparsity of perturbations. PONS [19], HO-FMN
[16] and FAB-Attack [11] maintained attack performance with less
computational efforts during noise searching. Xie [60], Rahmati
[46], Ilyas [25] and Ergezer [14] generalized noise-based attack to
new scenarios, such as anchor-free detectors, multi-angle detectors,
black-box models, etc.

2.2 Image Editing-Based Attacks
These attacks operate image transformations to generate adversar-
ial images. The early works [13, 20, 29, 62] mainly involved image
rotation, flipping, and adjustment of the HSV space. Some recent
works introduced more complex image processing methods. For
example, Liu [33], Zeng [65] used additional differentiable render-
ers to do image transformations. Wang [57] leveraged perception
similarity supervision [68] to enlarge adversarial perturbations.

2.3 Latent Space-Based Attacks
These attacks change the latent space of generative models to gener-
ate adversarial images. Zhao [69], Lin [32], Hu [22], Lapid [30] and
Lau [31] used Generative Adversarial Network (GAN) to generate
adversarial images by finetuning its generator. Xue [64], Wang [55],
Chen [4], Liu [34] and Chen [6] used diffusion models to gener-
ate adversarial images by optimizing the parameters of the U-Net
structure, or by adding learned noises in the latent space.

2.4 Text-to-Image Models
Text-to-image models are a group of multimodal generative mod-
els that can create images from text prompts. These models firstly
encode the text prompt into a latent space, then circularly and con-
ditionally denoising a Gaussian Distribution back to an image. The
denoising process are trained from a predefined forward process.
Influential Text-to-image models include Midjourney[42], Stable
Diffusion[48], DALL·E 2 [47], Imagen [49], etc.

3 METHODS
3.1 Problem Formulation and Overview
Our idea is to optimize the words within a sentence to obtain
prompts for text-to-image models, and then input the prompts
to text-to-image models to obtain adversarial images. Let𝑊 denote
the word space, including subjects, verbs, adjectives, etc. These
words can be combined into a prompt 𝑝 according to grammatical
order. Let Combination denote this function. Let𝐺 denote the text-
to-image model. For any prompt 𝑝 , 𝐺 (𝑝) is the generated image
with the ground truth category 𝑦. Let 𝑓 denote the image classifier.
Our goal is to conduct an untargeted attack, and we hope that by
optimizing 𝑝 , the classifier 𝑓 will misclassify the image 𝐺 (𝑝) into
a category other than 𝑦. We define the attack success rate of 𝑝 as
ASR (𝑝). At the same time, we hope that the generated image𝐺 (𝑝)
contain enough target semantic information of ground truth cate-
gory 𝑦. For this purpose, we define the target semantic information
strength as SEM (𝑝). We formulate the problem as:

maximize
𝑝

ASR (𝑝) + 𝜆 · SEM (𝑝)

subject to 𝑝 = Combination(𝑊 ),
(1)

where 𝜆 is determined empirically.
To optimize the prompt 𝑝 , we propose an adaptive genetic algo-

rithm for optimizing discrete adversarial prompts without requiring
gradients and an adaptive word space reduction method for im-
proving the query efficiency. We further used CLIP to maintain
the semantic consistency of the the generated images. The overal
pipeline of our method is shown in Figure 2.

3.2 Building the Word Space and Prompts
The adversarial prompt structure is customizable. For example, in
our animal classification attack experiments, the prompt structure
is defined as

“<number><color>[target animal] <appearance>is <gesture>on the
<background>on a <weather>day, the [target animal] faces forward,
the [target animal] occupies the main part in this scene, viewed
<viewangle>.”



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Natural Language Induced Adversarial Images ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

<number>  <color>  <appearance>     <gesture>   …  

one            red      wearing clothes      sitting       …

two            blue    wearing glasses      running    …

…              …               …                     …                      

T
ex

t 
E

n
co

d
er

C
L

IP

A photo of 

a [target]

Generated       

Images

Classifier

ASR

SEM

Fitness scoreAdaptive GA 

optimizer

Original prompt space

Update the words in 

the prompt space

Prompt:

Word space:

<number> <color> [target] <appearance> is 

<gesture> on the <background> on a <weather> 

day …

Text-to-image models

Manually design or 

auto-generate by 

GPT-4 for initialization

Figure 2: The overall pipeline of the proposed method.

The optimization word space is also customizable. “<word>" rep-
resents a word that can be optimized. For example, in our experi-
ments, the word space of “<weather>” is { “sunny", “rainy", “cloudy",
“snowy", “windy", “foggy”, “stormy”, “humid” }. “[target animal]” is
the ground truth target category 𝑦 (e.g. “cat”) of the generated
images, which is user-defined in prompt 𝑝 and fixed during the
prompt optimization.

We can also use GPT-4 to automatically construct the word space,
which can be transferred to other classification tasks. Here are the
steps: First, we can select a target category, such as race, vehicle,
etc. Next, the above hand-constructed word space is input into
GPT-4 as an example, and GPT-4 is instructed to generate a similar
word space for new tasks. Details are introduced in Supplementary
Material (SM).

The settings of other prompts and word spaces are introduced
in SM. The word space𝑊 and the set of prompts 𝑃 are formulated
as follows:

𝑊 = {𝑤1,𝑤2, ...,𝑤𝑀 } ,
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } . (2)

where
𝑝𝑖 = Combination (𝑊 ) , 𝑖 = 1, 2, ..., 𝑁 . (3)

3.3 Fitness Evaluation
We optimize the adversarial prompts based on genetic algorithm
which simulates the genetic evolution process of a population. We
assume that there are 𝑁 prompts, constituting a population 𝑃 , and
each prompt 𝑝 is an individual in this population. One critical task
is to evaluate the fitness of these individuals, simulating the natural
selection process to retain the most optimal individuals. The fitness
function F is designed according to the Equation 1, which is

F (𝑝) = ASR (𝑝) + 𝜆 · SEM (𝑝) . (4)

3.3.1 ASR. To evaluates the attack performance of our method,
we define the attack success rate (ASR) as the ratio of the number of
successfully attacked images generated by the text-to-image model
𝐺 using prompt 𝑝 , denoted as 𝑁𝑓 (𝐺 (𝑝))≠𝑦 , to the total number of
generated images, denote as 𝑁𝐺 (𝑝) . The calculation formula is

ASR (𝑝) = 𝑁𝑓 (𝐺 (𝑝))≠𝑦/𝑁𝐺 (𝑝) . (5)

3.3.2 SEM. Our goal is to generate adversarial images that contain
enough target semantic information consistent with the prompts.
One challenge is how to to maintain the semantic consistency of
the the generated images. To address this issue, we employ the CLIP
[44] model’s text Encoder 𝐸𝑇 and image Encoder 𝐸𝐼 to calculate the
cosine distance between the generated image𝐺 (𝑝) and the target
semantic information 𝑔𝑡 of ground truth category 𝑦 (e.g., “a photo
of a cat”). This measure reflects their relevance, considering CLIP’s
robust multimodal capabilities, enabling accurate assessment of
the semantic correlation between the image content and the target
semantic text. Besides, CLIP is trained on a large-scale (i.e. 400
million) dataset, exhibiting strong generalization across diverse
image styles and backgrounds. To enhance the target semantic
information in adversarial images, we incorporate it as part of the
fitness function during the genetic optimization process, specifically
as

SEM (𝑝) = 𝐸𝐼 (𝐺 (𝑝)) · 𝐸𝑇 (𝑔𝑡 )
∥𝐸𝐼 (𝐺 (𝑝)) ∥2 · ∥𝐸𝑇 (𝑔𝑡 ) ∥2

. (6)

3.4 Adaptive Word Space Reduction
The number of queries is closely related to optimization time and
cost of using commercial text-to-image models. Besides, some mod-
els such as DALL·E 3 limit the number of queries. To reduce the
number of queries, we propose an adaptive word space reduction
method. The core idea is to select the individual with the lowest fit-
ness, denoted as 𝑝𝑙𝑜𝑤𝑒𝑠𝑡 , in each generation. Two words,𝑤𝑎𝑡𝑡𝑟1 and
𝑤𝑎𝑡𝑡𝑟2, are randomly chosen from 𝑝𝑙𝑜𝑤𝑒𝑠𝑡 , and these two words are
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removed from the word space. This is similar to eliminate weaker
genes from the gene pool based on fitness in the current gener-
ation 𝑡 , retaining relatively high-quality genes for the next 𝑡 + 1
generation’s reproduction, that is

𝑊 (𝑡+1) = AdaptiveReduce
(
𝑊 (𝑡 ) ,𝑤attr1,𝑤attr2

)
. (7)

3.5 Optimization of Adversarial Prompts
We optimize the adversarial prompts based on GA algorithm, the
optimization process includes prompts initialization, crossover, mu-
tation, selection, iteration and termination.

3.5.1 Prompts Initialization. We initialize 𝑁 prompts 𝑃𝑖𝑛𝑖𝑡 by ran-
domly selecting words from word space. These prompts can be
regarded as parent prompts, which are candidates for evolution.

3.5.2 Crossover. The crossover operation is to select two parent
prompts 𝑃parent1, 𝑃parent2 each time to generate child prompts 𝑃child
by exchanging words. Different from the standard GA algorithm
that randomly selects parents with a fixed probability, we set the
probability 𝑝𝑐 of selecting each prompt as a parent is proportional
to its fitness score as shown in Equation 8, assuming that parents
with higher fitness are more likely to produce offspring with higher
fitness. Each word is like a gene, and the offspring randomly selects
the genes of either parent.

𝑝𝑐 =

F
(
𝑝
(𝑡 )
𝑖

)
∑𝑁

𝑗=1 F
(
𝑝
(𝑡 )
𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . (8)

𝑃child = Crossover
(
𝑃parent1, 𝑃parent2, 𝑝𝑐

)
. (9)

3.5.3 Mutation. During the evolution of a population, mutations
may occur in the genes of individuals, which contributes to the
diversity of the population. Similar to this biological process, we set
a small probability 𝑝𝑚 for each word in a prompt to be randomly
changed to another word of the same type. This helps us avoid local
optimal solutions. The new population with mutated individuals
are

𝑃mutated = Mutation (𝑃child, 𝑝𝑚) . (10)

3.5.4 Selection. We use a roulette strategy to select prompts for the
next generation. This means that the probability 𝑝𝑠 of each offspring
surviving is proportional to their fitness, and is calculated using
the Equation 11. In this way, we select individuals with highest
fitness, reflecting the natural principle of “survival of the fittest” in
the evolutionary process. So

𝑝𝑠 =

F
(
𝑝
(𝑡+1)
𝑖

)
∑𝑁

𝑗=1 F
(
𝑝
(𝑡+1)
𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . (11)

𝑃selected = Selection (𝑃mutated, 𝑝𝑠) . (12)

3.5.5 Iteration and Termination Condition. The crossover, muta-
tion, and selection are performed iteratively. There are two itera-
tion termination conditions: one is when the number of iterations
reaches a threshold 𝛼 , and the other is when the success rate reaches
a threshold 𝛽 . After the termination, the final batch of retained off-
spring prompts serves as the set of adversarial prompts. These

prompts are then fed into the text-to-image model to generate
adversarial images.

4 EXPERIMENTS
4.1 Text-to-Image Models
We mainly used the Midjourney [42], which is a powerful commer-
cial text-to-image model to generate the natural language induced
adversarial images. We also tested our method on the other famous
text-to-image models including DALL·E 2 [47], DALL·E 3 [2], Stable
Diffusion [48], Mysterious XL v4 [10], Dreamshaper XL alpha 2 [8],
and Real Cartoon XL v4 [9].

4.2 Dataset
4.2.1 ImageNet. ImageNet is one of the largest publicly available
datasets for image classification tasks, consisting of over 14 mil-
lion images annotated with around 22,000 categories. The target
classifiers in our experiments were pre-trained on ImageNet. For
classification attacks, we selected 10 animal categories from Im-
ageNet as the target categories, which was the same as those of
Animal-10 [1] dataset.

4.2.2 Animals-10. Due to the category imbalance in ImageNet (e.g.
“dog” contains 118 sub-categories with 148,418 images, while “horse”
only contains 1 sub-categorie with 1300 images), which may cause
unbalanced classification performance and attack effects for dif-
ferent categories, as detailed in Section 4.5. Therefore, we chose a
category-balanced dataset Animals-10 [1] released in the Kaggle
platform. It contains around 28,000 animal images which belongs to
10 categories: cat, dog, spider, horse, chicken, butterfly, cow, sheep,
elephant, squirrel. This dataset is used to finetune the animal image
classifiers, which were pre-trained on ImageNet.

4.2.3 FairFace. We used the FairFace dataset [26] which contains
108,501 images balanced on race. It includes 7 groups: Black, White,
East Asian, Middle Eastern, Southeast Asian, Indian and Latino.
This dataset is used to finetune the race image classifier, which
were pre-trained on ImageNet.

4.3 Target Classifiers
For animal image classifiers, we used the models including ResNet
[18], ViT [12], VGG [50], Inception v3 [51], DenseNet [23], Mo-
bileNet [21], EfficientNet [53], SqueezeNet [24], RegNet [45], AlexNet
[27] implemented in the torchvision library. We also used two ad-
versarial trained models: Swin-L [38] and ConvNeXt-L [39]. For
race image classifier, we used the ViT model. The accuracy of the
finetuned classifiers are all above 98% on the corresponding dataset.

4.4 Evaluation Metrics
We used the attack success rate (ASR) as the evaluation metric
for our attack method, which is widely used by previous works
[5, 36, 37, 58]. The ASR is defined as the ratio of misclassified images
to the total number of generated images. Its calculation method has
been introduced in Section 3.3.1.
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the moon ……
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One brown squirrel 

wearing a pair of glasses 

is bark……

One white spider 

wearing a pair of glasses 

is sit ……

Figure 3: Examples for animals classifier attacks. The black texts are the prompts, the blue texts are the groundtruth categories,
and the red texts are the misclassified categories.

Table 1: ASRs (%) of different methods against animal classifiers trained on ImageNet. M: methods. T: target animal

M
T Sheep Dog Cat Horse Cow Chicken Elephant Butterfly Spider Squirrel Average

Clean 0.0 29.2 5.8 0.0 0.8 0.0 0.0 5.0 0.0 0.0 4.1
Random 56.5 76.5 44.8 54.5 22.3 3.0 15.0 31.0 18.8 42.3 36.5
Comb 60.0 78.5 37.2 47.0 40.0 2.5 17.9 31.3 22.5 39.0 37.6
Ours 83.1 89.4 78.1 95.6 78.8 77.2 80.3 92.8 86.3 85.0 84.7

Table 2: ASRs (%) of different methods against animal classifiers finetuned on Animals-10. M: methods. T: target animal

M
T Sheep Dog Cat Horse Cow Chicken Elephant Butterfly Spider Squirrel Average

Clean 0.0 0.0 0.0 4.2 0.8 3.3 0.0 0.0 0.8 0.8 1.0
Random 44.5 12.7 15.3 22.1 41.6 46.8 30.7 11.6 26.0 53.5 29.3
Comb 45.5 7.5 14.1 34.5 36.1 49.9 33.8 11.3 26.3 55.8 31.5
Ours 88.4 76.6 80.6 90.9 91.6 95.9 69.7 81.3 89.1 93.1 85.7

4.5 Attack the Animals Classifier
We evaluated the attack effect of our method on ten-animal classifi-
cation tasks. We chose Midjourney as the generator of adversarial
images. and the settings for adversarial prompt structure and word
space were introduced in Section 3.2. For the target animal, we
used 10 types of animals in Animals-10. We used our adaptive GA
method to get the adversarial prompts. For each target animal, we
initialized 20 prompts with random word initialization. The proba-
bility of mutation was 0.01, and the hyperparameter 𝜆 in the fitness
function was 0.1. The termination condition was that the number
of iterations reached 8 generations. For fair comparison, we chose
three methods, clean image generation (e.g. the prompt is “gener-
ate an image of dog”), random word selection and combinatorial

testing [28] as control experiments. Under each setting, we got
20 prompts for each target animal, and each prompt generated 8
images through Midjourney, so a total of 160 images for each target
animal were generated under each setting.

We inputted these images into the animal classifier ResNet101
which was trained on ImageNet, and calculated the ASRs. The
results are presented in Table 1. It indicates that, on the 10-animals
classification task, our method achieved an average ASR of 84.7%
for the ResNet101 classifier. In contrast, the average ASR for clean
image generation, random word selection and combination testing
was 4.1%, 36.5%, and 37.6%, respectively. Examples of adversarial
prompts and images are shown in SM. We observed variations
of baselines and attack effects for different animal categories. For
example, the ASRs of clean image generation for sheep and dog
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Table 3: Attack Stability Verification.

Times 1 2 3 4 5 6 7 8 9 10 Average

ASR(%) 87.5 77.5 85.0 92.5 87.5 75.0 90.0 82.5 82.5 85.0 84.5 ± 5.4

were 0.0% and 29.2%, which varied a lot. The reason may be as
follows. As stated in Section 4.2.2, there is a category imbalance
problem in ImageNet, which may cause unbalanced classification
performance of classifiers trained on ImageNet and attack effects
for different categories. Despite this, the ASRs of our method for
different animals were all higher than that of control experiments,
which indicates the effectiveness of our method.

To build a more category-balanced classifier as the attack tar-
get classifier, we finetuned the classifier ResNet101 on a category-
balanced dataset Animals-10. We then attacked the finetuned clas-
sifier ResNet101, and the results are shown in Table 2. The average
ASR of our method was 85.7%, which was much better than that of
clean image generation (1.0%), random word selection (29.3%) and
combination testing (31.5%). This further indicates that our method
is effective. Figure 3 shows a set of examples.

4.6 Stability of the Attack
Since the generation of text-to-image models is a stochastic pro-
cess, the same prompt may lead to different images in successive
queries. To verify the stability of our attack method, we selected
10 optimized prompts, then inputted it into Midjourney 10 times,
and tested the ASRs of the 40 generated adversarial images each
time. The results are shown in Table 3. It indicates that the ASRs
of our adversarial prompts were higher than 75% in 10 successive
attacks. The average ASR was 84.5% ± 5.4%. This shows that our
attack method has good stability. Moreover, This suggests that, to
a certain extent, our method can find the key semantic information
in the natural language space, and adversarial images with such
semantic information have stable adversarial effects.

4.7 Analyzing Adversarial Images from a
Natural Language View

We tried to explore a novel perspective by analyzing adversar-
ial images from the viewpoint of natural language. We analyzed
198 adversarial (misclassified) images and their prompts with ASR
higher than 87.5% from experiments in Section 4.5 and found that
the frequency of some words in these prompts were significantly
higher than that of other words. For example, for “<number>”,
“two” appeared most frequently, and its frequency was 50.5%. For
“<color>”, “green” had the highest frequency, which was 61.0%.
For “<weather>”, “foggy” and “humid” appeared most frequently,
where the frequency was 46.3% and 35.5%, respectively. For “<ap-
pearance>”, “wearing clothes” and “wearing a pair of glasses” ap-
peared most frequently, and the frequency was 38.1% and 35.5%, re-
spectively. For “<gesture>”, “stretching” had the highest frequency,
which was 53.3%. This indicates that when the above adversarial
semantic information appears, the generated images are prone to
cause classifier errors.

A blue dog wearing 

clothes stretching on 

Mars on a foggy day

A green sheep wearing 

clothes stretching on 

Moon on a humid day

A green cow 

wearing clothes 

on a foggy day

Dog Butterfly Sheep Cat Cow Sheep

Figure 4: Examples of generated images with adversarial se-
mantic information for animal classification attacks.

To verify the above conclusion, we try to combine the high-
frequency adversarial semantic information such as “green”, “wear-
ing clothes”, “foggy”, etc. into the prompts. For example, the prompt
is “an image of dog wearing clothes on a foggy day”. We got 12
prompts in this way and then input them to Midjourney to generate
48 images. The generated images were input to ResNet101 classi-
fier. The results indicate that 72.9% of the images with adversarial
semantic information were misclassified, in contrast, only 29.3% of
the images generated by random word selection were misclassified.
Some examples of adversarial images are shown in Figure 4. It indi-
cates that the adversarial semantic information analyzed above has
an important impact on the accuracy of the classifier, which helps
us to understand of the failure modes of these classifiers under
natural conditions.

We found that the adversarial semantic information not only
existed in generated images, but also in photos captured in real
world. We searched for some photos captured in the real world on
Google according to the adversarial semantic information analyzed
by our method. For example, we obtained 50 images returned by
Google with prompts “A cat is stretching”, “A horse in a foggy day”,
etc. For fair comparison, we also searched 50 images by Google

Cat Squirrel

A cat 

is stretching

A horse

in a foggy day
An elephant

wearing clothes

Horse Cow Elephant Horse

Figure 5: Examples of Google-searched images with adver-
sarial semantic information for animal classification at-
tacks.
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A black person 

wearing clothes 

on a foggy day

A East Asian wearing 

clothes in front of a brick 

wall on a foggy day

A white person wearing  

glasses stretching in front 

of a brick wall

Black East Asian East Asian White White East Asian

Figure 6: Examples of generated images with adversarial se-
mantic information for human race classification attacks.

using prompts with random word selection as control experiments.
The experimental details are described in SM. We input these images
to the classifier ResNet101. The results show that the searched
images with adversarial semantic information can also cause the
misclassifications, and the ASR was 42.0%. In contrast, the ASR
for random word selection was only 14.0%. Figure 5 shows some
seached images with adversarial semantic information. It indicates
that some semantic information in the real world (e.g. foggy, humid,
stretching, etc.) may have an important impact on the accuracy
of deep learning-based classifiers. This helps us to understand the
weakness of classifiers implemented in real-world applications, and
also helps to build more secure and robust models.

4.8 Zero-Shot Attack
We also found the adversarial semantic information analyzed in
Section 4.7 was transferable to unseen classification tasks, and we
called it zero-shot attack. We tried to apply the high-frequency ad-
versarial semantic information obtained from animal classification
attacks to attack the human race classifier. For example, the prompt
is “A black person wearing clothes is stretching on a foggy day”.
We built 30 prompts by this way and input them to Midjourney to
generate 120 images. We also set the random word selection as con-
trol experiments. The generated images were input to Vit classifier
which was finetuned on FairFace dataset. The results indicated that
53.3% of the images with adversarial semantic information were
misclassified, while only 25.0% of the images in control experiments
were misclassified. Some examples of adversarial images are shown
in Figure 6. The reason may be that some adversarial semantic
information such as “stretching” and “wearing clothes” have the
advantage of cross-tasks (from animal to human).

The ASR of zero-shot attacks was lower than that of our GA-
based method, this is reasonable because it’s a difficult task, how-
ever, it shows the possibility of transfer the adversarial semantic
information to unseen classification tasks using our method.

4.9 Ablation Study
4.9.1 SEM. We conducted ablation experiments on the SEM func-
tion. We seperately used the fitness function with SEM and without
SEM. The termination condition was that ASR was over 70%, and
other experimental settings consistent with Section 4.5. For each

(a)

(b)

Cat ElephantDog

Figure 7: Generated images (a) without and (b) with SEM fit-
ness function. The blue texts are the target categories.

experimental group, we obtained 50 adversarial images. Some ex-
amples are shown in Figure 7.

We conducted a subjective evaluation and invited 10 volunteers
(5 male, 5 female, ages 19-28, with normal acuity) to rate the two sets
of adversarial images on a scale from 1 to 10, where higher scores
indicate a greater presence of target class semantic information.
The experiments were approved by the Institutional Review Board
(IRB). The results showed that the average human evaluation score
was 8.1±0.6 with SEM and 3.3±1.0 without SEM. It suggests that
the SEM effectively enhanced the target semantic information in
adversarial images while keeping a high ASR.

4.9.2 Adaptive Word Space Reduction. We conducted ablation ex-
periments on Adaptive Word Space Reduction (AWSR). We seper-
ately conducted experiments with ASWR and without ASWR. The
termination condition was that ASR was over 70%, with other exper-
imental settings consistent with Section 4.5. The results indicated
that AWSR significantly reduced the number of queries (from 201
to 127) while keeping a high ASR. This not only improves search
efficiency but also leads to a considerable reduction in query costs,
such as the query cost for DALL·E 3 being 0.12 US dollars per image.

4.10 Physical Attacks
We tested the attack effect of our method in the physical world.
We selected 40 adversarial images obtained in Section 4.5 which
successfully misled the ResNet101 classifier. Using a Canon MF657
printer, we printed these images and then captured them with
iPhone 12 Pro from a distance of 30 cm. Examples of the digital and
physical images are shown in SM. We inputted the captured photos
into the ResNet101 classifier and calculated the ASR. The results
indicated that our method achieved a 100% ASR both in the digital
and physical worlds. The physical world adds more perturbations
[54] to the images, e.g. the printer may cause color distribution
variations [15], usually leading to lower physical ASRs for previous
noise-based [40] or image editing-based [56] approaches compared
to their digital ASRs. However, our method are based on language
with explicit semantic information, and therefore may be more
robust in the physical world.
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Table 4: Attack transferability of adversarial prompts. S: source model. T: target model.

S
T Midjourney DALL·E 3 Stable Diffussion DALL·E 2 MXL DXL RXL

Midjourney 93 63 73 78 80 90 80
Stable Diffussion 57 53 73 58 60 80 80

Table 5: Attack transferability of adversarial images. S: source classifier. T: target classifier.

S
T ViT VGG ResNet Incept Dense Mobile Efficient Squeeze Reg Alex Swin CNXL

ResNet 91 89 97 92 90 88 91 88 90 86 88 91
ViT 95 93 84 99 89 89 96 93 93 89 92 88

CNXL 88 82 79 84 85 84 72 81 77 81 80 77

4.11 Attack Transferability of Adversarial
Prompts

We tested the attack transferability of adversarial prompts of our
method across different text-to-image models. Following the set-
tings in Section 4.5, we separately optimized adversarial prompts
based on a typical black-box commercial text-to-image model, Mid-
journey, and a typical white-box open-source text-to-image model,
Stable Diffusion. For eachmodel, we obtained 50 adversarial prompts.
Subsequently, we input these prompts into various text-to-image
models, including Midjourney, DALL·E 2, DALL·E 3, Stable Diffu-
sion, Mysterious XL v4 (MXL), Dreamshaper XL alpha 2 (DXL),
and Real Cartoon XL v4 (RXL), generating 200 adversarial images
for each model. We then fed these adversarial images into the
ResNet101 classifier, and calculated ASR.

The results are presented in Table 4. This indicates that the
adversarial prompts obtained by our method can be transferred to
different text-to-image models to generate adversarial images. The
reason may be that some key language semantic information has
an important impact on the adversarial effect. This key language
semantic information can be transferred to different text-to-image
models and then generate adversarial images.

4.12 Attack Transferability of Adversarial
Images

We then evaluated the attack transferability of adversarial images
of our method across different classifiers. During the optimization
of adversarial images, we used the Midjourney text-to-image model
and separately used a CNN-based classifier ResNet, a transformer-
based classifier ViT, and an adversarial trained classifier ConvNeXt-
L (CNXL) to optimize adversarial images. For each classifier, we
obtained 100 adversarial images. Subsequently, we input these ad-
versarial images into other classifiers, including ViT [12], VGG [50],
ResNet [18], Inception v3 [51], DenseNet [23], MobileNet [21], Effi-
cientNet [53], SqueezeNet [24], RegNet [45], AlexNet [27], Swin-L
[38], and CNXL [7], and then calculated the ASRs.

The results are presented in Table 5, indicating the good attack
transferability accross different classifiers. It is worth noting that
our method successfully attacked classifiers with different architec-
tures, including CNN-based and transformer-based architectures.

This suggests that our attack method is not entirely dependent on
the classifier architecture. Furthermore, our attack method can not
only attack ordinary classifiers, but also attack classifiers based
on adversarial training (Swin-L and CNXL). Since traditional ad-
versarial training usually focuses on adversarial noise, it may not
be well-suited for our attack method, posing new challenges for
adversarial defense methods.

4.13 Discussion on Potential Social Impact
As described in Section 4.8, the adversarial semantic information
also exists in human race classification attacks. We also conducted
the GA-based attack experiments, and the ASR against human race
classifier Vit was 89%, the details are described in SM, which further
verified the above conclusion. This revealed the potential impact
of text-to-image models on social fairness. Given that many social
media platforms, such as Twitter and Facebook, employ AI models
for image moderation, the potential for race misclassification poses
concerns for fairness. This encourage us to build more fair and
robust AI models.
5 CONCLUSION
In this work, we propose a natural language induced adversarial
image attack method, which has rich semantic information and
helps humans to analyze the adversarial images from a natural
language view. To adopt commercial text-to-image models for syn-
thesizing more natural adversarial images, we propose an adaptive
genetic algorithm (GA) for optimizing discrete adversarial prompts
without requiring gradients and an adaptive word space reduction
method for improving the query efficiency. We further used CLIP to
maintain the semantic consistency of the generated images. In our
experiments, we found that some high-frequency semantic infor-
mation can easily cause classifier errors. These adversarial semantic
information exist not only in generated images, but also in photos
captured in the real world. We also found that some adversarial
semantic information can be transferred to unknown classification
tasks. Furthermore, our attack method can transfer to different
text-to-image models and image classifiers. Our work reveals the
potential impact of text-to-image models on AI safety and social
fairness and inspire researchers to develop more fair and robust AI
models.
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